The effects of nanoscale nuclei on cavitation

Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, a...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 911
Main Authors Gao, Zhan, Wu, Wangxia, Wang, Bing
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, as such contaminants cannot be eliminated completely from a substantial liquid volume. Thus, the present study aims at elucidating the effects of such nanoscale nuclei on cavitation. A parameter-free mathematical model is derived to predict the cavitation arising from nanoscale nuclei, based on classical nucleation theory. To verify the model, molecular dynamics is used to simulate cavitation at nuclei of different sizes, embedded either in water or in liquid copper at different temperatures. The cavitation pressures calculated from the molecular dynamics results are compared with the predictions of the present mathematical model, with a good agreement between them. The results show that nanoscale nuclei significantly promote cavitation, i.e. the tensile strength is reduced notably by the presence of nanoscale nuclei. The tensile strength decreases when the size of nuclei increases, and the change rule of cavitation pressure is also affected by the liquid properties, such as liquid temperature. The present study may provide an acceptable explanation of the discrepancy between theory and experiment on the cavitation pressure in liquids purified and degassed as much as possible.
AbstractList Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, as such contaminants cannot be eliminated completely from a substantial liquid volume. Thus, the present study aims at elucidating the effects of such nanoscale nuclei on cavitation. A parameter-free mathematical model is derived to predict the cavitation arising from nanoscale nuclei, based on classical nucleation theory. To verify the model, molecular dynamics is used to simulate cavitation at nuclei of different sizes, embedded either in water or in liquid copper at different temperatures. The cavitation pressures calculated from the molecular dynamics results are compared with the predictions of the present mathematical model, with a good agreement between them. The results show that nanoscale nuclei significantly promote cavitation, i.e. the tensile strength is reduced notably by the presence of nanoscale nuclei. The tensile strength decreases when the size of nuclei increases, and the change rule of cavitation pressure is also affected by the liquid properties, such as liquid temperature. The present study may provide an acceptable explanation of the discrepancy between theory and experiment on the cavitation pressure in liquids purified and degassed as much as possible.
ArticleNumber A20
Author Wang, Bing
Wu, Wangxia
Gao, Zhan
Author_xml – sequence: 1
  givenname: Zhan
  surname: Gao
  fullname: Gao, Zhan
  organization: 1School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
– sequence: 2
  givenname: Wangxia
  orcidid: 0000-0001-5548-8312
  surname: Wu
  fullname: Wu, Wangxia
  organization: 2School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
– sequence: 3
  givenname: Bing
  orcidid: 0000-0003-3373-7351
  surname: Wang
  fullname: Wang, Bing
  email: wbing@tsinghua.edu.cn
  organization: 1School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
BookMark eNp1kM1LAzEQxYNUsK0evS94TjvZZDfNUYpfIHip5zCbTXTLNqnJVvC_N0sLguhpGHi_efPejEx88JaQawYLBkwut263KKEcN6HOyJSJWlFZi2pCpgBlSRkr4YLMUtoCMA5KTgndvNvCOmfNkIrgCo8-JIO9LfzB9LYrgi8MfnYDDl3wl-TcYZ_s1WnOyev93Wb9SJ9fHp7Wt8_UcMkGWoNsBDbZQLhVy2yFwNsKsRENclGKla2EUkK1Sq2YkEYyZ6BBYRzKpgLD5-TmeHcfw8fBpkFvwyH6bKkznaNwXqusokeViSGlaJ3ex26H8Usz0GMjOjeix0b02EjW8196c8o1ROz6f6nlicJdE7v2zf488zfxDWOjdIQ
CitedBy_id crossref_primary_10_1021_acs_jpcb_1c00096
crossref_primary_10_1038_s41567_022_01764_z
crossref_primary_10_1016_j_partic_2022_08_001
crossref_primary_10_1103_PhysRevFluids_10_024202
crossref_primary_10_1021_jacs_4c06641
crossref_primary_10_3390_pr12040686
crossref_primary_10_1016_j_ultsonch_2024_107011
crossref_primary_10_3390_app14020611
crossref_primary_10_1016_j_jece_2022_108685
crossref_primary_10_3811_jjmf_2024_017
crossref_primary_10_1017_jfm_2024_79
crossref_primary_10_1016_j_surfin_2025_106243
crossref_primary_10_1142_S0217984921506156
crossref_primary_10_1021_acs_langmuir_1c01796
crossref_primary_10_1063_5_0167210
crossref_primary_10_1080_10407790_2023_2171926
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125958
crossref_primary_10_1016_j_wear_2025_206044
Cites_doi 10.1063/1.1526836
10.1073/pnas.1608421113
10.1098/rsfs.2015.0020
10.1021/ja502749f
10.1021/jz502513w
10.1515/zpch-1927-12513
10.1063/1.455285
10.1021/acs.langmuir.6b02489
10.1002/jcc.21224
10.1121/1.2436646
10.1016/0010-4655(80)90052-1
10.1121/1.391434
10.1016/j.ultsonch.2018.10.036
10.1103/PhysRevLett.92.174501
10.1121/1.382930
10.1002/jcp.1030240102
10.1093/oso/9780195094091.001.0001
10.1016/j.colsurfa.2016.01.050
10.1063/1.2337506
10.1063/1.2715577
10.1103/PhysRevB.63.224106
10.1515/zpch-1926-11927
10.1126/science.254.5033.829
10.1038/nphys2475
10.1006/jcph.1995.1039
10.1063/1.4880960
10.1146/annurev.fluid.40.111406.102116
10.1063/1.5009910
10.1016/j.crhy.2006.10.015
10.1017/jfm.2015.185
10.1063/1.4790797
10.1063/1.2121687
10.1016/S0001-8686(98)00074-8
10.1021/cm404194n
10.1017/S002211200800253X
10.1103/PhysRevE.74.041603
10.1021/jacs.9b11303
10.1063/1.3279128
10.1016/j.colsurfa.2005.06.063
10.1021/acs.jpclett.5b02798
10.1002/aic.690210502
10.1038/35097152
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2020.1049
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2020_1049
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c371t-607b4ab0974f8d1e5a03d5aab4ba34248e549949d998147c71fc0ba4cfa7b50c3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 15:52:28 EDT 2025
Tue Jul 01 03:01:23 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Wed Mar 13 05:48:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords cavitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-607b4ab0974f8d1e5a03d5aab4ba34248e549949d998147c71fc0ba4cfa7b50c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3373-7351
0000-0001-5548-8312
PQID 2480223369
PQPubID 34769
PageCount 23
ParticipantIDs proquest_journals_2480223369
crossref_primary_10_1017_jfm_2020_1049
crossref_citationtrail_10_1017_jfm_2020_1049
cambridge_journals_10_1017_jfm_2020_1049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-25
PublicationDateYYYYMMDD 2021-01-25
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2007; 126
2015; 6
2006; 74
2015; 5
2003; 118
1991; 254
2020; 142
2007; 121
2018; 148
2016; 32
2006; 7
1995; 117
1943; 18
2014; 26
1967; C71
1999; 80
2014; 136
2001; 63
1927; 125
1926; 119
2016; 7
2009; 30
2004; 92
1980; 19
2006; 89
2005; 123
2013; 138
1984; 76
2015; 771
2005; 269
2010; 132
2016; 113
1988; 89
2016; 495
2008; 610
2014; 140
2018; 51
1975; 21
2012; 24
2008; 40
1979; 65
2012; 9
1944; 24
2001; 413
Farkas (S0022112020010496_ref20) 1927; 125
S0022112020010496_ref42
Greenspan (S0022112020010496_ref22) 1967; C71
S0022112020010496_ref40
S0022112020010496_ref46
S0022112020010496_ref23
S0022112020010496_ref45
S0022112020010496_ref43
S0022112020010496_ref21
S0022112020010496_ref28
S0022112020010496_ref27
S0022112020010496_ref26
S0022112020010496_ref25
S0022112020010496_ref47
S0022112020010496_ref29
Herbert (S0022112020010496_ref24) 2006; 74
Zeldovich (S0022112020010496_ref44) 1943; 18
Volmer (S0022112020010496_ref41) 1926; 119
S0022112020010496_ref4
S0022112020010496_ref3
S0022112020010496_ref2
S0022112020010496_ref1
Caupin (S0022112020010496_ref14) 2012; 24
S0022112020010496_ref31
S0022112020010496_ref30
S0022112020010496_ref9
S0022112020010496_ref8
S0022112020010496_ref35
S0022112020010496_ref13
S0022112020010496_ref34
S0022112020010496_ref12
S0022112020010496_ref7
S0022112020010496_ref6
S0022112020010496_ref33
S0022112020010496_ref10
Debenedetti (S0022112020010496_ref18) 1996
Brennen (S0022112020010496_ref11) 1995
S0022112020010496_ref32
S0022112020010496_ref5
S0022112020010496_ref17
S0022112020010496_ref39
S0022112020010496_ref16
S0022112020010496_ref38
S0022112020010496_ref15
S0022112020010496_ref37
S0022112020010496_ref36
S0022112020010496_ref19
References_xml – volume: 121
  start-page: 1406
  issue: 3
  year: 2007
  end-page: 1412
  article-title: Reproducible cavitation activity in water-particle suspensions
  publication-title: J. Acoust. Soc. Am.
– volume: 51
  start-page: 120
  year: 2018
  end-page: 128
  article-title: Cavitation inception of water with solid nanoparticles: a molecular dynamics study
  publication-title: Ultrason. Sonochem.
– volume: 771
  start-page: 424
  year: 2015
  end-page: 448
  article-title: Cavitation nuclei in water exposed to transient pressures
  publication-title: J. Fluid Mech.
– volume: 126
  start-page: 154707
  issue: 15
  year: 2007
  article-title: Surface tension of the most popular models of water by using the test-area simulation method
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 2244
  issue: 7
  year: 2014
  end-page: 2248
  article-title: Controlled cavitation at nano/microparticle surfaces
  publication-title: Chem. Mater.
– volume: 76
  start-page: 1511
  issue: 5
  year: 1984
  end-page: 1521
  article-title: A microscopic investigation of bubble formation nuclei
  publication-title: J. Acoust. Soc. Am.
– volume: 138
  start-page: 084508
  issue: 8
  year: 2013
  article-title: Homogeneous bubble nucleation in water at negative pressure: a Voronoi polyhedra analysis
  publication-title: J. Chem. Phys.
– volume: 89
  start-page: 7521
  issue: 12
  year: 1988
  end-page: 7530
  article-title: Nonclassical nucleation theory for the gas-liquid transition
  publication-title: J. Chem. Phys.
– volume: 65
  start-page: 1429
  issue: 6
  year: 1979
  end-page: 1439
  article-title: Skins of varing permeability: a stabilization mechanism for gas cavitation nuclei
  publication-title: J. Acoust. Soc. Am.
– volume: 142
  start-page: 5583
  issue: 12
  year: 2020
  end-page: 5593
  article-title: Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water
  publication-title: J. Am. Chem. Soc.
– volume: 148
  start-page: 094505
  issue: 9
  year: 2018
  article-title: Rayleigh-Plesset equation of the bubble stable cavitation in water: a nonequilibrium all-atom molecular dynamics simulation study
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 10549
  issue: 30
  year: 2014
  article-title: Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 224106
  issue: 22
  year: 2001
  article-title: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations
  publication-title: Phys. Rev. B
– volume: C71
  start-page: 299
  issue: 4
  year: 1967
  article-title: Radiation-induced acoustic cavitation apparatus and some results
  publication-title: J. Res. Natl Bur. Stand.
– volume: 24
  start-page: 1
  issue: 1
  year: 1944
  end-page: 22
  article-title: Bubble formation in animals I. Physical factors
  publication-title: J. Cell Comput. Physiol.
– volume: 5
  start-page: 25
  issue: 5
  year: 2015
  article-title: Tiny bubbles challenge giant turbines: three Gorges puzzle
  publication-title: Interface Focus
– volume: 32
  start-page: 11086
  issue: 43
  year: 2016
  end-page: 11100
  article-title: A history of nanobubbles
  publication-title: Langmuir
– volume: 140
  start-page: 214317
  issue: 21
  year: 2014
  article-title: Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 014701
  issue: 1
  year: 2010
  article-title: The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions
  publication-title: J. Chem. Phys.
– volume: 269
  start-page: 28
  issue: 1-3
  year: 2005
  end-page: 34
  article-title: Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions
  publication-title: Colloid Surf. A
– volume: 40
  start-page: 395
  year: 2008
  end-page: 420
  article-title: Applications of acoustics and cavitation to noninvasive therapy and drug delivery
  publication-title: Annu. Rev. Fluid Mech.
– volume: 7
  start-page: 806
  issue: 5
  year: 2016
  article-title: Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 413
  issue: 3
  year: 2015
  article-title: Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes
  publication-title: J. Phys. Chem. Lett.
– volume: 89
  start-page: 074102
  issue: 7
  year: 2006
  article-title: Surface cleaning from laser-induced cavitation bubbles
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 215
  issue: 2
  year: 1980
  end-page: 261
  article-title: P3m3dp - the three-dimensional periodic particle-particle particle-mesh program
  publication-title: Comput. Phys. Commun.
– volume: 125
  start-page: 236
  year: 1927
  article-title: The velocity of nucleus formation in supersaturated vapors
  publication-title: Z. Phys. Chem.
– volume: 30
  start-page: 2157
  issue: 13
  year: 2009
  end-page: 2164
  article-title: Packmol: a package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
– volume: 495
  start-page: 176
  year: 2016
  end-page: 186
  article-title: Stability theories of nanobubbles at solid-liquid interface: a review
  publication-title: Colloid Surf. A
– volume: 9
  start-page: 38
  issue: 1
  year: 2012
  end-page: 41
  article-title: A coherent picture of water at extreme negative pressure
  publication-title: Nat. Phys.
– volume: 18
  start-page: 1
  year: 1943
  end-page: 22
  article-title: On the theory of new phase formation: cavitation
  publication-title: Acta Physicochim. URSS
– volume: 118
  start-page: 768
  issue: 2
  year: 2003
  end-page: 783
  article-title: A kinetic theory of homogeneous bubble nucleation
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 284110
  issue: 28
  year: 2012
  article-title: Exploring water and other liquids at negative pressure
  publication-title: J. Phys.: Condens. Matter
– volume: 123
  start-page: 234505
  issue: 23
  year: 2005
  article-title: A general purpose model for the condensed phases of water: TIP4P/2005
  publication-title: J. Chem. Phys.
– volume: 119
  start-page: 277
  issue: 3/4
  year: 1926
  end-page: 301
  article-title: Nucleus formation in supersaturated systems
  publication-title: Z. Phys. Chem.
– volume: 254
  start-page: 829
  issue: 5033
  year: 1991
  end-page: 832
  article-title: Liquids at large negative pressures - water at the homogeneous nucleation limit
  publication-title: Science
– volume: 21
  start-page: 833
  issue: 5
  year: 1975
  end-page: 848
  article-title: Bubble nucleation in liquids
  publication-title: AIChE J.
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  end-page: 19
  article-title: Fast parallel algorithms for short-range molecular-dynamics
  publication-title: J. Comput. Phys.
– volume: 610
  start-page: 157
  year: 2008
  end-page: 182
  article-title: The acceleration of solid particles subjected to cavitation nucleation
  publication-title: J. Fluid Mech.
– volume: 413
  start-page: 477
  issue: 6855
  year: 2001
  end-page: 478
  article-title: Snapping shrimp make flashing bubbles
  publication-title: Nature
– volume: 92
  start-page: 174501
  issue: 17
  year: 2004
  article-title: Cavitation inception on microparticles: a self-propelled particle accelerator
  publication-title: Phys. Rev. Lett.
– volume: 74
  start-page: 041603
  issue: 4
  year: 2006
  article-title: Cavitation pressure in water
  publication-title: Phys. Rev. E
– volume: 80
  start-page: 27
  issue: 1
  year: 1999
  end-page: 50
  article-title: Bubble nucleation from gas cavities - a review
  publication-title: Adv. Colloid Interface Sci.
– volume: 113
  start-page: 13582
  issue: 48
  year: 2016
  end-page: 13587
  article-title: Molecular mechanism for cavitation in water under tension
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: 1000
  issue: 9-10
  year: 2006
  end-page: 1017
  article-title: Cavitation in water: a review
  publication-title: C. R. Phys.
– ident: S0022112020010496_ref38
  doi: 10.1063/1.1526836
– ident: S0022112020010496_ref31
  doi: 10.1073/pnas.1608421113
– ident: S0022112020010496_ref26
  doi: 10.1098/rsfs.2015.0020
– ident: S0022112020010496_ref35
  doi: 10.1021/ja502749f
– ident: S0022112020010496_ref21
  doi: 10.1021/jz502513w
– volume: 125
  start-page: 236
  year: 1927
  ident: S0022112020010496_ref20
  article-title: The velocity of nucleus formation in supersaturated vapors
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1927-12513
– ident: S0022112020010496_ref36
  doi: 10.1063/1.455285
– ident: S0022112020010496_ref4
  doi: 10.1021/acs.langmuir.6b02489
– ident: S0022112020010496_ref30
  doi: 10.1002/jcc.21224
– volume-title: Metastable Liquids: Concepts and Principles
  year: 1996
  ident: S0022112020010496_ref18
– volume: C71
  start-page: 299
  year: 1967
  ident: S0022112020010496_ref22
  article-title: Radiation-induced acoustic cavitation apparatus and some results
  publication-title: J. Res. Natl Bur. Stand.
– ident: S0022112020010496_ref9
  doi: 10.1121/1.2436646
– ident: S0022112020010496_ref19
  doi: 10.1016/0010-4655(80)90052-1
– ident: S0022112020010496_ref43
  doi: 10.1121/1.391434
– ident: S0022112020010496_ref27
  doi: 10.1016/j.ultsonch.2018.10.036
– ident: S0022112020010496_ref6
  doi: 10.1103/PhysRevLett.92.174501
– ident: S0022112020010496_ref42
  doi: 10.1121/1.382930
– ident: S0022112020010496_ref23
  doi: 10.1002/jcp.1030240102
– volume-title: Cavitation and Bubble Dynamics
  year: 1995
  ident: S0022112020010496_ref11
  doi: 10.1093/oso/9780195094091.001.0001
– ident: S0022112020010496_ref39
  doi: 10.1016/j.colsurfa.2016.01.050
– ident: S0022112020010496_ref34
  doi: 10.1063/1.2337506
– ident: S0022112020010496_ref40
  doi: 10.1063/1.2715577
– ident: S0022112020010496_ref33
– ident: S0022112020010496_ref32
  doi: 10.1103/PhysRevB.63.224106
– volume: 119
  start-page: 277
  year: 1926
  ident: S0022112020010496_ref41
  article-title: Nucleus formation in supersaturated systems
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1926-11927
– ident: S0022112020010496_ref46
  doi: 10.1126/science.254.5033.829
– ident: S0022112020010496_ref7
  doi: 10.1038/nphys2475
– volume: 24
  start-page: 284110
  year: 2012
  ident: S0022112020010496_ref14
  article-title: Exploring water and other liquids at negative pressure
  publication-title: J. Phys.: Condens. Matter
– ident: S0022112020010496_ref37
  doi: 10.1006/jcph.1995.1039
– ident: S0022112020010496_ref13
  doi: 10.1063/1.4880960
– ident: S0022112020010496_ref17
  doi: 10.1146/annurev.fluid.40.111406.102116
– ident: S0022112020010496_ref29
  doi: 10.1063/1.5009910
– volume: 18
  start-page: 1
  year: 1943
  ident: S0022112020010496_ref44
  article-title: On the theory of new phase formation: cavitation
  publication-title: Acta Physicochim. URSS
– ident: S0022112020010496_ref15
  doi: 10.1016/j.crhy.2006.10.015
– ident: S0022112020010496_ref5
  doi: 10.1017/jfm.2015.185
– ident: S0022112020010496_ref1
  doi: 10.1063/1.4790797
– ident: S0022112020010496_ref2
  doi: 10.1063/1.2121687
– ident: S0022112020010496_ref25
  doi: 10.1016/S0001-8686(98)00074-8
– ident: S0022112020010496_ref45
  doi: 10.1021/cm404194n
– ident: S0022112020010496_ref10
  doi: 10.1017/S002211200800253X
– volume: 74
  start-page: 041603
  year: 2006
  ident: S0022112020010496_ref24
  article-title: Cavitation pressure in water
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.041603
– ident: S0022112020010496_ref47
  doi: 10.1021/jacs.9b11303
– ident: S0022112020010496_ref3
  doi: 10.1063/1.3279128
– ident: S0022112020010496_ref16
  doi: 10.1016/j.colsurfa.2005.06.063
– ident: S0022112020010496_ref12
  doi: 10.1021/acs.jpclett.5b02798
– ident: S0022112020010496_ref8
  doi: 10.1002/aic.690210502
– ident: S0022112020010496_ref28
  doi: 10.1038/35097152
SSID ssj0013097
Score 2.4725482
Snippet Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cavitation
Contaminants
Dynamics
Experiments
Gases
JFM Papers
Liquids
Mathematical models
Molecular dynamics
Nanoparticles
Nucleation
Nuclei
Nucleus
Simulation
Tensile strength
Water purification
Title The effects of nanoscale nuclei on cavitation
URI https://www.cambridge.org/core/product/identifier/S0022112020010496/type/journal_article
https://www.proquest.com/docview/2480223369
Volume 911
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYJiQ48BggBmPKASEOVLRN2rQnNGBjQoAQD4lblaSpBELtoIPfT9xlr8M414fms-M4jv0Z4Fgb4KVIM4dKH0m1MdEktXa48JHgLtasKsa8fwgHr-z2LXizCbfSllVOfGLlqNNCYY783GfYFEppGF8MvxycGoWvq3aERg0axgVHUR0al72Hx6fZO4Ib8wlfuIksXMuyiaTRHxk2ovvVK2c8z6yweEItOujq1OlvwYYNF0l3rN9tWNF5EzZt6EjsxiybsD7HK9iE1aquU5U74BgzILZmgxQZyUVelEYtmuRIZPxOipwo8WuJunfhtd97uRo4dkKCoyj3Rk7ocsmENItkWZR6OhAuTQMhpMGfMgOZxusfi1NzqfIYV9zLlCsFU5ngMnAV3YN6XuR6H0joCc00D8MsRsYaJQKKTbZpKiQ1QQRtwekUocTaeZmMa8R4YsBMEMwEwWzB2QTARNkF4MCLz2XiJ1Px4ZhiY5lge6KN2R_M7OLg_8-HsOZjPYrrOX7Qhvro-0cfmYBiJDtQi_o3HWh0r-_vnjvWhv4Ab7_Iyw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2VIgQMfBQQhQIeADEQkcROTAaEEFBaviaQ2ILtOBIIJYUUEH-K34gvdVoYYGOOFTvPL76zffcOYFMb4KVIUodKH0W18aBJau1w4aPAXaRZGYx5dR12btn5XXBXg88qFwbDKqs1sVyok1zhGfmezzAplNIwOuw9O1g1Cm9XqxIaA1pc6I93s2UrDronZn63fL99enPccWxVAUdR7vWd0OWSCekaRzrdTzwdCJcmgRDSjJky043GLROLErMR8RhX3EuVKwVTqeAycBU17x2DcUaNJcfM9PbZ6NbCjXilTm78GNdqeqJE9WOKae9-eacafddx-GkPf5qD0sa152DGOqfkaMCmeajprAGz1lEldhkoGjD9TcWwARNlFKkqFsAxpCM2QoTkKclElheGBJpkKJv8QPKMKPFmZcEX4fZfkFuCepZnehlI6AnNNA_DNEJ9HCUCiim9SSIkNS4LbcLOEKHY_lVFPIhI47EBM0YwYwSzCbsVgLGyH4DlNZ5-a749bN4bCHr81rBVzcZoBCMWrvz9eAMmOzdXl_Fl9_piFaZ8jIRxPccPWlDvv7zqNePK9OV6yR8C9_9N2C8BigH8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+nanoscale+nuclei+on+cavitation&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Gao%2C+Zhan&rft.au=Wu%2C+Wangxia&rft.au=Wang%2C+Bing&rft.date=2021-01-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=911&rft_id=info:doi/10.1017%2Fjfm.2020.1049&rft.externalDocID=10_1017_jfm_2020_1049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon