The effects of nanoscale nuclei on cavitation
Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, a...
Saved in:
Published in | Journal of fluid mechanics Vol. 911 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, as such contaminants cannot be eliminated completely from a substantial liquid volume. Thus, the present study aims at elucidating the effects of such nanoscale nuclei on cavitation. A parameter-free mathematical model is derived to predict the cavitation arising from nanoscale nuclei, based on classical nucleation theory. To verify the model, molecular dynamics is used to simulate cavitation at nuclei of different sizes, embedded either in water or in liquid copper at different temperatures. The cavitation pressures calculated from the molecular dynamics results are compared with the predictions of the present mathematical model, with a good agreement between them. The results show that nanoscale nuclei significantly promote cavitation, i.e. the tensile strength is reduced notably by the presence of nanoscale nuclei. The tensile strength decreases when the size of nuclei increases, and the change rule of cavitation pressure is also affected by the liquid properties, such as liquid temperature. The present study may provide an acceptable explanation of the discrepancy between theory and experiment on the cavitation pressure in liquids purified and degassed as much as possible. |
---|---|
AbstractList | Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, as such contaminants cannot be eliminated completely from a substantial liquid volume. Thus, the present study aims at elucidating the effects of such nanoscale nuclei on cavitation. A parameter-free mathematical model is derived to predict the cavitation arising from nanoscale nuclei, based on classical nucleation theory. To verify the model, molecular dynamics is used to simulate cavitation at nuclei of different sizes, embedded either in water or in liquid copper at different temperatures. The cavitation pressures calculated from the molecular dynamics results are compared with the predictions of the present mathematical model, with a good agreement between them. The results show that nanoscale nuclei significantly promote cavitation, i.e. the tensile strength is reduced notably by the presence of nanoscale nuclei. The tensile strength decreases when the size of nuclei increases, and the change rule of cavitation pressure is also affected by the liquid properties, such as liquid temperature. The present study may provide an acceptable explanation of the discrepancy between theory and experiment on the cavitation pressure in liquids purified and degassed as much as possible. |
ArticleNumber | A20 |
Author | Wang, Bing Wu, Wangxia Gao, Zhan |
Author_xml | – sequence: 1 givenname: Zhan surname: Gao fullname: Gao, Zhan organization: 1School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China – sequence: 2 givenname: Wangxia orcidid: 0000-0001-5548-8312 surname: Wu fullname: Wu, Wangxia organization: 2School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China – sequence: 3 givenname: Bing orcidid: 0000-0003-3373-7351 surname: Wang fullname: Wang, Bing email: wbing@tsinghua.edu.cn organization: 1School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China |
BookMark | eNp1kM1LAzEQxYNUsK0evS94TjvZZDfNUYpfIHip5zCbTXTLNqnJVvC_N0sLguhpGHi_efPejEx88JaQawYLBkwut263KKEcN6HOyJSJWlFZi2pCpgBlSRkr4YLMUtoCMA5KTgndvNvCOmfNkIrgCo8-JIO9LfzB9LYrgi8MfnYDDl3wl-TcYZ_s1WnOyev93Wb9SJ9fHp7Wt8_UcMkGWoNsBDbZQLhVy2yFwNsKsRENclGKla2EUkK1Sq2YkEYyZ6BBYRzKpgLD5-TmeHcfw8fBpkFvwyH6bKkznaNwXqusokeViSGlaJ3ex26H8Usz0GMjOjeix0b02EjW8196c8o1ROz6f6nlicJdE7v2zf488zfxDWOjdIQ |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_1c00096 crossref_primary_10_1038_s41567_022_01764_z crossref_primary_10_1016_j_partic_2022_08_001 crossref_primary_10_1103_PhysRevFluids_10_024202 crossref_primary_10_1021_jacs_4c06641 crossref_primary_10_3390_pr12040686 crossref_primary_10_1016_j_ultsonch_2024_107011 crossref_primary_10_3390_app14020611 crossref_primary_10_1016_j_jece_2022_108685 crossref_primary_10_3811_jjmf_2024_017 crossref_primary_10_1017_jfm_2024_79 crossref_primary_10_1016_j_surfin_2025_106243 crossref_primary_10_1142_S0217984921506156 crossref_primary_10_1021_acs_langmuir_1c01796 crossref_primary_10_1063_5_0167210 crossref_primary_10_1080_10407790_2023_2171926 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125958 crossref_primary_10_1016_j_wear_2025_206044 |
Cites_doi | 10.1063/1.1526836 10.1073/pnas.1608421113 10.1098/rsfs.2015.0020 10.1021/ja502749f 10.1021/jz502513w 10.1515/zpch-1927-12513 10.1063/1.455285 10.1021/acs.langmuir.6b02489 10.1002/jcc.21224 10.1121/1.2436646 10.1016/0010-4655(80)90052-1 10.1121/1.391434 10.1016/j.ultsonch.2018.10.036 10.1103/PhysRevLett.92.174501 10.1121/1.382930 10.1002/jcp.1030240102 10.1093/oso/9780195094091.001.0001 10.1016/j.colsurfa.2016.01.050 10.1063/1.2337506 10.1063/1.2715577 10.1103/PhysRevB.63.224106 10.1515/zpch-1926-11927 10.1126/science.254.5033.829 10.1038/nphys2475 10.1006/jcph.1995.1039 10.1063/1.4880960 10.1146/annurev.fluid.40.111406.102116 10.1063/1.5009910 10.1016/j.crhy.2006.10.015 10.1017/jfm.2015.185 10.1063/1.4790797 10.1063/1.2121687 10.1016/S0001-8686(98)00074-8 10.1021/cm404194n 10.1017/S002211200800253X 10.1103/PhysRevE.74.041603 10.1021/jacs.9b11303 10.1063/1.3279128 10.1016/j.colsurfa.2005.06.063 10.1021/acs.jpclett.5b02798 10.1002/aic.690210502 10.1038/35097152 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2020.1049 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 10_1017_jfm_2020_1049 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFZFC AKMAY CITATION PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c371t-607b4ab0974f8d1e5a03d5aab4ba34248e549949d998147c71fc0ba4cfa7b50c3 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 15:52:28 EDT 2025 Tue Jul 01 03:01:23 EDT 2025 Thu Apr 24 22:51:07 EDT 2025 Wed Mar 13 05:48:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | cavitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-607b4ab0974f8d1e5a03d5aab4ba34248e549949d998147c71fc0ba4cfa7b50c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3373-7351 0000-0001-5548-8312 |
PQID | 2480223369 |
PQPubID | 34769 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2480223369 crossref_primary_10_1017_jfm_2020_1049 crossref_citationtrail_10_1017_jfm_2020_1049 cambridge_journals_10_1017_jfm_2020_1049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-25 |
PublicationDateYYYYMMDD | 2021-01-25 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2021 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2007; 126 2015; 6 2006; 74 2015; 5 2003; 118 1991; 254 2020; 142 2007; 121 2018; 148 2016; 32 2006; 7 1995; 117 1943; 18 2014; 26 1967; C71 1999; 80 2014; 136 2001; 63 1927; 125 1926; 119 2016; 7 2009; 30 2004; 92 1980; 19 2006; 89 2005; 123 2013; 138 1984; 76 2015; 771 2005; 269 2010; 132 2016; 113 1988; 89 2016; 495 2008; 610 2014; 140 2018; 51 1975; 21 2012; 24 2008; 40 1979; 65 2012; 9 1944; 24 2001; 413 Farkas (S0022112020010496_ref20) 1927; 125 S0022112020010496_ref42 Greenspan (S0022112020010496_ref22) 1967; C71 S0022112020010496_ref40 S0022112020010496_ref46 S0022112020010496_ref23 S0022112020010496_ref45 S0022112020010496_ref43 S0022112020010496_ref21 S0022112020010496_ref28 S0022112020010496_ref27 S0022112020010496_ref26 S0022112020010496_ref25 S0022112020010496_ref47 S0022112020010496_ref29 Herbert (S0022112020010496_ref24) 2006; 74 Zeldovich (S0022112020010496_ref44) 1943; 18 Volmer (S0022112020010496_ref41) 1926; 119 S0022112020010496_ref4 S0022112020010496_ref3 S0022112020010496_ref2 S0022112020010496_ref1 Caupin (S0022112020010496_ref14) 2012; 24 S0022112020010496_ref31 S0022112020010496_ref30 S0022112020010496_ref9 S0022112020010496_ref8 S0022112020010496_ref35 S0022112020010496_ref13 S0022112020010496_ref34 S0022112020010496_ref12 S0022112020010496_ref7 S0022112020010496_ref6 S0022112020010496_ref33 S0022112020010496_ref10 Debenedetti (S0022112020010496_ref18) 1996 Brennen (S0022112020010496_ref11) 1995 S0022112020010496_ref32 S0022112020010496_ref5 S0022112020010496_ref17 S0022112020010496_ref39 S0022112020010496_ref16 S0022112020010496_ref38 S0022112020010496_ref15 S0022112020010496_ref37 S0022112020010496_ref36 S0022112020010496_ref19 |
References_xml | – volume: 121 start-page: 1406 issue: 3 year: 2007 end-page: 1412 article-title: Reproducible cavitation activity in water-particle suspensions publication-title: J. Acoust. Soc. Am. – volume: 51 start-page: 120 year: 2018 end-page: 128 article-title: Cavitation inception of water with solid nanoparticles: a molecular dynamics study publication-title: Ultrason. Sonochem. – volume: 771 start-page: 424 year: 2015 end-page: 448 article-title: Cavitation nuclei in water exposed to transient pressures publication-title: J. Fluid Mech. – volume: 126 start-page: 154707 issue: 15 year: 2007 article-title: Surface tension of the most popular models of water by using the test-area simulation method publication-title: J. Chem. Phys. – volume: 26 start-page: 2244 issue: 7 year: 2014 end-page: 2248 article-title: Controlled cavitation at nano/microparticle surfaces publication-title: Chem. Mater. – volume: 76 start-page: 1511 issue: 5 year: 1984 end-page: 1521 article-title: A microscopic investigation of bubble formation nuclei publication-title: J. Acoust. Soc. Am. – volume: 138 start-page: 084508 issue: 8 year: 2013 article-title: Homogeneous bubble nucleation in water at negative pressure: a Voronoi polyhedra analysis publication-title: J. Chem. Phys. – volume: 89 start-page: 7521 issue: 12 year: 1988 end-page: 7530 article-title: Nonclassical nucleation theory for the gas-liquid transition publication-title: J. Chem. Phys. – volume: 65 start-page: 1429 issue: 6 year: 1979 end-page: 1439 article-title: Skins of varing permeability: a stabilization mechanism for gas cavitation nuclei publication-title: J. Acoust. Soc. Am. – volume: 142 start-page: 5583 issue: 12 year: 2020 end-page: 5593 article-title: Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water publication-title: J. Am. Chem. Soc. – volume: 148 start-page: 094505 issue: 9 year: 2018 article-title: Rayleigh-Plesset equation of the bubble stable cavitation in water: a nonequilibrium all-atom molecular dynamics simulation study publication-title: J. Chem. Phys. – volume: 136 start-page: 10549 issue: 30 year: 2014 article-title: Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 224106 issue: 22 year: 2001 article-title: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations publication-title: Phys. Rev. B – volume: C71 start-page: 299 issue: 4 year: 1967 article-title: Radiation-induced acoustic cavitation apparatus and some results publication-title: J. Res. Natl Bur. Stand. – volume: 24 start-page: 1 issue: 1 year: 1944 end-page: 22 article-title: Bubble formation in animals I. Physical factors publication-title: J. Cell Comput. Physiol. – volume: 5 start-page: 25 issue: 5 year: 2015 article-title: Tiny bubbles challenge giant turbines: three Gorges puzzle publication-title: Interface Focus – volume: 32 start-page: 11086 issue: 43 year: 2016 end-page: 11100 article-title: A history of nanobubbles publication-title: Langmuir – volume: 140 start-page: 214317 issue: 21 year: 2014 article-title: Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids publication-title: J. Chem. Phys. – volume: 132 start-page: 014701 issue: 1 year: 2010 article-title: The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions publication-title: J. Chem. Phys. – volume: 269 start-page: 28 issue: 1-3 year: 2005 end-page: 34 article-title: Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions publication-title: Colloid Surf. A – volume: 40 start-page: 395 year: 2008 end-page: 420 article-title: Applications of acoustics and cavitation to noninvasive therapy and drug delivery publication-title: Annu. Rev. Fluid Mech. – volume: 7 start-page: 806 issue: 5 year: 2016 article-title: Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 413 issue: 3 year: 2015 article-title: Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes publication-title: J. Phys. Chem. Lett. – volume: 89 start-page: 074102 issue: 7 year: 2006 article-title: Surface cleaning from laser-induced cavitation bubbles publication-title: Appl. Phys. Lett. – volume: 19 start-page: 215 issue: 2 year: 1980 end-page: 261 article-title: P3m3dp - the three-dimensional periodic particle-particle particle-mesh program publication-title: Comput. Phys. Commun. – volume: 125 start-page: 236 year: 1927 article-title: The velocity of nucleus formation in supersaturated vapors publication-title: Z. Phys. Chem. – volume: 30 start-page: 2157 issue: 13 year: 2009 end-page: 2164 article-title: Packmol: a package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. – volume: 495 start-page: 176 year: 2016 end-page: 186 article-title: Stability theories of nanobubbles at solid-liquid interface: a review publication-title: Colloid Surf. A – volume: 9 start-page: 38 issue: 1 year: 2012 end-page: 41 article-title: A coherent picture of water at extreme negative pressure publication-title: Nat. Phys. – volume: 18 start-page: 1 year: 1943 end-page: 22 article-title: On the theory of new phase formation: cavitation publication-title: Acta Physicochim. URSS – volume: 118 start-page: 768 issue: 2 year: 2003 end-page: 783 article-title: A kinetic theory of homogeneous bubble nucleation publication-title: J. Chem. Phys. – volume: 24 start-page: 284110 issue: 28 year: 2012 article-title: Exploring water and other liquids at negative pressure publication-title: J. Phys.: Condens. Matter – volume: 123 start-page: 234505 issue: 23 year: 2005 article-title: A general purpose model for the condensed phases of water: TIP4P/2005 publication-title: J. Chem. Phys. – volume: 119 start-page: 277 issue: 3/4 year: 1926 end-page: 301 article-title: Nucleus formation in supersaturated systems publication-title: Z. Phys. Chem. – volume: 254 start-page: 829 issue: 5033 year: 1991 end-page: 832 article-title: Liquids at large negative pressures - water at the homogeneous nucleation limit publication-title: Science – volume: 21 start-page: 833 issue: 5 year: 1975 end-page: 848 article-title: Bubble nucleation in liquids publication-title: AIChE J. – volume: 117 start-page: 1 issue: 1 year: 1995 end-page: 19 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys. – volume: 610 start-page: 157 year: 2008 end-page: 182 article-title: The acceleration of solid particles subjected to cavitation nucleation publication-title: J. Fluid Mech. – volume: 413 start-page: 477 issue: 6855 year: 2001 end-page: 478 article-title: Snapping shrimp make flashing bubbles publication-title: Nature – volume: 92 start-page: 174501 issue: 17 year: 2004 article-title: Cavitation inception on microparticles: a self-propelled particle accelerator publication-title: Phys. Rev. Lett. – volume: 74 start-page: 041603 issue: 4 year: 2006 article-title: Cavitation pressure in water publication-title: Phys. Rev. E – volume: 80 start-page: 27 issue: 1 year: 1999 end-page: 50 article-title: Bubble nucleation from gas cavities - a review publication-title: Adv. Colloid Interface Sci. – volume: 113 start-page: 13582 issue: 48 year: 2016 end-page: 13587 article-title: Molecular mechanism for cavitation in water under tension publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: 1000 issue: 9-10 year: 2006 end-page: 1017 article-title: Cavitation in water: a review publication-title: C. R. Phys. – ident: S0022112020010496_ref38 doi: 10.1063/1.1526836 – ident: S0022112020010496_ref31 doi: 10.1073/pnas.1608421113 – ident: S0022112020010496_ref26 doi: 10.1098/rsfs.2015.0020 – ident: S0022112020010496_ref35 doi: 10.1021/ja502749f – ident: S0022112020010496_ref21 doi: 10.1021/jz502513w – volume: 125 start-page: 236 year: 1927 ident: S0022112020010496_ref20 article-title: The velocity of nucleus formation in supersaturated vapors publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1927-12513 – ident: S0022112020010496_ref36 doi: 10.1063/1.455285 – ident: S0022112020010496_ref4 doi: 10.1021/acs.langmuir.6b02489 – ident: S0022112020010496_ref30 doi: 10.1002/jcc.21224 – volume-title: Metastable Liquids: Concepts and Principles year: 1996 ident: S0022112020010496_ref18 – volume: C71 start-page: 299 year: 1967 ident: S0022112020010496_ref22 article-title: Radiation-induced acoustic cavitation apparatus and some results publication-title: J. Res. Natl Bur. Stand. – ident: S0022112020010496_ref9 doi: 10.1121/1.2436646 – ident: S0022112020010496_ref19 doi: 10.1016/0010-4655(80)90052-1 – ident: S0022112020010496_ref43 doi: 10.1121/1.391434 – ident: S0022112020010496_ref27 doi: 10.1016/j.ultsonch.2018.10.036 – ident: S0022112020010496_ref6 doi: 10.1103/PhysRevLett.92.174501 – ident: S0022112020010496_ref42 doi: 10.1121/1.382930 – ident: S0022112020010496_ref23 doi: 10.1002/jcp.1030240102 – volume-title: Cavitation and Bubble Dynamics year: 1995 ident: S0022112020010496_ref11 doi: 10.1093/oso/9780195094091.001.0001 – ident: S0022112020010496_ref39 doi: 10.1016/j.colsurfa.2016.01.050 – ident: S0022112020010496_ref34 doi: 10.1063/1.2337506 – ident: S0022112020010496_ref40 doi: 10.1063/1.2715577 – ident: S0022112020010496_ref33 – ident: S0022112020010496_ref32 doi: 10.1103/PhysRevB.63.224106 – volume: 119 start-page: 277 year: 1926 ident: S0022112020010496_ref41 article-title: Nucleus formation in supersaturated systems publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1926-11927 – ident: S0022112020010496_ref46 doi: 10.1126/science.254.5033.829 – ident: S0022112020010496_ref7 doi: 10.1038/nphys2475 – volume: 24 start-page: 284110 year: 2012 ident: S0022112020010496_ref14 article-title: Exploring water and other liquids at negative pressure publication-title: J. Phys.: Condens. Matter – ident: S0022112020010496_ref37 doi: 10.1006/jcph.1995.1039 – ident: S0022112020010496_ref13 doi: 10.1063/1.4880960 – ident: S0022112020010496_ref17 doi: 10.1146/annurev.fluid.40.111406.102116 – ident: S0022112020010496_ref29 doi: 10.1063/1.5009910 – volume: 18 start-page: 1 year: 1943 ident: S0022112020010496_ref44 article-title: On the theory of new phase formation: cavitation publication-title: Acta Physicochim. URSS – ident: S0022112020010496_ref15 doi: 10.1016/j.crhy.2006.10.015 – ident: S0022112020010496_ref5 doi: 10.1017/jfm.2015.185 – ident: S0022112020010496_ref1 doi: 10.1063/1.4790797 – ident: S0022112020010496_ref2 doi: 10.1063/1.2121687 – ident: S0022112020010496_ref25 doi: 10.1016/S0001-8686(98)00074-8 – ident: S0022112020010496_ref45 doi: 10.1021/cm404194n – ident: S0022112020010496_ref10 doi: 10.1017/S002211200800253X – volume: 74 start-page: 041603 year: 2006 ident: S0022112020010496_ref24 article-title: Cavitation pressure in water publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.041603 – ident: S0022112020010496_ref47 doi: 10.1021/jacs.9b11303 – ident: S0022112020010496_ref3 doi: 10.1063/1.3279128 – ident: S0022112020010496_ref16 doi: 10.1016/j.colsurfa.2005.06.063 – ident: S0022112020010496_ref12 doi: 10.1021/acs.jpclett.5b02798 – ident: S0022112020010496_ref8 doi: 10.1002/aic.690210502 – ident: S0022112020010496_ref28 doi: 10.1038/35097152 |
SSID | ssj0013097 |
Score | 2.4725482 |
Snippet | Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cavitation Contaminants Dynamics Experiments Gases JFM Papers Liquids Mathematical models Molecular dynamics Nanoparticles Nucleation Nuclei Nucleus Simulation Tensile strength Water purification |
Title | The effects of nanoscale nuclei on cavitation |
URI | https://www.cambridge.org/core/product/identifier/S0022112020010496/type/journal_article https://www.proquest.com/docview/2480223369 |
Volume | 911 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYJiQ48BggBmPKASEOVLRN2rQnNGBjQoAQD4lblaSpBELtoIPfT9xlr8M414fms-M4jv0Z4Fgb4KVIM4dKH0m1MdEktXa48JHgLtasKsa8fwgHr-z2LXizCbfSllVOfGLlqNNCYY783GfYFEppGF8MvxycGoWvq3aERg0axgVHUR0al72Hx6fZO4Ib8wlfuIksXMuyiaTRHxk2ovvVK2c8z6yweEItOujq1OlvwYYNF0l3rN9tWNF5EzZt6EjsxiybsD7HK9iE1aquU5U74BgzILZmgxQZyUVelEYtmuRIZPxOipwo8WuJunfhtd97uRo4dkKCoyj3Rk7ocsmENItkWZR6OhAuTQMhpMGfMgOZxusfi1NzqfIYV9zLlCsFU5ngMnAV3YN6XuR6H0joCc00D8MsRsYaJQKKTbZpKiQ1QQRtwekUocTaeZmMa8R4YsBMEMwEwWzB2QTARNkF4MCLz2XiJ1Px4ZhiY5lge6KN2R_M7OLg_8-HsOZjPYrrOX7Qhvro-0cfmYBiJDtQi_o3HWh0r-_vnjvWhv4Ab7_Iyw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2VIgQMfBQQhQIeADEQkcROTAaEEFBaviaQ2ILtOBIIJYUUEH-K34gvdVoYYGOOFTvPL76zffcOYFMb4KVIUodKH0W18aBJau1w4aPAXaRZGYx5dR12btn5XXBXg88qFwbDKqs1sVyok1zhGfmezzAplNIwOuw9O1g1Cm9XqxIaA1pc6I93s2UrDronZn63fL99enPccWxVAUdR7vWd0OWSCekaRzrdTzwdCJcmgRDSjJky043GLROLErMR8RhX3EuVKwVTqeAycBU17x2DcUaNJcfM9PbZ6NbCjXilTm78GNdqeqJE9WOKae9-eacafddx-GkPf5qD0sa152DGOqfkaMCmeajprAGz1lEldhkoGjD9TcWwARNlFKkqFsAxpCM2QoTkKclElheGBJpkKJv8QPKMKPFmZcEX4fZfkFuCepZnehlI6AnNNA_DNEJ9HCUCiim9SSIkNS4LbcLOEKHY_lVFPIhI47EBM0YwYwSzCbsVgLGyH4DlNZ5-a749bN4bCHr81rBVzcZoBCMWrvz9eAMmOzdXl_Fl9_piFaZ8jIRxPccPWlDvv7zqNePK9OV6yR8C9_9N2C8BigH8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+nanoscale+nuclei+on+cavitation&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Gao%2C+Zhan&rft.au=Wu%2C+Wangxia&rft.au=Wang%2C+Bing&rft.date=2021-01-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=911&rft_id=info:doi/10.1017%2Fjfm.2020.1049&rft.externalDocID=10_1017_jfm_2020_1049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |