Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications

This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not repr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 9; no. 4; pp. 897 - 912
Main Authors Zecchin, Matteo, Park, Sangwoo, Simeone, Osvaldo, Kountouris, Marios, Gesbert, David
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2023.3261300

Cover

Loading…
Abstract This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification.
AbstractList This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification.
Author Simeone, Osvaldo
Zecchin, Matteo
Gesbert, David
Park, Sangwoo
Kountouris, Marios
Author_xml – sequence: 1
  givenname: Matteo
  orcidid: 0000-0003-3458-2881
  surname: Zecchin
  fullname: Zecchin, Matteo
  email: matteo.1.zecchin@kcl.ac.uk
  organization: Department of Engineering, King's Communications, Learning & Information Processing Lab, King's College London, London, U.K
– sequence: 2
  givenname: Sangwoo
  orcidid: 0000-0003-4091-7860
  surname: Park
  fullname: Park, Sangwoo
  email: sangwoo.park@kcl.ac.uk
  organization: Department of Engineering, King's Communications, Learning & Information Processing Lab, King's College London, London, U.K
– sequence: 3
  givenname: Osvaldo
  orcidid: 0000-0001-9898-3209
  surname: Simeone
  fullname: Simeone, Osvaldo
  email: osvaldo.simeone@kcl.ac.uk
  organization: Department of Engineering, King's Communications, Learning & Information Processing Lab, King's College London, London, U.K
– sequence: 4
  givenname: Marios
  surname: Kountouris
  fullname: Kountouris, Marios
  email: kountour@eurecom.fr
  organization: Communication Systems Department, EURECOM, Sophia-Antipolis, France
– sequence: 5
  givenname: David
  surname: Gesbert
  fullname: Gesbert, David
  email: gesbert@eurecom.fr
  organization: Communication Systems Department, EURECOM, Sophia-Antipolis, France
BackLink https://hal.science/hal-04144056$$DView record in HAL
BookMark eNp9kE1LAzEQhoMo-PkDBA8BTx5aJ5tskvVWi19QFUTxGLLJrEbXTU22iv_e1iqIB08zDM87zDybZLWLHRKyy2DIGFSHt-Px1bCAgg95IRkHWCEbBefFQCnOVn_162Qn5ycAYLKQUosNcnkT61nu6bH9wBxsRydoUxe6B9rERG-wDbZukd6HhC3mTEcXR_Q02Rd8j-mZ2s7T0XTaBmf7ELu8TdYa22bc-a5b5O705HZ8Pphcn12MR5OB44r1g9IDq7TTUHiudN14oUqsG6m9rZXjCOhq7bjzvqp9DdwLkM6JUnkpysoC3yIHy72PtjXTFF5s-jDRBnM-mpjFDAQTAkr5xubs_pKdpvg6w9ybpzhL3fw8U2ihKimByzmllpRLMeeEjXGh_3qqTza0hoFZqDYL1Wah2nyrnifZn-TPQf9l9paZgIi_eNAMtOCf_MyKPw
CODEN ITCCG7
CitedBy_id crossref_primary_10_1109_JIOT_2024_3390038
crossref_primary_10_1109_OJCOMS_2024_3466225
crossref_primary_10_1111_ijcs_70001
crossref_primary_10_1109_TMC_2024_3438208
crossref_primary_10_1109_TMLCN_2023_3319282
crossref_primary_10_1109_MWC_012_2300242
crossref_primary_10_1109_OJSP_2025_3526548
Cites_doi 10.3846/1392-1541.2009.35.18-22
10.1109/MCOM.2019.1800635
10.1007/978-3-319-44188-7_16
10.1007/s11276-015-0936-x
10.1080/01621459.2017.1285773
10.1007/s10463-014-0499-0
10.1109/JSTSP.2018.2797022
10.1080/03610926.2018.1543765
10.1109/ICC45855.2022.9839123
10.3390/data3020013
10.1109/ACCESS.2020.2986330
10.1017/9781139879354
10.1016/j.patrec.2005.10.010
10.1109/IPIN.2014.7275492
10.1109/ICCNC.2019.8685573
10.1109/SPAWC.2007.4401334
10.1109/COMST.2019.2924243
10.1109/WiMOB.2013.6673428
10.1214/aoms/1177703732
10.1093/biomet/85.3.549
10.1109/ACCESS.2019.2933921
10.2307/2987588
10.1016/j.jmva.2008.02.004
10.1109/TWC.2020.3035843
10.1109/ICASSP40776.2020.9053252
10.1007/s10994-021-05946-3
10.1017/9781009072205
10.1109/TCCN.2018.2881442
10.1016/S0165-1684(00)00030-X
10.1198/016214506000001437
10.1109/JSAIT.2020.2988577
10.1109/TSP.2020.3043879
10.1109/TWC.2020.2970707
10.1016/j.eij.2013.06.001
10.1109/6GSUMMIT49458.2020.9083856
10.1186/s13634-018-0563-7
10.3390/e20060442
10.1109/JIOT.2019.2940368
10.1109/ACSSC.2018.8645416
10.3390/data2040032
10.3390/electronics8090989
10.1109/JSAC.2019.2933969
10.1109/TVT.2011.2158673
10.1017/CBO9780511790423
10.1109/MSP.2020.3041414
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
1XC
VOOES
DOI 10.1109/TCCN.2023.3261300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 2332-7731
EndPage 912
ExternalDocumentID oai_HAL_hal_04144056v1
10_1109_TCCN_2023_3261300
10081084
Genre orig-research
GrantInformation_xml – fundername: European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 101003431
  funderid: 10.13039/100010686
– fundername: European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 725731
  funderid: 10.13039/100010686
– fundername: Marie Curie action WINDMILL
  grantid: 813999
  funderid: 10.13039/100010686
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c371t-5d0198c802d378bfd475ebf68dab7c3e0ecb8c3cdd9bdb03d406cc457d6459a03
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Fri May 09 12:25:46 EDT 2025
Mon Jun 30 05:39:46 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 01:43:27 EDT 2025
Wed Aug 27 02:46:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords localization
robustness
modulation classification
Bayesian learning robustness localization modulation classification channel modeling
channel modeling
Bayesian learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-5d0198c802d378bfd475ebf68dab7c3e0ecb8c3cdd9bdb03d406cc457d6459a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9898-3209
0000-0003-3458-2881
0000-0003-4091-7860
0000-0002-4806-704X
0000-0003-1143-080X
OpenAccessLink https://hal.science/hal-04144056
PQID 2847966036
PQPubID 4437218
PageCount 16
ParticipantIDs proquest_journals_2847966036
crossref_citationtrail_10_1109_TCCN_2023_3261300
ieee_primary_10081084
hal_primary_oai_HAL_hal_04144056v1
crossref_primary_10_1109_TCCN_2023_3261300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
nikoloska (ref15) 2021
ref59
ref58
ref55
ref54
kim (ref5) 2018; 31
ref17
zilberstein (ref18) 2022
chérief-abdellatif (ref47) 2020
murphy (ref66) 2012
catoni (ref43) 2007
osawa (ref14) 2019; 32
ref46
nixon (ref41) 2019; 2
ref45
mackay (ref13) 2003
ref48
morningstar (ref23) 2020
ref44
wicker (ref50) 2021
(ref79) 2020
ref8
ref7
minsker (ref53) 2014
ref9
guo (ref10) 2017
ref4
knoblauch (ref28) 2019
zecchin (ref34) 2022
ref6
masegosa (ref22) 2020; 33
ref40
gündüz (ref3) 2019; 37
ref35
ref78
izmailov (ref20) 2021; 34
ref37
kendall (ref24) 2017; 30
domingos (ref21) 2000; 747
ref36
alquier (ref27) 2021
ref31
ref75
ref30
ref74
ref33
ref32
daxberger (ref77) 2019
martinez-cantin (ref19) 2018
ref2
ref1
ref39
ref38
kingma (ref60) 2013
theodoridis (ref42) 2015
ref71
ref70
ref73
carbone (ref49) 2020; 33
ref72
cohen (ref11) 2021
ref68
goodfellow (ref69) 2014; 27
ref67
masur (ref12) 2021
(ref80) 2021
madigan (ref16) 1996
gretton (ref76) 2006; 19
ref25
ref64
catoni (ref26) 2003
ref63
alistarh (ref51) 2018; 31
ref65
ref29
blanchard (ref52) 2017; 30
ref62
ref61
References_xml – year: 2021
  ident: ref27
  article-title: User-friendly introduction to PAC-Bayes bounds
  publication-title: arXiv 2110 11216
– ident: ref61
  doi: 10.3846/1392-1541.2009.35.18-22
– ident: ref74
  doi: 10.1109/MCOM.2019.1800635
– ident: ref57
  doi: 10.1007/978-3-319-44188-7_16
– ident: ref36
  doi: 10.1007/s11276-015-0936-x
– ident: ref45
  doi: 10.1080/01621459.2017.1285773
– ident: ref31
  doi: 10.1007/s10463-014-0499-0
– volume: 31
  start-page: 9458
  year: 2018
  ident: ref5
  article-title: DeepCode: Feedback codes via deep learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref56
  doi: 10.1109/JSTSP.2018.2797022
– ident: ref33
  doi: 10.1080/03610926.2018.1543765
– year: 2003
  ident: ref13
  publication-title: Information Theory Inference and Learning Algorithms
– ident: ref73
  doi: 10.1109/ICC45855.2022.9839123
– year: 2007
  ident: ref43
  article-title: PAC-Bayesian supervised classification: The thermodynamics of statistical learning
  publication-title: arXiv 0712 0248
– ident: ref62
  doi: 10.3390/data3020013
– ident: ref58
  doi: 10.1109/ACCESS.2020.2986330
– ident: ref44
  doi: 10.1017/9781139879354
– ident: ref78
  doi: 10.1016/j.patrec.2005.10.010
– start-page: 2431
  year: 2021
  ident: ref50
  article-title: Bayesian inference with certifiable adversarial robustness
  publication-title: Proc Int Conf Artif Intell Stat
– ident: ref68
  doi: 10.1109/IPIN.2014.7275492
– start-page: 1722
  year: 2018
  ident: ref19
  article-title: Practical Bayesian optimization in the presence of outliers
  publication-title: Proc Int Conf Artif Intell Stat
– start-page: 1
  year: 2020
  ident: ref47
  article-title: MMD-Bayes: Robust Bayesian estimation via maximum mean discrepancy
  publication-title: Proc Symp Adv Approx Bayesian Inference
– ident: ref72
  doi: 10.1109/ICCNC.2019.8685573
– volume: 34
  start-page: 3309
  year: 2021
  ident: ref20
  article-title: Dangers of Bayesian model averaging under covariate shift
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref37
  doi: 10.1109/SPAWC.2007.4401334
– start-page: 1656
  year: 2014
  ident: ref53
  article-title: Scalable and robust Bayesian inference via the median posterior
  publication-title: Proc Int Conf Mach Learn
– volume: 30
  start-page: 5574
  year: 2017
  ident: ref24
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1109/COMST.2019.2924243
– ident: ref46
  doi: 10.1109/WiMOB.2013.6673428
– ident: ref48
  doi: 10.1214/aoms/1177703732
– ident: ref30
  doi: 10.1093/biomet/85.3.549
– ident: ref67
  doi: 10.1109/ACCESS.2019.2933921
– year: 2003
  ident: ref26
  article-title: A PAC-Bayesian approach to adaptive classification
  publication-title: arXiv 0712 0248
– ident: ref59
  doi: 10.2307/2987588
– year: 2019
  ident: ref77
  article-title: Bayesian variational autoencoders for unsupervised out-of-distribution detection
  publication-title: arXiv 1912 05651
– ident: ref32
  doi: 10.1016/j.jmva.2008.02.004
– ident: ref9
  doi: 10.1109/TWC.2020.3035843
– ident: ref6
  doi: 10.1109/ICASSP40776.2020.9053252
– year: 2013
  ident: ref60
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– start-page: 1321
  year: 2017
  ident: ref10
  article-title: On calibration of modern neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref40
  doi: 10.1007/s10994-021-05946-3
– volume: 33
  start-page: 15602
  year: 2020
  ident: ref49
  article-title: Robustness of Bayesian neural networks to gradient-based attacks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 32
  start-page: 4289
  year: 2019
  ident: ref14
  article-title: Practical deep learning with Bayesian principles
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1017/9781009072205
– year: 2021
  ident: ref80
  publication-title: 5G Toolbox
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref69
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1109/TCCN.2018.2881442
– year: 2022
  ident: ref34
  article-title: Robust PACm: Training ensemble models under model misspecification and outliers
  publication-title: arXiv 2203 01859
– year: 2021
  ident: ref12
  article-title: Artificial intelligence in open radio access network
  publication-title: arXiv 2104 09445
– year: 2022
  ident: ref18
  article-title: Annealed Langevin dynamics for massive MIMO detection
  publication-title: arXiv 2205 05776
– ident: ref75
  doi: 10.1016/S0165-1684(00)00030-X
– ident: ref29
  doi: 10.1198/016214506000001437
– volume: 2
  start-page: 38
  year: 2019
  ident: ref41
  article-title: Measuring calibration in deep learning
  publication-title: Proc CVPR Workshops
– ident: ref4
  doi: 10.1109/JSAIT.2020.2988577
– ident: ref7
  doi: 10.1109/TSP.2020.3043879
– start-page: 77
  year: 1996
  ident: ref16
  article-title: Bayesian model averaging
  publication-title: Proc AAAI Workshop Integr Multiple Learned Models
– ident: ref71
  doi: 10.1109/TWC.2020.2970707
– year: 2021
  ident: ref11
  article-title: Learning to learn to demodulate with uncertainty quantification via Bayesian meta-learning
  publication-title: arXiv 2108 00785
– ident: ref35
  doi: 10.1016/j.eij.2013.06.001
– year: 2021
  ident: ref15
  article-title: BAMLD: Bayesian active meta-learning by disagreement
  publication-title: arXiv 2110 09943
– year: 2019
  ident: ref28
  article-title: Generalized variational inference: Three arguments for deriving new posteriors
  publication-title: arXiv 1904 02063
– ident: ref8
  doi: 10.1109/6GSUMMIT49458.2020.9083856
– ident: ref63
  doi: 10.1186/s13634-018-0563-7
– volume: 747
  start-page: 223
  year: 2000
  ident: ref21
  article-title: Bayesian averaging of classifiers and the overfitting problem
  publication-title: Proc ICML
– year: 2020
  ident: ref79
  article-title: Study on channel model for frequencies from 0.5 to 100 GHz
– ident: ref55
  doi: 10.3390/e20060442
– ident: ref64
  doi: 10.1109/JIOT.2019.2940368
– ident: ref70
  doi: 10.1109/ACSSC.2018.8645416
– year: 2012
  ident: ref66
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref39
  doi: 10.3390/data2040032
– ident: ref65
  doi: 10.3390/electronics8090989
– volume: 37
  start-page: 2184
  year: 2019
  ident: ref3
  article-title: Machine learning in the air
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2019.2933969
– volume: 33
  start-page: 5479
  year: 2020
  ident: ref22
  article-title: Learning under model misspecification: Applications to variational and ensemble methods
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref38
  doi: 10.1109/TVT.2011.2158673
– ident: ref54
  doi: 10.1017/CBO9780511790423
– volume: 30
  start-page: 119
  year: 2017
  ident: ref52
  article-title: Machine learning with adversaries: Byzantine tolerant gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2020
  ident: ref23
  article-title: PACm-Bayes: Narrowing the empirical risk gap in the misspecified Bayesian regime
  publication-title: arXiv 2010 09629
– volume: 31
  start-page: 4618
  year: 2018
  ident: ref51
  article-title: Byzantine stochastic gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/MSP.2020.3041414
– volume: 19
  start-page: 513
  year: 2006
  ident: ref76
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref42
  publication-title: Machine Learning A Bayesian and Optimization Perspective
SSID ssj0001626684
Score 2.321777
Snippet This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 897
SubjectTerms Bayes methods
Bayesian analysis
Bayesian learning
channel modeling
Computer Science
Constraint modelling
Data models
Deep learning
localization
Machine learning
modulation classification
Outliers (statistics)
Robustness
Statistics
Training
Training data
Uncertainty
Wireless communication
Wireless communications
Title Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
URI https://ieeexplore.ieee.org/document/10081084
https://www.proquest.com/docview/2847966036
https://hal.science/hal-04144056
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_cnvTBb3F-EcQnoTUzSZP6NodjituDTPCtNB9VcGziOkH_enNtp1NRfCslKYG7Jr_L_e53AEfcyOyUKxYYnsY-QIl1kPpYKJCxibDTQyYjrB3u9aPuLb-6E3dVsXpRC-OcK8hnLsTHIpdvx2aKV2UnKETTpIrXoOYjt7JY6_NCxUPzSPEqc9mk8cmg3e6H2B489BgF0zZfzp7aAzIfi5YqP_bh4nDprEB_tqySU_IYTnMdmrdvio3_XvcqLFcwk7RKv1iDBTdah6U58cF1WEScWco0b0DvZqynk5ycp68OyypJpbt6TzyoJchbxhIrglzZod8bSevyjHRmvC6SjixpzWXCN-G2czFod4Oq00JgmGzmgbAe6Smj6KllUunMcimcziJlUy0Nc9QZrQwz1sbaasqshwHGcCEtatGklG1BfTQeuW0gSonIpZRmTEjuqNTCZjIViDMzZ5RoAJ3ZIDGVDDl2wxgmRThC4wTNlqDZkspsDTj-mPJUanD8NfjQG_ZjHKpnd1vXCb6jHDPZInppNmATrTT3tdJADdibOUJS_cuTBA9w1DBl0c4v03ZhEZdQ8gL3oJ4_T92-xyq5Pih89B2XH-Pk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CdgAObAMmCoxZEyekBLe2Y2e3rlrVjrYHVCRuVvwjTAK1CFKk7a_HL0lLGQJxiyI7svQ59me_730P4Jhbmbe4YpHlWRoOKKmJsnAWimRqE6z0kMsEc4eHo6R3wX9fiss6Wb3MhfHel-IzH-NjGct3UzvDq7JTNKJpUsVX4YPAbNwqXevpSiWQ80TxOnbZpOnpuNMZxVggPA4sBQM3z3af1T-ofSyLqrxYicvtpfsRRvOBVaqS63hWmNj--8-z8d0j_wRbNdEk7WpmfIYVP9mGzSX7wW3YQKZZGTXvwPB8amb3BfmZ_fWYWElq59UrEmgtQeUyJlkRVMvehNWRtPs_SHeu7CLZxJH2Uix8Fy66v8adXlTXWogsk80iEi5wPWUVbTkmlckdl8KbPFEuM9IyT701yjLrXGqcocwFImAtF9KhG01G2RdYm0wnfg-IUiLxGaU5E5J7Ko1wucwEMs3cWyUaQOcYaFsbkWM9jBtdHkhoqhE2jbDpGrYGnCy63FYuHG81_h6AXbRD_-xee6DxHeUYyxbJQ7MBu4jS0tcqgBpwOJ8Iuv6b7zVu4ehiypL9V7p9g_XeeDjQg_7o7AA2cDiVSvAQ1oq7mf8amEthjsr5-gifPucs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Bayesian+Learning+for+Reliable+Wireless+AI%3A+Framework+and+Applications&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Zecchin%2C+Matteo&rft.au=Park%2C+Sangwoo&rft.au=Simeone%2C+Osvaldo&rft.au=Kountouris%2C+Marios&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2332-7731&rft.volume=9&rft.issue=4&rft.spage=897&rft_id=info:doi/10.1109%2FTCCN.2023.3261300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon