Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not repr...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 9; no. 4; pp. 897 - 912 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7731 2332-7731 |
DOI | 10.1109/TCCN.2023.3261300 |
Cover
Loading…
Abstract | This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification. |
---|---|
AbstractList | This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification. |
Author | Simeone, Osvaldo Zecchin, Matteo Gesbert, David Park, Sangwoo Kountouris, Marios |
Author_xml | – sequence: 1 givenname: Matteo orcidid: 0000-0003-3458-2881 surname: Zecchin fullname: Zecchin, Matteo email: matteo.1.zecchin@kcl.ac.uk organization: Department of Engineering, King's Communications, Learning & Information Processing Lab, King's College London, London, U.K – sequence: 2 givenname: Sangwoo orcidid: 0000-0003-4091-7860 surname: Park fullname: Park, Sangwoo email: sangwoo.park@kcl.ac.uk organization: Department of Engineering, King's Communications, Learning & Information Processing Lab, King's College London, London, U.K – sequence: 3 givenname: Osvaldo orcidid: 0000-0001-9898-3209 surname: Simeone fullname: Simeone, Osvaldo email: osvaldo.simeone@kcl.ac.uk organization: Department of Engineering, King's Communications, Learning & Information Processing Lab, King's College London, London, U.K – sequence: 4 givenname: Marios surname: Kountouris fullname: Kountouris, Marios email: kountour@eurecom.fr organization: Communication Systems Department, EURECOM, Sophia-Antipolis, France – sequence: 5 givenname: David surname: Gesbert fullname: Gesbert, David email: gesbert@eurecom.fr organization: Communication Systems Department, EURECOM, Sophia-Antipolis, France |
BackLink | https://hal.science/hal-04144056$$DView record in HAL |
BookMark | eNp9kE1LAzEQhoMo-PkDBA8BTx5aJ5tskvVWi19QFUTxGLLJrEbXTU22iv_e1iqIB08zDM87zDybZLWLHRKyy2DIGFSHt-Px1bCAgg95IRkHWCEbBefFQCnOVn_162Qn5ycAYLKQUosNcnkT61nu6bH9wBxsRydoUxe6B9rERG-wDbZukd6HhC3mTEcXR_Q02Rd8j-mZ2s7T0XTaBmf7ELu8TdYa22bc-a5b5O705HZ8Pphcn12MR5OB44r1g9IDq7TTUHiudN14oUqsG6m9rZXjCOhq7bjzvqp9DdwLkM6JUnkpysoC3yIHy72PtjXTFF5s-jDRBnM-mpjFDAQTAkr5xubs_pKdpvg6w9ybpzhL3fw8U2ihKimByzmllpRLMeeEjXGh_3qqTza0hoFZqDYL1Wah2nyrnifZn-TPQf9l9paZgIi_eNAMtOCf_MyKPw |
CODEN | ITCCG7 |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3390038 crossref_primary_10_1109_OJCOMS_2024_3466225 crossref_primary_10_1111_ijcs_70001 crossref_primary_10_1109_TMC_2024_3438208 crossref_primary_10_1109_TMLCN_2023_3319282 crossref_primary_10_1109_MWC_012_2300242 crossref_primary_10_1109_OJSP_2025_3526548 |
Cites_doi | 10.3846/1392-1541.2009.35.18-22 10.1109/MCOM.2019.1800635 10.1007/978-3-319-44188-7_16 10.1007/s11276-015-0936-x 10.1080/01621459.2017.1285773 10.1007/s10463-014-0499-0 10.1109/JSTSP.2018.2797022 10.1080/03610926.2018.1543765 10.1109/ICC45855.2022.9839123 10.3390/data3020013 10.1109/ACCESS.2020.2986330 10.1017/9781139879354 10.1016/j.patrec.2005.10.010 10.1109/IPIN.2014.7275492 10.1109/ICCNC.2019.8685573 10.1109/SPAWC.2007.4401334 10.1109/COMST.2019.2924243 10.1109/WiMOB.2013.6673428 10.1214/aoms/1177703732 10.1093/biomet/85.3.549 10.1109/ACCESS.2019.2933921 10.2307/2987588 10.1016/j.jmva.2008.02.004 10.1109/TWC.2020.3035843 10.1109/ICASSP40776.2020.9053252 10.1007/s10994-021-05946-3 10.1017/9781009072205 10.1109/TCCN.2018.2881442 10.1016/S0165-1684(00)00030-X 10.1198/016214506000001437 10.1109/JSAIT.2020.2988577 10.1109/TSP.2020.3043879 10.1109/TWC.2020.2970707 10.1016/j.eij.2013.06.001 10.1109/6GSUMMIT49458.2020.9083856 10.1186/s13634-018-0563-7 10.3390/e20060442 10.1109/JIOT.2019.2940368 10.1109/ACSSC.2018.8645416 10.3390/data2040032 10.3390/electronics8090989 10.1109/JSAC.2019.2933969 10.1109/TVT.2011.2158673 10.1017/CBO9780511790423 10.1109/MSP.2020.3041414 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M 1XC VOOES |
DOI | 10.1109/TCCN.2023.3261300 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Computer Science |
EISSN | 2332-7731 |
EndPage | 912 |
ExternalDocumentID | oai_HAL_hal_04144056v1 10_1109_TCCN_2023_3261300 10081084 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme grantid: 101003431 funderid: 10.13039/100010686 – fundername: European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme grantid: 725731 funderid: 10.13039/100010686 – fundername: Marie Curie action WINDMILL grantid: 813999 funderid: 10.13039/100010686 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M 1XC VOOES |
ID | FETCH-LOGICAL-c371t-5d0198c802d378bfd475ebf68dab7c3e0ecb8c3cdd9bdb03d406cc457d6459a03 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Fri May 09 12:25:46 EDT 2025 Mon Jun 30 05:39:46 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 01:43:27 EDT 2025 Wed Aug 27 02:46:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | localization robustness modulation classification Bayesian learning robustness localization modulation classification channel modeling channel modeling Bayesian learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-5d0198c802d378bfd475ebf68dab7c3e0ecb8c3cdd9bdb03d406cc457d6459a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9898-3209 0000-0003-3458-2881 0000-0003-4091-7860 0000-0002-4806-704X 0000-0003-1143-080X |
OpenAccessLink | https://hal.science/hal-04144056 |
PQID | 2847966036 |
PQPubID | 4437218 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2847966036 crossref_citationtrail_10_1109_TCCN_2023_3261300 ieee_primary_10081084 hal_primary_oai_HAL_hal_04144056v1 crossref_primary_10_1109_TCCN_2023_3261300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 nikoloska (ref15) 2021 ref59 ref58 ref55 ref54 kim (ref5) 2018; 31 ref17 zilberstein (ref18) 2022 chérief-abdellatif (ref47) 2020 murphy (ref66) 2012 catoni (ref43) 2007 osawa (ref14) 2019; 32 ref46 nixon (ref41) 2019; 2 ref45 mackay (ref13) 2003 ref48 morningstar (ref23) 2020 ref44 wicker (ref50) 2021 (ref79) 2020 ref8 ref7 minsker (ref53) 2014 ref9 guo (ref10) 2017 ref4 knoblauch (ref28) 2019 zecchin (ref34) 2022 ref6 masegosa (ref22) 2020; 33 ref40 gündüz (ref3) 2019; 37 ref35 ref78 izmailov (ref20) 2021; 34 ref37 kendall (ref24) 2017; 30 domingos (ref21) 2000; 747 ref36 alquier (ref27) 2021 ref31 ref75 ref30 ref74 ref33 ref32 daxberger (ref77) 2019 martinez-cantin (ref19) 2018 ref2 ref1 ref39 ref38 kingma (ref60) 2013 theodoridis (ref42) 2015 ref71 ref70 ref73 carbone (ref49) 2020; 33 ref72 cohen (ref11) 2021 ref68 goodfellow (ref69) 2014; 27 ref67 masur (ref12) 2021 (ref80) 2021 madigan (ref16) 1996 gretton (ref76) 2006; 19 ref25 ref64 catoni (ref26) 2003 ref63 alistarh (ref51) 2018; 31 ref65 ref29 blanchard (ref52) 2017; 30 ref62 ref61 |
References_xml | – year: 2021 ident: ref27 article-title: User-friendly introduction to PAC-Bayes bounds publication-title: arXiv 2110 11216 – ident: ref61 doi: 10.3846/1392-1541.2009.35.18-22 – ident: ref74 doi: 10.1109/MCOM.2019.1800635 – ident: ref57 doi: 10.1007/978-3-319-44188-7_16 – ident: ref36 doi: 10.1007/s11276-015-0936-x – ident: ref45 doi: 10.1080/01621459.2017.1285773 – ident: ref31 doi: 10.1007/s10463-014-0499-0 – volume: 31 start-page: 9458 year: 2018 ident: ref5 article-title: DeepCode: Feedback codes via deep learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref56 doi: 10.1109/JSTSP.2018.2797022 – ident: ref33 doi: 10.1080/03610926.2018.1543765 – year: 2003 ident: ref13 publication-title: Information Theory Inference and Learning Algorithms – ident: ref73 doi: 10.1109/ICC45855.2022.9839123 – year: 2007 ident: ref43 article-title: PAC-Bayesian supervised classification: The thermodynamics of statistical learning publication-title: arXiv 0712 0248 – ident: ref62 doi: 10.3390/data3020013 – ident: ref58 doi: 10.1109/ACCESS.2020.2986330 – ident: ref44 doi: 10.1017/9781139879354 – ident: ref78 doi: 10.1016/j.patrec.2005.10.010 – start-page: 2431 year: 2021 ident: ref50 article-title: Bayesian inference with certifiable adversarial robustness publication-title: Proc Int Conf Artif Intell Stat – ident: ref68 doi: 10.1109/IPIN.2014.7275492 – start-page: 1722 year: 2018 ident: ref19 article-title: Practical Bayesian optimization in the presence of outliers publication-title: Proc Int Conf Artif Intell Stat – start-page: 1 year: 2020 ident: ref47 article-title: MMD-Bayes: Robust Bayesian estimation via maximum mean discrepancy publication-title: Proc Symp Adv Approx Bayesian Inference – ident: ref72 doi: 10.1109/ICCNC.2019.8685573 – volume: 34 start-page: 3309 year: 2021 ident: ref20 article-title: Dangers of Bayesian model averaging under covariate shift publication-title: Proc Adv Neural Inf Process Syst – ident: ref37 doi: 10.1109/SPAWC.2007.4401334 – start-page: 1656 year: 2014 ident: ref53 article-title: Scalable and robust Bayesian inference via the median posterior publication-title: Proc Int Conf Mach Learn – volume: 30 start-page: 5574 year: 2017 ident: ref24 article-title: What uncertainties do we need in Bayesian deep learning for computer vision? publication-title: Proc Adv Neural Inf Process Syst – ident: ref2 doi: 10.1109/COMST.2019.2924243 – ident: ref46 doi: 10.1109/WiMOB.2013.6673428 – ident: ref48 doi: 10.1214/aoms/1177703732 – ident: ref30 doi: 10.1093/biomet/85.3.549 – ident: ref67 doi: 10.1109/ACCESS.2019.2933921 – year: 2003 ident: ref26 article-title: A PAC-Bayesian approach to adaptive classification publication-title: arXiv 0712 0248 – ident: ref59 doi: 10.2307/2987588 – year: 2019 ident: ref77 article-title: Bayesian variational autoencoders for unsupervised out-of-distribution detection publication-title: arXiv 1912 05651 – ident: ref32 doi: 10.1016/j.jmva.2008.02.004 – ident: ref9 doi: 10.1109/TWC.2020.3035843 – ident: ref6 doi: 10.1109/ICASSP40776.2020.9053252 – year: 2013 ident: ref60 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – start-page: 1321 year: 2017 ident: ref10 article-title: On calibration of modern neural networks publication-title: Proc Int Conf Mach Learn – ident: ref40 doi: 10.1007/s10994-021-05946-3 – volume: 33 start-page: 15602 year: 2020 ident: ref49 article-title: Robustness of Bayesian neural networks to gradient-based attacks publication-title: Proc Adv Neural Inf Process Syst – volume: 32 start-page: 4289 year: 2019 ident: ref14 article-title: Practical deep learning with Bayesian principles publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1017/9781009072205 – year: 2021 ident: ref80 publication-title: 5G Toolbox – volume: 27 start-page: 2672 year: 2014 ident: ref69 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref1 doi: 10.1109/TCCN.2018.2881442 – year: 2022 ident: ref34 article-title: Robust PACm: Training ensemble models under model misspecification and outliers publication-title: arXiv 2203 01859 – year: 2021 ident: ref12 article-title: Artificial intelligence in open radio access network publication-title: arXiv 2104 09445 – year: 2022 ident: ref18 article-title: Annealed Langevin dynamics for massive MIMO detection publication-title: arXiv 2205 05776 – ident: ref75 doi: 10.1016/S0165-1684(00)00030-X – ident: ref29 doi: 10.1198/016214506000001437 – volume: 2 start-page: 38 year: 2019 ident: ref41 article-title: Measuring calibration in deep learning publication-title: Proc CVPR Workshops – ident: ref4 doi: 10.1109/JSAIT.2020.2988577 – ident: ref7 doi: 10.1109/TSP.2020.3043879 – start-page: 77 year: 1996 ident: ref16 article-title: Bayesian model averaging publication-title: Proc AAAI Workshop Integr Multiple Learned Models – ident: ref71 doi: 10.1109/TWC.2020.2970707 – year: 2021 ident: ref11 article-title: Learning to learn to demodulate with uncertainty quantification via Bayesian meta-learning publication-title: arXiv 2108 00785 – ident: ref35 doi: 10.1016/j.eij.2013.06.001 – year: 2021 ident: ref15 article-title: BAMLD: Bayesian active meta-learning by disagreement publication-title: arXiv 2110 09943 – year: 2019 ident: ref28 article-title: Generalized variational inference: Three arguments for deriving new posteriors publication-title: arXiv 1904 02063 – ident: ref8 doi: 10.1109/6GSUMMIT49458.2020.9083856 – ident: ref63 doi: 10.1186/s13634-018-0563-7 – volume: 747 start-page: 223 year: 2000 ident: ref21 article-title: Bayesian averaging of classifiers and the overfitting problem publication-title: Proc ICML – year: 2020 ident: ref79 article-title: Study on channel model for frequencies from 0.5 to 100 GHz – ident: ref55 doi: 10.3390/e20060442 – ident: ref64 doi: 10.1109/JIOT.2019.2940368 – ident: ref70 doi: 10.1109/ACSSC.2018.8645416 – year: 2012 ident: ref66 publication-title: Machine Learning A Probabilistic Perspective – ident: ref39 doi: 10.3390/data2040032 – ident: ref65 doi: 10.3390/electronics8090989 – volume: 37 start-page: 2184 year: 2019 ident: ref3 article-title: Machine learning in the air publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2019.2933969 – volume: 33 start-page: 5479 year: 2020 ident: ref22 article-title: Learning under model misspecification: Applications to variational and ensemble methods publication-title: Proc Adv Neural Inf Process Syst – ident: ref38 doi: 10.1109/TVT.2011.2158673 – ident: ref54 doi: 10.1017/CBO9780511790423 – volume: 30 start-page: 119 year: 2017 ident: ref52 article-title: Machine learning with adversaries: Byzantine tolerant gradient descent publication-title: Proc Adv Neural Inf Process Syst – year: 2020 ident: ref23 article-title: PACm-Bayes: Narrowing the empirical risk gap in the misspecified Bayesian regime publication-title: arXiv 2010 09629 – volume: 31 start-page: 4618 year: 2018 ident: ref51 article-title: Byzantine stochastic gradient descent publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1109/MSP.2020.3041414 – volume: 19 start-page: 513 year: 2006 ident: ref76 article-title: A kernel method for the two-sample-problem publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref42 publication-title: Machine Learning A Bayesian and Optimization Perspective |
SSID | ssj0001626684 |
Score | 2.321777 |
Snippet | This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 897 |
SubjectTerms | Bayes methods Bayesian analysis Bayesian learning channel modeling Computer Science Constraint modelling Data models Deep learning localization Machine learning modulation classification Outliers (statistics) Robustness Statistics Training Training data Uncertainty Wireless communication Wireless communications |
Title | Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications |
URI | https://ieeexplore.ieee.org/document/10081084 https://www.proquest.com/docview/2847966036 https://hal.science/hal-04144056 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_cnvTBb3F-EcQnoTUzSZP6NodjituDTPCtNB9VcGziOkH_enNtp1NRfCslKYG7Jr_L_e53AEfcyOyUKxYYnsY-QIl1kPpYKJCxibDTQyYjrB3u9aPuLb-6E3dVsXpRC-OcK8hnLsTHIpdvx2aKV2UnKETTpIrXoOYjt7JY6_NCxUPzSPEqc9mk8cmg3e6H2B489BgF0zZfzp7aAzIfi5YqP_bh4nDprEB_tqySU_IYTnMdmrdvio3_XvcqLFcwk7RKv1iDBTdah6U58cF1WEScWco0b0DvZqynk5ycp68OyypJpbt6TzyoJchbxhIrglzZod8bSevyjHRmvC6SjixpzWXCN-G2czFod4Oq00JgmGzmgbAe6Smj6KllUunMcimcziJlUy0Nc9QZrQwz1sbaasqshwHGcCEtatGklG1BfTQeuW0gSonIpZRmTEjuqNTCZjIViDMzZ5RoAJ3ZIDGVDDl2wxgmRThC4wTNlqDZkspsDTj-mPJUanD8NfjQG_ZjHKpnd1vXCb6jHDPZInppNmATrTT3tdJADdibOUJS_cuTBA9w1DBl0c4v03ZhEZdQ8gL3oJ4_T92-xyq5Pih89B2XH-Pk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CdgAObAMmCoxZEyekBLe2Y2e3rlrVjrYHVCRuVvwjTAK1CFKk7a_HL0lLGQJxiyI7svQ59me_730P4Jhbmbe4YpHlWRoOKKmJsnAWimRqE6z0kMsEc4eHo6R3wX9fiss6Wb3MhfHel-IzH-NjGct3UzvDq7JTNKJpUsVX4YPAbNwqXevpSiWQ80TxOnbZpOnpuNMZxVggPA4sBQM3z3af1T-ofSyLqrxYicvtpfsRRvOBVaqS63hWmNj--8-z8d0j_wRbNdEk7WpmfIYVP9mGzSX7wW3YQKZZGTXvwPB8amb3BfmZ_fWYWElq59UrEmgtQeUyJlkRVMvehNWRtPs_SHeu7CLZxJH2Uix8Fy66v8adXlTXWogsk80iEi5wPWUVbTkmlckdl8KbPFEuM9IyT701yjLrXGqcocwFImAtF9KhG01G2RdYm0wnfg-IUiLxGaU5E5J7Ko1wucwEMs3cWyUaQOcYaFsbkWM9jBtdHkhoqhE2jbDpGrYGnCy63FYuHG81_h6AXbRD_-xee6DxHeUYyxbJQ7MBu4jS0tcqgBpwOJ8Iuv6b7zVu4ehiypL9V7p9g_XeeDjQg_7o7AA2cDiVSvAQ1oq7mf8amEthjsr5-gifPucs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Bayesian+Learning+for+Reliable+Wireless+AI%3A+Framework+and+Applications&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Zecchin%2C+Matteo&rft.au=Park%2C+Sangwoo&rft.au=Simeone%2C+Osvaldo&rft.au=Kountouris%2C+Marios&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2332-7731&rft.volume=9&rft.issue=4&rft.spage=897&rft_id=info:doi/10.1109%2FTCCN.2023.3261300&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |