Determining a Piecewise Linear Trend of a Nonstationary Time Series Based on Intelligent Data Analysis. II. Machine Experiments and Solution of the Practical Problem

The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching...

Full description

Saved in:
Bibliographic Details
Published inCybernetics and systems analysis Vol. 60; no. 2; pp. 220 - 233
Main Authors Knopov, P. S., Korkhin, A. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1060-0396
1573-8337
DOI10.1007/s10559-024-00663-w

Cover

Abstract The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching regression, which has two independent variables with a trend, is considered. The problems of spline approximation of the time series of logarithms of the number of people infected with COVID-19 in Ukraine are solved.
AbstractList The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching regression, which has two independent variables with a trend, is considered. The problems of spline approximation of the time series of logarithms of the number of people infected with COVID-19 in Ukraine are solved.
The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching regression, which has two independent variables with a trend, is considered. The problems of spline approximation of the time series of logarithms of the number of people infected with COVID-19 in Ukraine are solved. Keywords: trend, regression, switching point, spline, real-time calculation.
Audience Academic
Author Korkhin, A. S.
Knopov, P. S.
Author_xml – sequence: 1
  givenname: P. S.
  surname: Knopov
  fullname: Knopov, P. S.
  email: knopov1@yahoo.com
  organization: V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: A. S.
  surname: Korkhin
  fullname: Korkhin, A. S.
  organization: Prydniprovska State Academy of Civil Engineering and Architecture
BookMark eNp9ks1u1DAUhSNUJNrCC7CyxIpFhps4cZLl0B-INEDFDGvLcW5SV4k92B5N-0C8J3cYpGokhLywZX_n2Nf3XCRn1llMkrcZLDKA6kPIoCybFPIiBRCCp_sXyXlWVjytOa_OaA0CUuCNeJVchPAAAByq-jz5dY0R_WyssSNT7M6gxr0JyFbGovJs49H2zA109tXZEFU0zir_xDZmRrZGbzCwjyogQZa1NuI0mRFtZNcqKra0anoKJixY2y7YF6XvyZbdPG5JOBMVmCL7tZt2B9_DPfEe2Z1XOhqtJlq5bsL5dfJyUFPAN3_ny-TH7c3m6nO6-vapvVquUs2rLKZlkZVcc6ot1wVgBnXT5JXqc17ngotOKxwUV13fEYC8gk4ADAKx7IayHxp-mbw7-m69-7nDEOWD23mqIUgOvIC8KZr6mRrVhNLYwUV68GyClsuqyfNKQFMQtfgHRaPH2Whq32Bo_0Tw_kRATMTHOKpdCLJdfz9l8yOrvQvB4yC39KHUF5mBPCRCHhMhKRHyTyLknkT8KAoE2xH9c3X_Uf0GhUa6cg
Cites_doi 10.1007/s40435-023-01135-3
10.1007/s10559-018-0045-9
10.1007/s10559-020-00314-w
10.1007/s11238-005-3217-9
10.1111/jtsa.12248
10.1007/BF02667038
10.1007/s10559-020-00258-1
10.1007/s10559-018-0071-7
10.1007/s10559-024-00646-x
10.1007/978-1-4614-0574-0
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1007/s10559-024-00663-w
DatabaseName CrossRef
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-8337
EndPage 233
ExternalDocumentID A792276094
10_1007_s10559_024_00663_w
GeographicLocations Ukraine
GeographicLocations_xml – name: Ukraine
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ICD
PHGZM
PHGZT
AEIIB
ABRTQ
JQ2
ID FETCH-LOGICAL-c371t-54153c30032c40e1089927ad2382636bcaefa3abdb32ce370b600f6ee5bf5df93
IEDL.DBID AGYKE
ISSN 1060-0396
IngestDate Wed Sep 10 05:04:53 EDT 2025
Tue Jun 17 21:58:32 EDT 2025
Tue Jun 10 21:02:46 EDT 2025
Fri Jun 27 05:15:28 EDT 2025
Tue Jul 01 00:42:02 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords spline
trend
switching point
regression
real-time calculation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-54153c30032c40e1089927ad2382636bcaefa3abdb32ce370b600f6ee5bf5df93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3034029498
PQPubID 48839
PageCount 14
ParticipantIDs proquest_journals_3034029498
gale_infotracmisc_A792276094
gale_infotracacademiconefile_A792276094
gale_incontextgauss_ISR_A792276094
crossref_primary_10_1007_s10559_024_00663_w
springer_journals_10_1007_s10559_024_00663_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cybernetics and systems analysis
PublicationTitleAbbrev Cybern Syst Anal
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References PerronPZortaEEstimation and inference of linear trend slope ratios with an application to global temperature dataJ. of Time Series Analysis20173856306673689440
GolodnikovANKnopovPSPepelyaevVAEstimation of reliability parameters under incomplete primary informationTheory and Decision2004574331344220134810.1007/s11238-005-3217-9
KnopovPSKorkhinASDetermining a piecewise linear trend of a nonstationary time series based on intelligent data analysis. I. Description and substantiation of the methodCybern. Syst. Analysis2024601505910.1007/s10559-024-00646-x
KorkhinASAn approximate method of constructing a switching regression with unknown switch pointsCybern. Syst. Analysis2020563426438411286010.1007/s10559-020-00258-1
KnopovPSKorkhinASStatistical analysis of the dynamics of coronavirus cases using stepwise switching regressionCybern. Syst. Analysis202056694395210.1007/s10559-020-00314-w
P. S. Knopov and A. S. Korkhin, Regression Analysis Under A Priori Parameter Restrictions, Ser. Springer Optimization and Its Applications, Vol. 54, Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0574-0.
NorkinVIGaivoronskiAAZaslavskyVAKnopovPSModels of the optimal resource allocation for the critical infrastructure protectionCybern. Syst. Analysis201854569670610.1007/s10559-018-0071-7
KnopovPSKorkhinASDynamic models of epidemiology in discrete time taking into account processes with lagInt. J. Dynam. Control20231121932214463150410.1007/s40435-023-01135-3
KorkhinASConstructing a switching regression with unknown switching pointsCybern. Syst. Analysis2018543443455379444710.1007/s10559-018-0045-9
KorkhinASParameter estimation accuracy for nonlinear regression with nonlinear constraintsCybern. Syst. Analysis1998345663672171198710.1007/BF02667038
PS Knopov (663_CR7) 2020; 56
AN Golodnikov (663_CR9) 2004; 57
PS Knopov (663_CR3) 2024; 60
P Perron (663_CR4) 2017; 38
663_CR1
AS Korkhin (663_CR2) 1998; 34
AS Korkhin (663_CR5) 2018; 54
VI Norkin (663_CR10) 2018; 54
AS Korkhin (663_CR6) 2020; 56
PS Knopov (663_CR8) 2023; 11
References_xml – reference: NorkinVIGaivoronskiAAZaslavskyVAKnopovPSModels of the optimal resource allocation for the critical infrastructure protectionCybern. Syst. Analysis201854569670610.1007/s10559-018-0071-7
– reference: PerronPZortaEEstimation and inference of linear trend slope ratios with an application to global temperature dataJ. of Time Series Analysis20173856306673689440
– reference: KorkhinASConstructing a switching regression with unknown switching pointsCybern. Syst. Analysis2018543443455379444710.1007/s10559-018-0045-9
– reference: KnopovPSKorkhinASDetermining a piecewise linear trend of a nonstationary time series based on intelligent data analysis. I. Description and substantiation of the methodCybern. Syst. Analysis2024601505910.1007/s10559-024-00646-x
– reference: KorkhinASParameter estimation accuracy for nonlinear regression with nonlinear constraintsCybern. Syst. Analysis1998345663672171198710.1007/BF02667038
– reference: P. S. Knopov and A. S. Korkhin, Regression Analysis Under A Priori Parameter Restrictions, Ser. Springer Optimization and Its Applications, Vol. 54, Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0574-0.
– reference: KorkhinASAn approximate method of constructing a switching regression with unknown switch pointsCybern. Syst. Analysis2020563426438411286010.1007/s10559-020-00258-1
– reference: KnopovPSKorkhinASDynamic models of epidemiology in discrete time taking into account processes with lagInt. J. Dynam. Control20231121932214463150410.1007/s40435-023-01135-3
– reference: GolodnikovANKnopovPSPepelyaevVAEstimation of reliability parameters under incomplete primary informationTheory and Decision2004574331344220134810.1007/s11238-005-3217-9
– reference: KnopovPSKorkhinASStatistical analysis of the dynamics of coronavirus cases using stepwise switching regressionCybern. Syst. Analysis202056694395210.1007/s10559-020-00314-w
– volume: 11
  start-page: 2193
  year: 2023
  ident: 663_CR8
  publication-title: Int. J. Dynam. Control
  doi: 10.1007/s40435-023-01135-3
– volume: 54
  start-page: 443
  issue: 3
  year: 2018
  ident: 663_CR5
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-018-0045-9
– volume: 56
  start-page: 943
  issue: 6
  year: 2020
  ident: 663_CR7
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-020-00314-w
– volume: 57
  start-page: 331
  issue: 4
  year: 2004
  ident: 663_CR9
  publication-title: Theory and Decision
  doi: 10.1007/s11238-005-3217-9
– volume: 38
  start-page: 630
  issue: 5
  year: 2017
  ident: 663_CR4
  publication-title: J. of Time Series Analysis
  doi: 10.1111/jtsa.12248
– volume: 34
  start-page: 663
  issue: 5
  year: 1998
  ident: 663_CR2
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/BF02667038
– volume: 56
  start-page: 426
  issue: 3
  year: 2020
  ident: 663_CR6
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-020-00258-1
– volume: 54
  start-page: 696
  issue: 5
  year: 2018
  ident: 663_CR10
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-018-0071-7
– volume: 60
  start-page: 50
  issue: 1
  year: 2024
  ident: 663_CR3
  publication-title: Cybern. Syst. Analysis
  doi: 10.1007/s10559-024-00646-x
– ident: 663_CR1
  doi: 10.1007/978-1-4614-0574-0
SSID ssj0003078
Score 2.2786336
Snippet The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 220
SubjectTerms Artificial Intelligence
Control
COVID-19
Data analysis
Epidemiology
Independent variables
Mathematics
Mathematics and Statistics
Processor Architectures
Software Engineering/Programming and Operating Systems
Splines
Switching
Systems Theory
Time series
Title Determining a Piecewise Linear Trend of a Nonstationary Time Series Based on Intelligent Data Analysis. II. Machine Experiments and Solution of the Practical Problem
URI https://link.springer.com/article/10.1007/s10559-024-00663-w
https://www.proquest.com/docview/3034029498
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-x7gUeBhsgOkZlISRA4CpNGqd-bLeWFdQKAZXGk2U7NpompdOSqoLvw_fk7DjdOuBhb5F8sh3dX_vufgZ4ZZWONAoLZdylGRWPUKV4nyZSsVyig-YednE2Z6eL_sez9Cw0hZVNtXuTkvSW-kazG0a_FH0K9X6SrndgN-0N-KAFu8MP3z-NNxYY5bZugWMRjRLOQrPMv2fZcki3zfJf-VHvdiYPYdFsuK42ueiuKtXVv25hOd71jx7BXohDybAWnH24Z4oDeDDbgLiWB7Af9L4kbwI49dvH8Psk1M_gQkSSz-dGm_V5aQgealFpiK-xJUuLY3Mfevq7xqufxPWaEHcXh_ON0HUiUUGmG0DQipzISpIGI6VLptMumflKT0PGm2cISiJx-uYuz62DGyY16BJKG37593GewGIy_nZ8SsNTD1QnWa-iKcYRiU6QdbHuR6bnkpFxJnMMKGKWMKWlsRLlJ1dIYJIsUhioWWZMqmyaW548hVaxLMwzIJxJm6qYSemQ_FU24Giyop7NM65dPNWGdw2_xWWN6CGusZsdRwRyRHiOiHUbXjqREA4qo3C1OD_kqizF9OsXMcxw5ozh-bgNrwORXVb4xzK0NuCGHLrWFuXRFiXqst4ebiRPBFtSCgwy8JDP-3zQhveNIF0P_3_vh3cjfw73Yy-LrsDuCFrV1cq8wIirUh1UsMloNO8ERevAziIe_gFYfSLK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9wA8ABsgCgMshAQIXKX5cObHwjoatlYIVml7smzHRhNSipZUFfw__J-cHaejAx72Fsmns6P7tH33M8ALq3SkUVko4-6aUfEITYqnNJGKlRIDNPewi9MZm8zTjyfZSWgKq7tq9-5K0nvqP5rdMPulGFOoj5N0dR22UuQb9WBr9OH0cLz2wKi3bQsci2iUcBaaZf7NZSMgXXbLf92P-rBzcAfm3YLbapNvg2WjBvrnJSzHq_7RXbgd8lAyahVnG66ZagduTdcgrvUObAe7r8mrAE79-h782g_1MzgRkeTTmdFmdVYbgptaNBria2zJwuLYzKee_qzx_AdxvSbEncUhv3cYOpGoIsUaELQh-7KRpMNIGZCiGJCpr_Q0ZLx-hqAmEtl3Z3luHlwwaUGXUNvwy7-Pcx_mB-Pj9xMannqgOsmHDc0wj0h0gqKLdRqZobuMjHNZYkIRs4QpLY2VqD-lQgKT5JHCRM0yYzJls9Ly5AH0qkVlHgLhTNpMxUxKh-Sv8j2OLisa2jLn2uVTfXjTyVt8bxE9xAV2s5OIQIkILxGx6sNzpxLCQWVUrhbnq1zWtSi-fBajHDnnDPfHfXgZiOyiwT-WobUBF-TQtTYodzco0Zb15nCneSL4klpgkoGbfJ7yvT687RTpYvj_a390NfJncGNyPD0SR8Xs8DHcjL1eumK7Xeg150vzBLOvRj0NxvYb-tIjQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED_BkBA8IDZAKww4ISRA4C1NGmd-LHTVArSagEp7s2zHRntJpyVTxQfie3J2nG7lzwNvkXy6OLk739l39zPAS6dNYkhZGBc-zahFQiYlRixTmleKHLQIsIuzOT9ejD6e5qfXuvhDtXufkux6GjxKU90enFfu4FrjG0XCjPwLCz6TrW7CLVqOh17TF-l4vRaTBnfNcDxhSSZ4bJv5O48N1_T7Av1HpjQ4oOl9uBcjRxx3ot6GG7begbuzNexqswPb0VIbfB3hpN88gJ-TWPFCXFHhyZk1dnXWWKRtKKk5hqpYXDoam4dgMZwOXvxA3x2C_vSM-L0nZ0dENZZrCM8WJ6pV2KOa7GNZ7uMs1GZaPFpfHNCgIvb96Zt_D00YO5gk0g96CjfaPITF9Ojbh2MWL2dgJiuGLcvJ82cmo1-cmlFihz59mBaqohAg5RnXRlmnSOKVJgKbFYmm0Mpxa3Pt8sqJ7BFs1cva7gIKrlyuU66Ux97XxaGgRSYZuqoQxkdAA3jby0Wedxgc8gpt2UtRkhRlkKJcDeCFF5304Ba1r575ri6bRpZfv8hxQZwLTjvaAbyKRG7Z0her2IxAE_J4WBuUexuUZH1mc7jXEBmtv5EUFtC2XIzE4QDe9VpzNfzvuT_-P_LncPtkMpWfy_mnJ3AnDarsq-P2YKu9uLRPKVxq9bNgEb8AqXIKRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DETERMINING+A+PIECEWISE+LINEAR+TREND+OF+A+NONSTATIONARY+TIME+SERIES+BASED+ON+INTELLIGENT+DATA+ANALYSIS.+II.+MACHINE+EXPERIMENTS+AND+SOLUTION+OF+THE+PRACTICAL+PROBLEM&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Knopov%2C+P.S&rft.au=Korkhin%2C+A.S&rft.date=2024-03-01&rft.pub=Springer&rft.issn=1060-0396&rft.volume=60&rft.issue=2&rft.spage=220&rft_id=info:doi/10.1007%2Fs10559-024-00663-w&rft.externalDocID=A792276094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon