Determining a Piecewise Linear Trend of a Nonstationary Time Series Based on Intelligent Data Analysis. II. Machine Experiments and Solution of the Practical Problem
The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching...
Saved in:
Published in | Cybernetics and systems analysis Vol. 60; no. 2; pp. 220 - 233 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1060-0396 1573-8337 |
DOI | 10.1007/s10559-024-00663-w |
Cover
Abstract | The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching regression, which has two independent variables with a trend, is considered. The problems of spline approximation of the time series of logarithms of the number of people infected with COVID-19 in Ukraine are solved. |
---|---|
AbstractList | The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching regression, which has two independent variables with a trend, is considered. The problems of spline approximation of the time series of logarithms of the number of people infected with COVID-19 in Ukraine are solved. The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as well as be continuous at these points, i.e., represent a linear spline. An example of applying the method for constructing a linear switching regression, which has two independent variables with a trend, is considered. The problems of spline approximation of the time series of logarithms of the number of people infected with COVID-19 in Ukraine are solved. Keywords: trend, regression, switching point, spline, real-time calculation. |
Audience | Academic |
Author | Korkhin, A. S. Knopov, P. S. |
Author_xml | – sequence: 1 givenname: P. S. surname: Knopov fullname: Knopov, P. S. email: knopov1@yahoo.com organization: V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine – sequence: 2 givenname: A. S. surname: Korkhin fullname: Korkhin, A. S. organization: Prydniprovska State Academy of Civil Engineering and Architecture |
BookMark | eNp9ks1u1DAUhSNUJNrCC7CyxIpFhps4cZLl0B-INEDFDGvLcW5SV4k92B5N-0C8J3cYpGokhLywZX_n2Nf3XCRn1llMkrcZLDKA6kPIoCybFPIiBRCCp_sXyXlWVjytOa_OaA0CUuCNeJVchPAAAByq-jz5dY0R_WyssSNT7M6gxr0JyFbGovJs49H2zA109tXZEFU0zir_xDZmRrZGbzCwjyogQZa1NuI0mRFtZNcqKra0anoKJixY2y7YF6XvyZbdPG5JOBMVmCL7tZt2B9_DPfEe2Z1XOhqtJlq5bsL5dfJyUFPAN3_ny-TH7c3m6nO6-vapvVquUs2rLKZlkZVcc6ot1wVgBnXT5JXqc17ngotOKxwUV13fEYC8gk4ADAKx7IayHxp-mbw7-m69-7nDEOWD23mqIUgOvIC8KZr6mRrVhNLYwUV68GyClsuqyfNKQFMQtfgHRaPH2Whq32Bo_0Tw_kRATMTHOKpdCLJdfz9l8yOrvQvB4yC39KHUF5mBPCRCHhMhKRHyTyLknkT8KAoE2xH9c3X_Uf0GhUa6cg |
Cites_doi | 10.1007/s40435-023-01135-3 10.1007/s10559-018-0045-9 10.1007/s10559-020-00314-w 10.1007/s11238-005-3217-9 10.1111/jtsa.12248 10.1007/BF02667038 10.1007/s10559-020-00258-1 10.1007/s10559-018-0071-7 10.1007/s10559-024-00646-x 10.1007/978-1-4614-0574-0 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
DBID | AAYXX CITATION ISR JQ2 |
DOI | 10.1007/s10559-024-00663-w |
DatabaseName | CrossRef Gale In Context: Science ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-8337 |
EndPage | 233 |
ExternalDocumentID | A792276094 10_1007_s10559_024_00663_w |
GeographicLocations | Ukraine |
GeographicLocations_xml | – name: Ukraine |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29F 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- MK~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ICD PHGZM PHGZT AEIIB ABRTQ JQ2 |
ID | FETCH-LOGICAL-c371t-54153c30032c40e1089927ad2382636bcaefa3abdb32ce370b600f6ee5bf5df93 |
IEDL.DBID | AGYKE |
ISSN | 1060-0396 |
IngestDate | Wed Sep 10 05:04:53 EDT 2025 Tue Jun 17 21:58:32 EDT 2025 Tue Jun 10 21:02:46 EDT 2025 Fri Jun 27 05:15:28 EDT 2025 Tue Jul 01 00:42:02 EDT 2025 Fri Feb 21 02:40:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | spline trend switching point regression real-time calculation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-54153c30032c40e1089927ad2382636bcaefa3abdb32ce370b600f6ee5bf5df93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3034029498 |
PQPubID | 48839 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3034029498 gale_infotracmisc_A792276094 gale_infotracacademiconefile_A792276094 gale_incontextgauss_ISR_A792276094 crossref_primary_10_1007_s10559_024_00663_w springer_journals_10_1007_s10559_024_00663_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Cybernetics and systems analysis |
PublicationTitleAbbrev | Cybern Syst Anal |
PublicationYear | 2024 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | PerronPZortaEEstimation and inference of linear trend slope ratios with an application to global temperature dataJ. of Time Series Analysis20173856306673689440 GolodnikovANKnopovPSPepelyaevVAEstimation of reliability parameters under incomplete primary informationTheory and Decision2004574331344220134810.1007/s11238-005-3217-9 KnopovPSKorkhinASDetermining a piecewise linear trend of a nonstationary time series based on intelligent data analysis. I. Description and substantiation of the methodCybern. Syst. Analysis2024601505910.1007/s10559-024-00646-x KorkhinASAn approximate method of constructing a switching regression with unknown switch pointsCybern. Syst. Analysis2020563426438411286010.1007/s10559-020-00258-1 KnopovPSKorkhinASStatistical analysis of the dynamics of coronavirus cases using stepwise switching regressionCybern. Syst. Analysis202056694395210.1007/s10559-020-00314-w P. S. Knopov and A. S. Korkhin, Regression Analysis Under A Priori Parameter Restrictions, Ser. Springer Optimization and Its Applications, Vol. 54, Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0574-0. NorkinVIGaivoronskiAAZaslavskyVAKnopovPSModels of the optimal resource allocation for the critical infrastructure protectionCybern. Syst. Analysis201854569670610.1007/s10559-018-0071-7 KnopovPSKorkhinASDynamic models of epidemiology in discrete time taking into account processes with lagInt. J. Dynam. Control20231121932214463150410.1007/s40435-023-01135-3 KorkhinASConstructing a switching regression with unknown switching pointsCybern. Syst. Analysis2018543443455379444710.1007/s10559-018-0045-9 KorkhinASParameter estimation accuracy for nonlinear regression with nonlinear constraintsCybern. Syst. Analysis1998345663672171198710.1007/BF02667038 PS Knopov (663_CR7) 2020; 56 AN Golodnikov (663_CR9) 2004; 57 PS Knopov (663_CR3) 2024; 60 P Perron (663_CR4) 2017; 38 663_CR1 AS Korkhin (663_CR2) 1998; 34 AS Korkhin (663_CR5) 2018; 54 VI Norkin (663_CR10) 2018; 54 AS Korkhin (663_CR6) 2020; 56 PS Knopov (663_CR8) 2023; 11 |
References_xml | – reference: NorkinVIGaivoronskiAAZaslavskyVAKnopovPSModels of the optimal resource allocation for the critical infrastructure protectionCybern. Syst. Analysis201854569670610.1007/s10559-018-0071-7 – reference: PerronPZortaEEstimation and inference of linear trend slope ratios with an application to global temperature dataJ. of Time Series Analysis20173856306673689440 – reference: KorkhinASConstructing a switching regression with unknown switching pointsCybern. Syst. Analysis2018543443455379444710.1007/s10559-018-0045-9 – reference: KnopovPSKorkhinASDetermining a piecewise linear trend of a nonstationary time series based on intelligent data analysis. I. Description and substantiation of the methodCybern. Syst. Analysis2024601505910.1007/s10559-024-00646-x – reference: KorkhinASParameter estimation accuracy for nonlinear regression with nonlinear constraintsCybern. Syst. Analysis1998345663672171198710.1007/BF02667038 – reference: P. S. Knopov and A. S. Korkhin, Regression Analysis Under A Priori Parameter Restrictions, Ser. Springer Optimization and Its Applications, Vol. 54, Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0574-0. – reference: KorkhinASAn approximate method of constructing a switching regression with unknown switch pointsCybern. Syst. Analysis2020563426438411286010.1007/s10559-020-00258-1 – reference: KnopovPSKorkhinASDynamic models of epidemiology in discrete time taking into account processes with lagInt. J. Dynam. Control20231121932214463150410.1007/s40435-023-01135-3 – reference: GolodnikovANKnopovPSPepelyaevVAEstimation of reliability parameters under incomplete primary informationTheory and Decision2004574331344220134810.1007/s11238-005-3217-9 – reference: KnopovPSKorkhinASStatistical analysis of the dynamics of coronavirus cases using stepwise switching regressionCybern. Syst. Analysis202056694395210.1007/s10559-020-00314-w – volume: 11 start-page: 2193 year: 2023 ident: 663_CR8 publication-title: Int. J. Dynam. Control doi: 10.1007/s40435-023-01135-3 – volume: 54 start-page: 443 issue: 3 year: 2018 ident: 663_CR5 publication-title: Cybern. Syst. Analysis doi: 10.1007/s10559-018-0045-9 – volume: 56 start-page: 943 issue: 6 year: 2020 ident: 663_CR7 publication-title: Cybern. Syst. Analysis doi: 10.1007/s10559-020-00314-w – volume: 57 start-page: 331 issue: 4 year: 2004 ident: 663_CR9 publication-title: Theory and Decision doi: 10.1007/s11238-005-3217-9 – volume: 38 start-page: 630 issue: 5 year: 2017 ident: 663_CR4 publication-title: J. of Time Series Analysis doi: 10.1111/jtsa.12248 – volume: 34 start-page: 663 issue: 5 year: 1998 ident: 663_CR2 publication-title: Cybern. Syst. Analysis doi: 10.1007/BF02667038 – volume: 56 start-page: 426 issue: 3 year: 2020 ident: 663_CR6 publication-title: Cybern. Syst. Analysis doi: 10.1007/s10559-020-00258-1 – volume: 54 start-page: 696 issue: 5 year: 2018 ident: 663_CR10 publication-title: Cybern. Syst. Analysis doi: 10.1007/s10559-018-0071-7 – volume: 60 start-page: 50 issue: 1 year: 2024 ident: 663_CR3 publication-title: Cybern. Syst. Analysis doi: 10.1007/s10559-024-00646-x – ident: 663_CR1 doi: 10.1007/978-1-4614-0574-0 |
SSID | ssj0003078 |
Score | 2.2786336 |
Snippet | The article describes the results of the approbation of the method of constructing a piecewise linear trend, which can have breaks at the switching points as... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 220 |
SubjectTerms | Artificial Intelligence Control COVID-19 Data analysis Epidemiology Independent variables Mathematics Mathematics and Statistics Processor Architectures Software Engineering/Programming and Operating Systems Splines Switching Systems Theory Time series |
Title | Determining a Piecewise Linear Trend of a Nonstationary Time Series Based on Intelligent Data Analysis. II. Machine Experiments and Solution of the Practical Problem |
URI | https://link.springer.com/article/10.1007/s10559-024-00663-w https://www.proquest.com/docview/3034029498 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-x7gUeBhsgOkZlISRA4CpNGqd-bLeWFdQKAZXGk2U7NpompdOSqoLvw_fk7DjdOuBhb5F8sh3dX_vufgZ4ZZWONAoLZdylGRWPUKV4nyZSsVyig-YednE2Z6eL_sez9Cw0hZVNtXuTkvSW-kazG0a_FH0K9X6SrndgN-0N-KAFu8MP3z-NNxYY5bZugWMRjRLOQrPMv2fZcki3zfJf-VHvdiYPYdFsuK42ueiuKtXVv25hOd71jx7BXohDybAWnH24Z4oDeDDbgLiWB7Af9L4kbwI49dvH8Psk1M_gQkSSz-dGm_V5aQgealFpiK-xJUuLY3Mfevq7xqufxPWaEHcXh_ON0HUiUUGmG0DQipzISpIGI6VLptMumflKT0PGm2cISiJx-uYuz62DGyY16BJKG37593GewGIy_nZ8SsNTD1QnWa-iKcYRiU6QdbHuR6bnkpFxJnMMKGKWMKWlsRLlJ1dIYJIsUhioWWZMqmyaW548hVaxLMwzIJxJm6qYSemQ_FU24Giyop7NM65dPNWGdw2_xWWN6CGusZsdRwRyRHiOiHUbXjqREA4qo3C1OD_kqizF9OsXMcxw5ozh-bgNrwORXVb4xzK0NuCGHLrWFuXRFiXqst4ebiRPBFtSCgwy8JDP-3zQhveNIF0P_3_vh3cjfw73Yy-LrsDuCFrV1cq8wIirUh1UsMloNO8ERevAziIe_gFYfSLK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9wA8ABsgCgMshAQIXKX5cObHwjoatlYIVml7smzHRhNSipZUFfw__J-cHaejAx72Fsmns6P7tH33M8ALq3SkUVko4-6aUfEITYqnNJGKlRIDNPewi9MZm8zTjyfZSWgKq7tq9-5K0nvqP5rdMPulGFOoj5N0dR22UuQb9WBr9OH0cLz2wKi3bQsci2iUcBaaZf7NZSMgXXbLf92P-rBzcAfm3YLbapNvg2WjBvrnJSzHq_7RXbgd8lAyahVnG66ZagduTdcgrvUObAe7r8mrAE79-h782g_1MzgRkeTTmdFmdVYbgptaNBria2zJwuLYzKee_qzx_AdxvSbEncUhv3cYOpGoIsUaELQh-7KRpMNIGZCiGJCpr_Q0ZLx-hqAmEtl3Z3luHlwwaUGXUNvwy7-Pcx_mB-Pj9xMannqgOsmHDc0wj0h0gqKLdRqZobuMjHNZYkIRs4QpLY2VqD-lQgKT5JHCRM0yYzJls9Ly5AH0qkVlHgLhTNpMxUxKh-Sv8j2OLisa2jLn2uVTfXjTyVt8bxE9xAV2s5OIQIkILxGx6sNzpxLCQWVUrhbnq1zWtSi-fBajHDnnDPfHfXgZiOyiwT-WobUBF-TQtTYodzco0Zb15nCneSL4klpgkoGbfJ7yvT687RTpYvj_a390NfJncGNyPD0SR8Xs8DHcjL1eumK7Xeg150vzBLOvRj0NxvYb-tIjQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED_BkBA8IDZAKww4ISRA4C1NGmd-LHTVArSagEp7s2zHRntJpyVTxQfie3J2nG7lzwNvkXy6OLk739l39zPAS6dNYkhZGBc-zahFQiYlRixTmleKHLQIsIuzOT9ejD6e5qfXuvhDtXufkux6GjxKU90enFfu4FrjG0XCjPwLCz6TrW7CLVqOh17TF-l4vRaTBnfNcDxhSSZ4bJv5O48N1_T7Av1HpjQ4oOl9uBcjRxx3ot6GG7begbuzNexqswPb0VIbfB3hpN88gJ-TWPFCXFHhyZk1dnXWWKRtKKk5hqpYXDoam4dgMZwOXvxA3x2C_vSM-L0nZ0dENZZrCM8WJ6pV2KOa7GNZ7uMs1GZaPFpfHNCgIvb96Zt_D00YO5gk0g96CjfaPITF9Ojbh2MWL2dgJiuGLcvJ82cmo1-cmlFihz59mBaqohAg5RnXRlmnSOKVJgKbFYmm0Mpxa3Pt8sqJ7BFs1cva7gIKrlyuU66Ux97XxaGgRSYZuqoQxkdAA3jby0Wedxgc8gpt2UtRkhRlkKJcDeCFF5304Ba1r575ri6bRpZfv8hxQZwLTjvaAbyKRG7Z0her2IxAE_J4WBuUexuUZH1mc7jXEBmtv5EUFtC2XIzE4QDe9VpzNfzvuT_-P_LncPtkMpWfy_mnJ3AnDarsq-P2YKu9uLRPKVxq9bNgEb8AqXIKRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DETERMINING+A+PIECEWISE+LINEAR+TREND+OF+A+NONSTATIONARY+TIME+SERIES+BASED+ON+INTELLIGENT+DATA+ANALYSIS.+II.+MACHINE+EXPERIMENTS+AND+SOLUTION+OF+THE+PRACTICAL+PROBLEM&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Knopov%2C+P.S&rft.au=Korkhin%2C+A.S&rft.date=2024-03-01&rft.pub=Springer&rft.issn=1060-0396&rft.volume=60&rft.issue=2&rft.spage=220&rft_id=info:doi/10.1007%2Fs10559-024-00663-w&rft.externalDocID=A792276094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon |