Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater
Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 14; pp. 7437 - 7444 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 μm s
−1
. In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting. |
---|---|
AbstractList | Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 μm s
−1
. In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting. Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 μm s⁻¹. In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting. Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 mu m s super(-1). In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting. |
Author | Zhang, Zhong Chen, Lingxin Liu, Dongyan Li, Jinhua Fu, Longwen |
Author_xml | – sequence: 1 givenname: Zhong surname: Zhang fullname: Zhang, Zhong organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 – sequence: 2 givenname: Jinhua surname: Li fullname: Li, Jinhua organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 – sequence: 3 givenname: Longwen surname: Fu fullname: Fu, Longwen organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 – sequence: 4 givenname: Dongyan orcidid: 0000-0002-3764-3515 surname: Liu fullname: Liu, Dongyan organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 – sequence: 5 givenname: Lingxin surname: Chen fullname: Chen, Lingxin organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 |
BookMark | eNqNkU1LAzEQhoNUsNZe_AU5ilBNNrvZ5FiKX6B4qeclzU5qZDepSarsvzeloiCCDjPMHJ5Jhvc9RiPnHSB0SskFJUxeLqrlnBBasvkBGhekIrO6lHz0NQtxhKYxvpAcghAu5RgND2rtIFmNe9-B3nYqdAO2_SZYl6DFvdXBR3DRB2xyRchUsm-AA2i_djZZ77ByLU5BubjxIWFvsOm2PkDU4BLePA_a60E563DOCOpdJQgn6NCoLsL0s0_Q0_XVcnE7u3-8uVvM72ea1TTNSqglp8zQShjGaNGuCr1SiopKt8ZIqLSiLV8JLiRnompLAlKUK1CFannNGZugs_27m-BftxBT09t8WNcpB34bm4IV-Ycya_InSrmoOS8ryv-B1rUsBRVFRske3SkZA5hG26R2umXJbNdQ0uzsa77tyyvnP1ayH70Kw2_wB7BAnq0 |
CitedBy_id | crossref_primary_10_1016_j_snb_2019_04_142 crossref_primary_10_1016_j_apmt_2024_102287 crossref_primary_10_1016_j_bios_2019_02_015 crossref_primary_10_1002_jssc_201600576 crossref_primary_10_1002_jssc_201600850 crossref_primary_10_1007_s00216_019_02109_1 crossref_primary_10_1016_j_trac_2016_10_005 crossref_primary_10_1039_C8AN02051E crossref_primary_10_1002_asia_201900385 crossref_primary_10_1016_j_polymer_2019_05_067 crossref_primary_10_1002_jssc_201700947 crossref_primary_10_1016_j_bios_2018_04_028 crossref_primary_10_1039_C6TA11167J crossref_primary_10_1039_C6CS00061D crossref_primary_10_1039_C5RA16636E crossref_primary_10_1039_C8AN00811F crossref_primary_10_1039_C8TA06715E crossref_primary_10_1016_j_snb_2017_02_125 crossref_primary_10_1007_s10853_018_3023_8 crossref_primary_10_1016_j_aca_2020_06_036 crossref_primary_10_1080_10408398_2024_2365337 crossref_primary_10_1039_C7TA06032G crossref_primary_10_1016_j_fbio_2024_105369 crossref_primary_10_1039_C5CC04726A crossref_primary_10_1021_acssensors_6b00664 crossref_primary_10_3390_mi15121443 crossref_primary_10_1016_j_ab_2018_06_004 crossref_primary_10_1039_C7NR01168G crossref_primary_10_1039_C9AN00198K crossref_primary_10_1002_adma_202203154 crossref_primary_10_3390_bios13010045 crossref_primary_10_1007_s00216_021_03362_z crossref_primary_10_1016_j_foodchem_2022_133093 crossref_primary_10_1007_s00216_018_1372_4 crossref_primary_10_1007_s10311_019_00956_z crossref_primary_10_1039_C8EN00299A crossref_primary_10_1016_j_snb_2016_09_185 crossref_primary_10_1002_smll_202207303 crossref_primary_10_1016_j_trac_2017_08_010 crossref_primary_10_1016_j_chroma_2016_06_045 crossref_primary_10_1039_D0AN01410A crossref_primary_10_1039_D2MA00798C crossref_primary_10_1021_acsami_6b00375 crossref_primary_10_1016_j_bios_2016_03_031 crossref_primary_10_1016_j_snb_2017_06_090 crossref_primary_10_3390_nano10061116 crossref_primary_10_1021_acs_analchem_4c01976 crossref_primary_10_1016_j_jhazmat_2024_135731 crossref_primary_10_1039_C9QM00531E crossref_primary_10_1049_mnl_2018_5269 crossref_primary_10_1021_acssuschemeng_3c02266 crossref_primary_10_1007_s10853_016_9926_3 crossref_primary_10_1016_j_cej_2019_03_101 crossref_primary_10_1007_s00216_019_02070_z crossref_primary_10_1016_j_cej_2018_03_128 crossref_primary_10_1039_C9NR09813E crossref_primary_10_3390_molecules29051154 crossref_primary_10_1039_C8AY00876K crossref_primary_10_1016_j_msec_2020_110777 crossref_primary_10_1016_j_nantod_2021_101177 crossref_primary_10_1039_C9AN01798D crossref_primary_10_1007_s00604_019_3548_9 crossref_primary_10_1039_D2TC02458F crossref_primary_10_1039_D3TB02021E |
Cites_doi | 10.1021/ja4018545 10.1016/j.jbiotec.2012.02.004 10.1039/c3sc51413g 10.1039/c3sc52986j 10.1039/c0cs00084a 10.1021/nn403851v 10.1038/nprot.2009.52 10.1039/c2nr30138e 10.1016/j.ecoleng.2011.01.001 10.1021/jp311977d 10.1016/j.ecolind.2008.11.013 10.1039/C4RA03282A 10.1039/c1nr10840a 10.1039/c2jm16813h 10.1016/j.isprsjprs.2014.06.008 10.1039/C0CS00049C 10.1007/s00253-008-1542-y 10.1039/c1jm14230e 10.1021/nn3028997 10.1021/ja311455k 10.1021/nl2005687 10.1016/j.ecoinf.2013.02.006 10.1039/C2NR32400H 10.1063/1.4813791 10.1016/j.bios.2013.11.064 10.1039/c4ra00668b |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M M7N 7S9 L.6 |
DOI | 10.1039/C5TA00143A |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Algology Mycology and Protozoology Abstracts (Microbiology C) Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 7444 |
ExternalDocumentID | 10_1039_C5TA00143A |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SR 7U5 8BQ 8FD JG9 L7M M7N 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-4e79613f158f3312db2cbaa185cdff9e5ca1d6b86896385d40e984bea2ad67633 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 15:05:38 EDT 2025 Fri Jul 11 00:42:35 EDT 2025 Thu Jul 10 22:00:43 EDT 2025 Tue Jul 01 04:17:49 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-4e79613f158f3312db2cbaa185cdff9e5ca1d6b86896385d40e984bea2ad67633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3764-3515 |
PQID | 1677948182 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2327964000 proquest_miscellaneous_1687664516 proquest_miscellaneous_1677948182 crossref_citationtrail_10_1039_C5TA00143A crossref_primary_10_1039_C5TA00143A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2015 |
References | Orozco (C5TA00143A-(cit19)/*[position()=1]) 2013; 135 García (C5TA00143A-(cit26)/*[position()=1]) 2013; 5 Zhang (C5TA00143A-(cit14)/*[position()=1]) 2014; 4 Boyer (C5TA00143A-(cit3)/*[position()=1]) 2009; 9 Li (C5TA00143A-(cit21)/*[position()=1]) 2011; 3 Gao (C5TA00143A-(cit22)/*[position()=1]) 2012; 4 Gantar (C5TA00143A-(cit2)/*[position()=1]) 2012; 159 Banholzer (C5TA00143A-(cit20)/*[position()=1]) 2009; 4 Gao (C5TA00143A-(cit23)/*[position()=1]) 2013; 135 Chuai (C5TA00143A-(cit1)/*[position()=1]) 2011; 37 Yamamoto (C5TA00143A-(cit25)/*[position()=1]) 2013; 139 Zhang (C5TA00143A-(cit7)/*[position()=1]) 2014; 4 Wang (C5TA00143A-(cit13)/*[position()=1]) 2014; 5 Whitcombe (C5TA00143A-(cit11)/*[position()=1]) 2011; 40 Liu (C5TA00143A-(cit10)/*[position()=1]) 2014; 55 Garcia-Gradilla (C5TA00143A-(cit16)/*[position()=1]) 2013; 7 Eriksen (C5TA00143A-(cit6)/*[position()=1]) 2008; 80 Mahon (C5TA00143A-(cit12)/*[position()=1]) 2013; 4 Song (C5TA00143A-(cit4)/*[position()=1]) 2013; 15 Kagan (C5TA00143A-(cit15)/*[position()=1]) 2011; 11 Song (C5TA00143A-(cit5)/*[position()=1]) 2014; 95 Chen (C5TA00143A-(cit8)/*[position()=1]) 2011; 40 Li (C5TA00143A-(cit9)/*[position()=1]) 2011; 21 Manjare (C5TA00143A-(cit24)/*[position()=1]) 2013; 117 Huang (C5TA00143A-(cit18)/*[position()=1]) 2012; 22 Wang (C5TA00143A-(cit17)/*[position()=1]) 2012; 6 |
References_xml | – volume: 135 start-page: 5336 year: 2013 ident: C5TA00143A-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4018545 – volume: 159 start-page: 21 year: 2012 ident: C5TA00143A-(cit2)/*[position()=1] publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2012.02.004 – volume: 4 start-page: 3661 year: 2013 ident: C5TA00143A-(cit12)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c3sc51413g – volume: 5 start-page: 1135 year: 2014 ident: C5TA00143A-(cit13)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c3sc52986j – volume: 40 start-page: 2922 year: 2011 ident: C5TA00143A-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00084a – volume: 7 start-page: 9232 year: 2013 ident: C5TA00143A-(cit16)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn403851v – volume: 4 start-page: 838 year: 2009 ident: C5TA00143A-(cit20)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.52 – volume: 4 start-page: 2447 year: 2012 ident: C5TA00143A-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30138e – volume: 37 start-page: 842 year: 2011 ident: C5TA00143A-(cit1)/*[position()=1] publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2011.01.001 – volume: 117 start-page: 4657 year: 2013 ident: C5TA00143A-(cit24)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp311977d – volume: 9 start-page: 1188 year: 2009 ident: C5TA00143A-(cit3)/*[position()=1] publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2008.11.013 – volume: 4 start-page: 31507 year: 2014 ident: C5TA00143A-(cit7)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA03282A – volume: 3 start-page: 5083 year: 2011 ident: C5TA00143A-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c1nr10840a – volume: 22 start-page: 6519 year: 2012 ident: C5TA00143A-(cit18)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm16813h – volume: 95 start-page: 68 year: 2014 ident: C5TA00143A-(cit5)/*[position()=1] publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.06.008 – volume: 40 start-page: 1547 year: 2011 ident: C5TA00143A-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00049C – volume: 80 start-page: 1 year: 2008 ident: C5TA00143A-(cit6)/*[position()=1] publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1542-y – volume: 21 start-page: 19267 year: 2011 ident: C5TA00143A-(cit9)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm14230e – volume: 6 start-page: 5745 year: 2012 ident: C5TA00143A-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3028997 – volume: 135 start-page: 998 year: 2013 ident: C5TA00143A-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311455k – volume: 11 start-page: 2083 year: 2011 ident: C5TA00143A-(cit15)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2005687 – volume: 15 start-page: 22 year: 2013 ident: C5TA00143A-(cit4)/*[position()=1] publication-title: Ecol. Informat. doi: 10.1016/j.ecoinf.2013.02.006 – volume: 5 start-page: 1325 year: 2013 ident: C5TA00143A-(cit26)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C2NR32400H – volume: 139 start-page: 034705 year: 2013 ident: C5TA00143A-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4813791 – volume: 55 start-page: 127 year: 2014 ident: C5TA00143A-(cit10)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.064 – volume: 4 start-page: 20677 year: 2014 ident: C5TA00143A-(cit14)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c4ra00668b |
SSID | ssj0000800699 |
Score | 2.3805404 |
Snippet | Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 7437 |
SubjectTerms | algal blooms biomass Catalysis Catalysts catalytic activity Enrichment fluorescence hydrogen peroxide magnetic fields Materials selection Mathematical models molecular imprinting monitoring nickel Phycocyanin platinum polymers rapid methods Recognition Sea water seawater Transport |
Title | Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater |
URI | https://www.proquest.com/docview/1677948182 https://www.proquest.com/docview/1687664516 https://www.proquest.com/docview/2327964000 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5c59IeSp80fbGlvRSj1NLqeTTBJg1OepHB9CJ2V1ISsKViSwT3L_VPdmalXW9IWtKCEGa1CFvzaV6e-YaQT15ZCk-6wuEyDx0_dgtHeCEEK4KXURTkXEhM6J-dhycL_3QZLAeDX1bVUtuII_nzzr6S_5EqrIFcsUv2HyRrbgoL8BnkC2eQMJzvJeMzflFhE-JorYfcrnbY97hBEoh8tMZiuy3EqfVGVRNu1cwbLBUyZUN9LXKjKc7RdyxXbb3pWJ4w8QEac8eRghUOeC-uuS7ove3SrvEa_uyR1HPkjkaTriVIX1EU413DocrZ6wYurNE16X2Txv5-WfemFYuGVOXB6VV12RpjMmtVZgF2Xe-b2uZXbRccVBe7Hv19YsMNrMSG0n_eOBgj1Wmnngt7rRuCqxU4s3HqW9oYvKPIsuyR31FN3rIaY4akqzJoOEaMzLKNuh7g_Fs2W8znWTpdpg_IgQcxiTckB5Np-nVuUnrofIdqYqn56poQlyVf9re_6QLd9ACUW5M-IY974dFJB66nZFBUz8gji6XyOdlpmFELZtTAjFowoyBdamBGLZhREDY1MKN1SS2YUQtmFA4NsxdkMZumxydOP7HDkSxyG8cvogT8w9IN4pIx18tBDwjOwSeUeVkmRSC5m4ciDmPU-0Huj4sk9kXBPZ6HYOnYSzKs6qp4RSjYGeEHgoUSggqOo2lZ3Mf3DLRfdEg-64eYyZ7OHqeqrDJVVsGS7DhIJ-qBTw7JR7P3R0ficueuD1oWGbwi-McZr4q63WZuGEXIahR7f9sDfkWIY6__vAeiF-z8BqS8vsd93pCH-9fiLRk2m7Z4Bx5wI973yPsNNqO85w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+molecularly+imprinted+microsensor+for+selective+recognition+and+transport+of+fluorescent+phycocyanin+in+seawater&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Zhong&rft.au=Li%2C+Jinhua&rft.au=Fu%2C+Longwen&rft.au=Liu%2C+Dongyan&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=14&rft.spage=7437&rft.epage=7444&rft_id=info:doi/10.1039%2Fc5ta00143a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |