Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater

Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 14; pp. 7437 - 7444
Main Authors Zhang, Zhong, Li, Jinhua, Fu, Longwen, Liu, Dongyan, Chen, Lingxin
Format Journal Article
LanguageEnglish
Published 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 μm s −1 . In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting.
AbstractList Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 μm s −1 . In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting.
Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 μm s⁻¹. In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting.
Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment due to its close relationship with cyanobacterial biomass. Molecularly imprinted polymers (MIPs) have attracted great interest owing to their recognition specificity; micromotor-driven targeted transport capability holds considerable promise. Herein, we propose an attractive magnetic microsensor for selective recognition, enrichment and transport of label-free fluorescent phycocyanin by combining MIPs and catalytic micromotors. The MIP-based catalytic microsensor was fabricated using phycocyanin as the imprinting molecule, Ni (0.55%) as the magnetic navigation material, and Pt (24.55%) as the solid support/catalyst to facilitate free movement in solutions, as well as an additional magnetic field was employed for trajectory control. The autonomous self-propulsion microsensor vividly displayed their motion states, presenting two different trajectories. The movement velocity was calculated based on the body-deformation model, suggesting a linear positive correlation between the velocity and hydrogen peroxide concentration, with a high average speed of 163 mu m s super(-1). In addition, highly efficient targeted identification and enrichment abilities were demonstrated based on the magnetically imprinted layer. More excitingly, no obvious interference was found from complicated matrices such as seawater samples, along with real-time visualization of phycocyanin loading and transport. The sensing strategy would not only provide potential applications for rapid microscale monitoring of algae blooms, but also enrich the research connotations of protein imprinting.
Author Zhang, Zhong
Chen, Lingxin
Liu, Dongyan
Li, Jinhua
Fu, Longwen
Author_xml – sequence: 1
  givenname: Zhong
  surname: Zhang
  fullname: Zhang, Zhong
  organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003
– sequence: 2
  givenname: Jinhua
  surname: Li
  fullname: Li, Jinhua
  organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003
– sequence: 3
  givenname: Longwen
  surname: Fu
  fullname: Fu, Longwen
  organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003
– sequence: 4
  givenname: Dongyan
  orcidid: 0000-0002-3764-3515
  surname: Liu
  fullname: Liu, Dongyan
  organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003
– sequence: 5
  givenname: Lingxin
  surname: Chen
  fullname: Chen, Lingxin
  organization: Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003
BookMark eNqNkU1LAzEQhoNUsNZe_AU5ilBNNrvZ5FiKX6B4qeclzU5qZDepSarsvzeloiCCDjPMHJ5Jhvc9RiPnHSB0SskFJUxeLqrlnBBasvkBGhekIrO6lHz0NQtxhKYxvpAcghAu5RgND2rtIFmNe9-B3nYqdAO2_SZYl6DFvdXBR3DRB2xyRchUsm-AA2i_djZZ77ByLU5BubjxIWFvsOm2PkDU4BLePA_a60E563DOCOpdJQgn6NCoLsL0s0_Q0_XVcnE7u3-8uVvM72ea1TTNSqglp8zQShjGaNGuCr1SiopKt8ZIqLSiLV8JLiRnompLAlKUK1CFannNGZugs_27m-BftxBT09t8WNcpB34bm4IV-Ycya_InSrmoOS8ryv-B1rUsBRVFRske3SkZA5hG26R2umXJbNdQ0uzsa77tyyvnP1ayH70Kw2_wB7BAnq0
CitedBy_id crossref_primary_10_1016_j_snb_2019_04_142
crossref_primary_10_1016_j_apmt_2024_102287
crossref_primary_10_1016_j_bios_2019_02_015
crossref_primary_10_1002_jssc_201600576
crossref_primary_10_1002_jssc_201600850
crossref_primary_10_1007_s00216_019_02109_1
crossref_primary_10_1016_j_trac_2016_10_005
crossref_primary_10_1039_C8AN02051E
crossref_primary_10_1002_asia_201900385
crossref_primary_10_1016_j_polymer_2019_05_067
crossref_primary_10_1002_jssc_201700947
crossref_primary_10_1016_j_bios_2018_04_028
crossref_primary_10_1039_C6TA11167J
crossref_primary_10_1039_C6CS00061D
crossref_primary_10_1039_C5RA16636E
crossref_primary_10_1039_C8AN00811F
crossref_primary_10_1039_C8TA06715E
crossref_primary_10_1016_j_snb_2017_02_125
crossref_primary_10_1007_s10853_018_3023_8
crossref_primary_10_1016_j_aca_2020_06_036
crossref_primary_10_1080_10408398_2024_2365337
crossref_primary_10_1039_C7TA06032G
crossref_primary_10_1016_j_fbio_2024_105369
crossref_primary_10_1039_C5CC04726A
crossref_primary_10_1021_acssensors_6b00664
crossref_primary_10_3390_mi15121443
crossref_primary_10_1016_j_ab_2018_06_004
crossref_primary_10_1039_C7NR01168G
crossref_primary_10_1039_C9AN00198K
crossref_primary_10_1002_adma_202203154
crossref_primary_10_3390_bios13010045
crossref_primary_10_1007_s00216_021_03362_z
crossref_primary_10_1016_j_foodchem_2022_133093
crossref_primary_10_1007_s00216_018_1372_4
crossref_primary_10_1007_s10311_019_00956_z
crossref_primary_10_1039_C8EN00299A
crossref_primary_10_1016_j_snb_2016_09_185
crossref_primary_10_1002_smll_202207303
crossref_primary_10_1016_j_trac_2017_08_010
crossref_primary_10_1016_j_chroma_2016_06_045
crossref_primary_10_1039_D0AN01410A
crossref_primary_10_1039_D2MA00798C
crossref_primary_10_1021_acsami_6b00375
crossref_primary_10_1016_j_bios_2016_03_031
crossref_primary_10_1016_j_snb_2017_06_090
crossref_primary_10_3390_nano10061116
crossref_primary_10_1021_acs_analchem_4c01976
crossref_primary_10_1016_j_jhazmat_2024_135731
crossref_primary_10_1039_C9QM00531E
crossref_primary_10_1049_mnl_2018_5269
crossref_primary_10_1021_acssuschemeng_3c02266
crossref_primary_10_1007_s10853_016_9926_3
crossref_primary_10_1016_j_cej_2019_03_101
crossref_primary_10_1007_s00216_019_02070_z
crossref_primary_10_1016_j_cej_2018_03_128
crossref_primary_10_1039_C9NR09813E
crossref_primary_10_3390_molecules29051154
crossref_primary_10_1039_C8AY00876K
crossref_primary_10_1016_j_msec_2020_110777
crossref_primary_10_1016_j_nantod_2021_101177
crossref_primary_10_1039_C9AN01798D
crossref_primary_10_1007_s00604_019_3548_9
crossref_primary_10_1039_D2TC02458F
crossref_primary_10_1039_D3TB02021E
Cites_doi 10.1021/ja4018545
10.1016/j.jbiotec.2012.02.004
10.1039/c3sc51413g
10.1039/c3sc52986j
10.1039/c0cs00084a
10.1021/nn403851v
10.1038/nprot.2009.52
10.1039/c2nr30138e
10.1016/j.ecoleng.2011.01.001
10.1021/jp311977d
10.1016/j.ecolind.2008.11.013
10.1039/C4RA03282A
10.1039/c1nr10840a
10.1039/c2jm16813h
10.1016/j.isprsjprs.2014.06.008
10.1039/C0CS00049C
10.1007/s00253-008-1542-y
10.1039/c1jm14230e
10.1021/nn3028997
10.1021/ja311455k
10.1021/nl2005687
10.1016/j.ecoinf.2013.02.006
10.1039/C2NR32400H
10.1063/1.4813791
10.1016/j.bios.2013.11.064
10.1039/c4ra00668b
ContentType Journal Article
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
M7N
7S9
L.6
DOI 10.1039/C5TA00143A
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Algology Mycology and Protozoology Abstracts (Microbiology C)
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 7444
ExternalDocumentID 10_1039_C5TA00143A
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SR
7U5
8BQ
8FD
JG9
L7M
M7N
7S9
L.6
ID FETCH-LOGICAL-c371t-4e79613f158f3312db2cbaa185cdff9e5ca1d6b86896385d40e984bea2ad67633
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 15:05:38 EDT 2025
Fri Jul 11 00:42:35 EDT 2025
Thu Jul 10 22:00:43 EDT 2025
Tue Jul 01 04:17:49 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-4e79613f158f3312db2cbaa185cdff9e5ca1d6b86896385d40e984bea2ad67633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3764-3515
PQID 1677948182
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_2327964000
proquest_miscellaneous_1687664516
proquest_miscellaneous_1677948182
crossref_citationtrail_10_1039_C5TA00143A
crossref_primary_10_1039_C5TA00143A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2015
References Orozco (C5TA00143A-(cit19)/*[position()=1]) 2013; 135
García (C5TA00143A-(cit26)/*[position()=1]) 2013; 5
Zhang (C5TA00143A-(cit14)/*[position()=1]) 2014; 4
Boyer (C5TA00143A-(cit3)/*[position()=1]) 2009; 9
Li (C5TA00143A-(cit21)/*[position()=1]) 2011; 3
Gao (C5TA00143A-(cit22)/*[position()=1]) 2012; 4
Gantar (C5TA00143A-(cit2)/*[position()=1]) 2012; 159
Banholzer (C5TA00143A-(cit20)/*[position()=1]) 2009; 4
Gao (C5TA00143A-(cit23)/*[position()=1]) 2013; 135
Chuai (C5TA00143A-(cit1)/*[position()=1]) 2011; 37
Yamamoto (C5TA00143A-(cit25)/*[position()=1]) 2013; 139
Zhang (C5TA00143A-(cit7)/*[position()=1]) 2014; 4
Wang (C5TA00143A-(cit13)/*[position()=1]) 2014; 5
Whitcombe (C5TA00143A-(cit11)/*[position()=1]) 2011; 40
Liu (C5TA00143A-(cit10)/*[position()=1]) 2014; 55
Garcia-Gradilla (C5TA00143A-(cit16)/*[position()=1]) 2013; 7
Eriksen (C5TA00143A-(cit6)/*[position()=1]) 2008; 80
Mahon (C5TA00143A-(cit12)/*[position()=1]) 2013; 4
Song (C5TA00143A-(cit4)/*[position()=1]) 2013; 15
Kagan (C5TA00143A-(cit15)/*[position()=1]) 2011; 11
Song (C5TA00143A-(cit5)/*[position()=1]) 2014; 95
Chen (C5TA00143A-(cit8)/*[position()=1]) 2011; 40
Li (C5TA00143A-(cit9)/*[position()=1]) 2011; 21
Manjare (C5TA00143A-(cit24)/*[position()=1]) 2013; 117
Huang (C5TA00143A-(cit18)/*[position()=1]) 2012; 22
Wang (C5TA00143A-(cit17)/*[position()=1]) 2012; 6
References_xml – volume: 135
  start-page: 5336
  year: 2013
  ident: C5TA00143A-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4018545
– volume: 159
  start-page: 21
  year: 2012
  ident: C5TA00143A-(cit2)/*[position()=1]
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.02.004
– volume: 4
  start-page: 3661
  year: 2013
  ident: C5TA00143A-(cit12)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc51413g
– volume: 5
  start-page: 1135
  year: 2014
  ident: C5TA00143A-(cit13)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc52986j
– volume: 40
  start-page: 2922
  year: 2011
  ident: C5TA00143A-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00084a
– volume: 7
  start-page: 9232
  year: 2013
  ident: C5TA00143A-(cit16)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn403851v
– volume: 4
  start-page: 838
  year: 2009
  ident: C5TA00143A-(cit20)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.52
– volume: 4
  start-page: 2447
  year: 2012
  ident: C5TA00143A-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30138e
– volume: 37
  start-page: 842
  year: 2011
  ident: C5TA00143A-(cit1)/*[position()=1]
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2011.01.001
– volume: 117
  start-page: 4657
  year: 2013
  ident: C5TA00143A-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311977d
– volume: 9
  start-page: 1188
  year: 2009
  ident: C5TA00143A-(cit3)/*[position()=1]
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2008.11.013
– volume: 4
  start-page: 31507
  year: 2014
  ident: C5TA00143A-(cit7)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA03282A
– volume: 3
  start-page: 5083
  year: 2011
  ident: C5TA00143A-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c1nr10840a
– volume: 22
  start-page: 6519
  year: 2012
  ident: C5TA00143A-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16813h
– volume: 95
  start-page: 68
  year: 2014
  ident: C5TA00143A-(cit5)/*[position()=1]
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.06.008
– volume: 40
  start-page: 1547
  year: 2011
  ident: C5TA00143A-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00049C
– volume: 80
  start-page: 1
  year: 2008
  ident: C5TA00143A-(cit6)/*[position()=1]
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1542-y
– volume: 21
  start-page: 19267
  year: 2011
  ident: C5TA00143A-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm14230e
– volume: 6
  start-page: 5745
  year: 2012
  ident: C5TA00143A-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3028997
– volume: 135
  start-page: 998
  year: 2013
  ident: C5TA00143A-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311455k
– volume: 11
  start-page: 2083
  year: 2011
  ident: C5TA00143A-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2005687
– volume: 15
  start-page: 22
  year: 2013
  ident: C5TA00143A-(cit4)/*[position()=1]
  publication-title: Ecol. Informat.
  doi: 10.1016/j.ecoinf.2013.02.006
– volume: 5
  start-page: 1325
  year: 2013
  ident: C5TA00143A-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C2NR32400H
– volume: 139
  start-page: 034705
  year: 2013
  ident: C5TA00143A-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4813791
– volume: 55
  start-page: 127
  year: 2014
  ident: C5TA00143A-(cit10)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.11.064
– volume: 4
  start-page: 20677
  year: 2014
  ident: C5TA00143A-(cit14)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c4ra00668b
SSID ssj0000800699
Score 2.3805404
Snippet Phycocyanin with excellent fluorescence characteristics and important physiological significance is an effective indicator for cyanobacterial bloom assessment...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 7437
SubjectTerms algal blooms
biomass
Catalysis
Catalysts
catalytic activity
Enrichment
fluorescence
hydrogen peroxide
magnetic fields
Materials selection
Mathematical models
molecular imprinting
monitoring
nickel
Phycocyanin
platinum
polymers
rapid methods
Recognition
Sea water
seawater
Transport
Title Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater
URI https://www.proquest.com/docview/1677948182
https://www.proquest.com/docview/1687664516
https://www.proquest.com/docview/2327964000
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5c59IeSp80fbGlvRSj1NLqeTTBJg1OepHB9CJ2V1ISsKViSwT3L_VPdmalXW9IWtKCEGa1CFvzaV6e-YaQT15ZCk-6wuEyDx0_dgtHeCEEK4KXURTkXEhM6J-dhycL_3QZLAeDX1bVUtuII_nzzr6S_5EqrIFcsUv2HyRrbgoL8BnkC2eQMJzvJeMzflFhE-JorYfcrnbY97hBEoh8tMZiuy3EqfVGVRNu1cwbLBUyZUN9LXKjKc7RdyxXbb3pWJ4w8QEac8eRghUOeC-uuS7ove3SrvEa_uyR1HPkjkaTriVIX1EU413DocrZ6wYurNE16X2Txv5-WfemFYuGVOXB6VV12RpjMmtVZgF2Xe-b2uZXbRccVBe7Hv19YsMNrMSG0n_eOBgj1Wmnngt7rRuCqxU4s3HqW9oYvKPIsuyR31FN3rIaY4akqzJoOEaMzLKNuh7g_Fs2W8znWTpdpg_IgQcxiTckB5Np-nVuUnrofIdqYqn56poQlyVf9re_6QLd9ACUW5M-IY974dFJB66nZFBUz8gji6XyOdlpmFELZtTAjFowoyBdamBGLZhREDY1MKN1SS2YUQtmFA4NsxdkMZumxydOP7HDkSxyG8cvogT8w9IN4pIx18tBDwjOwSeUeVkmRSC5m4ciDmPU-0Huj4sk9kXBPZ6HYOnYSzKs6qp4RSjYGeEHgoUSggqOo2lZ3Mf3DLRfdEg-64eYyZ7OHqeqrDJVVsGS7DhIJ-qBTw7JR7P3R0ficueuD1oWGbwi-McZr4q63WZuGEXIahR7f9sDfkWIY6__vAeiF-z8BqS8vsd93pCH-9fiLRk2m7Z4Bx5wI973yPsNNqO85w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+molecularly+imprinted+microsensor+for+selective+recognition+and+transport+of+fluorescent+phycocyanin+in+seawater&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhang%2C+Zhong&rft.au=Li%2C+Jinhua&rft.au=Fu%2C+Longwen&rft.au=Liu%2C+Dongyan&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=14&rft.spage=7437&rft.epage=7444&rft_id=info:doi/10.1039%2Fc5ta00143a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon