Cascade utilization of exhaust gas and jacket water waste heat from an Internal Combustion Engine by a single loop Organic Rankine Cycle system
•A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical model.•System performance based on three working fluids is evaluated.•Heat exchanger performance under different part-load conditions is validated. This...
Saved in:
Published in | Applied thermal engineering Vol. 107; pp. 218 - 226 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
25.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical model.•System performance based on three working fluids is evaluated.•Heat exchanger performance under different part-load conditions is validated.
This work presents the methodology of Internal Combustion Engine (ICE) waste heat recovery by an Organic Rankine Cycle (ORC) system. Though jacket waster heat is usually ignored due to its low temperature, the contained thermal energy is roughly the same as that of exhaust gas from an ICE with certain rated loads, which makes the recovery of this energy a subject of interest. The cascade utilization of exhaust gas and jacket water heat by single loop ORC systems is here investigated and compared with a system which only recovers exhaust gas heat. System performances are evaluated through thermal efficiency, waste heat recovery efficiency and improvement of ICE efficiency. Then the calculated heat exchanger capacity is validated under different ICE load conditions. Results show that the highest thermal efficiency (21.82%) can be reached by using R141b. The full recovery of exhaust gas heat yields the highest waste heat recovery efficiency (10.19%) and improvement of the ICE efficiency (14.23%). Preheaters and evaporators operated at high evaporating pressure may have a heat exchanger capacity which is lower than the calculated heat amount under ICE part-load conditions. It is therefore essential to validate the calculated heat exchanger capacity in real operating conditions. |
---|---|
AbstractList | •A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical model.•System performance based on three working fluids is evaluated.•Heat exchanger performance under different part-load conditions is validated.
This work presents the methodology of Internal Combustion Engine (ICE) waste heat recovery by an Organic Rankine Cycle (ORC) system. Though jacket waster heat is usually ignored due to its low temperature, the contained thermal energy is roughly the same as that of exhaust gas from an ICE with certain rated loads, which makes the recovery of this energy a subject of interest. The cascade utilization of exhaust gas and jacket water heat by single loop ORC systems is here investigated and compared with a system which only recovers exhaust gas heat. System performances are evaluated through thermal efficiency, waste heat recovery efficiency and improvement of ICE efficiency. Then the calculated heat exchanger capacity is validated under different ICE load conditions. Results show that the highest thermal efficiency (21.82%) can be reached by using R141b. The full recovery of exhaust gas heat yields the highest waste heat recovery efficiency (10.19%) and improvement of the ICE efficiency (14.23%). Preheaters and evaporators operated at high evaporating pressure may have a heat exchanger capacity which is lower than the calculated heat amount under ICE part-load conditions. It is therefore essential to validate the calculated heat exchanger capacity in real operating conditions. |
Author | Liu, Liuchen Ma, Jiacheng Zhu, Tong Zhang, Tao |
Author_xml | – sequence: 1 givenname: Jiacheng surname: Ma fullname: Ma, Jiacheng – sequence: 2 givenname: Liuchen surname: Liu fullname: Liu, Liuchen – sequence: 3 givenname: Tong surname: Zhu fullname: Zhu, Tong email: zhu_tong@tongji.edu.cn – sequence: 4 givenname: Tao surname: Zhang fullname: Zhang, Tao |
BookMark | eNqNkMFOwzAQRH0AiRb4hz1wbbCTNG0lLhAVqFQJCcHZ2jib1CWxK9sFyk_wy7iUC5y47Eo7O0-aGbIjYw0xdiF4IrgoLtcJbjZdWJHrsSPTJmm8JrxIRJ4fsYHIxrNRnglxwoberzkX6XSSD9hniV5hTbANutMfGLQ1YBug9xVufYAWPaCpYY3qhQK8YSAXpw8EK8IAjbN9fICFiYLBDkrbV9G4x8xNqw1BtQMEr03bEXTWbuDBtWi0gkc0L_uHcqei5HcR2p-x4wY7T-c_-5Q9386fyvvR8uFuUV4vRyqbiBCTZI2isajzRoiKV0LVRVYQjYmnVT3Lc0Wcz0ReZGmTZpOCV4rS8TRuPsUpNtkpuzlwlbPeO2qk0uE7fXCoOym43Ncq1_J3rXJfq-SFjLVGyNUfyMbpHt3uv_bbg51i0FdNTnqlySiqtSMVZG31_0Bf2bOlzw |
CitedBy_id | crossref_primary_10_1016_j_enconman_2018_11_041 crossref_primary_10_3390_app13148543 crossref_primary_10_1016_j_energy_2017_01_151 crossref_primary_10_1016_j_applthermaleng_2018_04_036 crossref_primary_10_1016_j_fuel_2022_124174 crossref_primary_10_1016_j_applthermaleng_2018_12_158 crossref_primary_10_1016_j_applthermaleng_2017_12_017 crossref_primary_10_1016_j_egyr_2022_07_073 crossref_primary_10_1016_j_cej_2024_155911 crossref_primary_10_1016_j_rser_2018_04_023 crossref_primary_10_1016_j_pecs_2021_100906 crossref_primary_10_1063_1_5034062 crossref_primary_10_1007_s11630_018_1023_2 crossref_primary_10_1016_j_csite_2022_101860 crossref_primary_10_1016_j_enconman_2019_02_072 crossref_primary_10_1007_s10973_021_10753_y crossref_primary_10_1016_j_clet_2021_100292 crossref_primary_10_1016_j_seta_2024_103882 crossref_primary_10_1063_1_5045246 crossref_primary_10_3390_en15228365 crossref_primary_10_1002_apj_3168 crossref_primary_10_1016_j_applthermaleng_2019_114549 crossref_primary_10_18613_deudfd_881570 crossref_primary_10_1016_j_enconman_2020_112658 crossref_primary_10_1016_j_seta_2022_102650 crossref_primary_10_1016_j_enconman_2021_113947 crossref_primary_10_1016_j_energy_2021_120271 crossref_primary_10_1016_j_energy_2022_125887 crossref_primary_10_1016_j_energy_2019_03_013 crossref_primary_10_1016_j_energy_2023_127623 crossref_primary_10_1016_j_ijhydene_2024_10_419 crossref_primary_10_21926_jept_2301006 crossref_primary_10_1016_j_egyr_2021_07_088 crossref_primary_10_1155_2023_3280579 crossref_primary_10_1016_j_est_2023_108866 crossref_primary_10_3390_e23070906 crossref_primary_10_1007_s44245_022_00002_3 crossref_primary_10_1016_j_apenergy_2017_06_103 crossref_primary_10_1007_s42461_023_00801_6 crossref_primary_10_1016_j_applthermaleng_2017_09_114 |
Cites_doi | 10.1016/j.applthermaleng.2011.10.025 10.1016/j.energy.2012.03.018 10.1016/j.energy.2012.08.030 10.1016/j.applthermaleng.2009.08.006 10.1016/j.enbuild.2010.03.019 10.1016/j.enconman.2014.06.036 10.1016/j.apenergy.2014.07.007 10.1016/j.energy.2014.05.103 10.1016/j.applthermaleng.2013.08.016 10.1016/j.energy.2011.10.014 10.1016/j.enconman.2014.01.036 10.1016/j.apenergy.2013.08.027 10.1016/j.rser.2012.05.018 10.1016/j.apenergy.2010.08.016 10.1016/j.applthermaleng.2012.10.017 10.1016/j.applthermaleng.2011.05.008 10.1016/j.apenergy.2013.12.056 10.3390/en7042123 10.1016/j.energy.2014.07.007 10.1016/j.applthermaleng.2015.01.004 10.1016/j.enconman.2014.09.044 10.1016/j.ijrefrig.2005.04.006 10.1016/j.applthermaleng.2010.02.012 10.3390/e16052433 10.1016/j.applthermaleng.2011.11.060 10.1016/j.energy.2009.06.019 10.1016/j.energy.2012.09.021 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2016.06.144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 226 |
ExternalDocumentID | 10_1016_j_applthermaleng_2016_06_144 S1359431116310596 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH |
ID | FETCH-LOGICAL-c371t-433fce51d4f11b0b1cd636ee5e02bd944ce00914632f23760bce25860b08a8af3 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Thu Apr 24 23:02:37 EDT 2025 Tue Jul 01 02:27:19 EDT 2025 Mon Oct 07 06:11:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Internal Combustion Engine Waste heat recovery Cascade utilization Organic Rankine Cycle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-433fce51d4f11b0b1cd636ee5e02bd944ce00914632f23760bce25860b08a8af3 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2016_06_144 crossref_primary_10_1016_j_applthermaleng_2016_06_144 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_06_144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-25 |
PublicationDateYYYYMMDD | 2016-08-25 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Maraver, Quoilin, Royo (b0030) 2014; 16 Dolz, Novella, García, Sánchez (b0015) 2012; 36 Technical data from Caterpillar gas generator set, 2012. Fraas (b0110) 1989 He, Zhang, Zeng, Gao (b0095) 2011; 36 Koelsch, Radulovic (b0060) 2015; 78 Caresana, Brandoni, Feliciotti, Bartolini (b0020) 2011; 88 Kong, Wang, Wu, Wang, Hunangfu, Wu, Xu (b0005) 2005; 28 Saidur, Rezaei, Muzammil, Hassan, Paria, Hasanuzzaman (b0045) 2012; 16 Yang, Zhang, Song (b0055) 2014; 7 Mago, Hueffed, Chamra (b0040) 2010; 42 Zhang (b0155) 2014 Wang, Wu, Zhang (b0025) 2014; 86 Shu, Yu, Tian (b0125) 2014; 132 Bombarda, Invernizzi, Pietra (b0070) 2010; 30 Shu, Liu, Tian, Wei, Yu (b0105) 2014; 113 Qian (b0150) 2002 Peris, Navarro-Esbrí, Molés (b0010) 2013; 61 Li, Wang, Du (b0115) 2012; 42 Yang, Dong, Zhang (b0100) 2014; 80 Shu, Li, Tian, Liang, Wei, Wang (b0130) 2014; 119 Yang, Yeh (b0085) 2014; 88 Boretti (b0120) 2012; 36 Heberle, Brueggemann (b0140) 2010; 30 Kalina (b0090) 2011; 31 Shu, Gao, Tian, Wei, Liang (b0065) 2014; 74 Fang, Le, Jizhen, Jianhua, Guolian (b0035) 2012; 46 Tian, Shu, Wei, Liang, Liu (b0050) 2012; 47 Yue, Han, Pu (b0145) 2014; 72 Sprouse, Depcik (b0080) 2013; 51 Schuster, Karellas, Aumann (b0135) 2010; 35 10.1016/j.applthermaleng.2016.06.144_b0075 Li (10.1016/j.applthermaleng.2016.06.144_b0115) 2012; 42 Maraver (10.1016/j.applthermaleng.2016.06.144_b0030) 2014; 16 Caresana (10.1016/j.applthermaleng.2016.06.144_b0020) 2011; 88 Shu (10.1016/j.applthermaleng.2016.06.144_b0065) 2014; 74 He (10.1016/j.applthermaleng.2016.06.144_b0095) 2011; 36 Peris (10.1016/j.applthermaleng.2016.06.144_b0010) 2013; 61 Mago (10.1016/j.applthermaleng.2016.06.144_b0040) 2010; 42 Kalina (10.1016/j.applthermaleng.2016.06.144_b0090) 2011; 31 Yue (10.1016/j.applthermaleng.2016.06.144_b0145) 2014; 72 Shu (10.1016/j.applthermaleng.2016.06.144_b0125) 2014; 132 Yang (10.1016/j.applthermaleng.2016.06.144_b0085) 2014; 88 Shu (10.1016/j.applthermaleng.2016.06.144_b0130) 2014; 119 Zhang (10.1016/j.applthermaleng.2016.06.144_b0155) 2014 Kong (10.1016/j.applthermaleng.2016.06.144_b0005) 2005; 28 Yang (10.1016/j.applthermaleng.2016.06.144_b0100) 2014; 80 Shu (10.1016/j.applthermaleng.2016.06.144_b0105) 2014; 113 Saidur (10.1016/j.applthermaleng.2016.06.144_b0045) 2012; 16 Qian (10.1016/j.applthermaleng.2016.06.144_b0150) 2002 Yang (10.1016/j.applthermaleng.2016.06.144_b0055) 2014; 7 Wang (10.1016/j.applthermaleng.2016.06.144_b0025) 2014; 86 Koelsch (10.1016/j.applthermaleng.2016.06.144_b0060) 2015; 78 Boretti (10.1016/j.applthermaleng.2016.06.144_b0120) 2012; 36 Fang (10.1016/j.applthermaleng.2016.06.144_b0035) 2012; 46 Schuster (10.1016/j.applthermaleng.2016.06.144_b0135) 2010; 35 Dolz (10.1016/j.applthermaleng.2016.06.144_b0015) 2012; 36 Tian (10.1016/j.applthermaleng.2016.06.144_b0050) 2012; 47 Bombarda (10.1016/j.applthermaleng.2016.06.144_b0070) 2010; 30 Sprouse (10.1016/j.applthermaleng.2016.06.144_b0080) 2013; 51 Fraas (10.1016/j.applthermaleng.2016.06.144_b0110) 1989 Heberle (10.1016/j.applthermaleng.2016.06.144_b0140) 2010; 30 |
References_xml | – volume: 42 start-page: 1491 year: 2010 end-page: 1498 ident: b0040 article-title: Analysis and optimization of the use of CHP–ORC systems for small commercial buildings publication-title: Energy Build. – volume: 31 start-page: 2829 year: 2011 end-page: 2840 ident: b0090 article-title: Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC publication-title: Appl. Therm. Eng. – volume: 74 start-page: 428 year: 2014 end-page: 438 ident: b0065 article-title: Study of mixtures based on hydrocarbons used in Organic Rankine Cycle (ORC) for engine waste heat recovery publication-title: Energy – volume: 119 start-page: 204 year: 2014 end-page: 217 ident: b0130 article-title: Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle publication-title: Appl. Energy – volume: 47 start-page: 125 year: 2012 end-page: 136 ident: b0050 article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE) publication-title: Energy – volume: 7 start-page: 2123 year: 2014 end-page: 2145 ident: b0055 article-title: Effects of degree of superheat on the running performance of an organic Rankine cycle (ORC) waste heat recovery system for diesel engines under various operating conditions publication-title: Energies – volume: 42 start-page: 503 year: 2012 end-page: 509 ident: b0115 article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle publication-title: Energy – volume: 36 start-page: 6821 year: 2011 end-page: 6829 ident: b0095 article-title: A combined thermodynamic cycle used for waste heat recovery of internal combustion engine publication-title: Energy – volume: 16 start-page: 5649 year: 2012 end-page: 5659 ident: b0045 article-title: Technologies to recover exhaust heat from internal combustion engines publication-title: Renew. Sustain. Energy Rev. – volume: 28 start-page: 977 year: 2005 end-page: 987 ident: b0005 article-title: Experimental investigation of a micro combined cooling, heating, and power system driven by a gas engine publication-title: Int. J. Refrig. – volume: 86 start-page: 992 year: 2014 end-page: 1000 ident: b0025 article-title: Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator publication-title: Energy Convers. Manage. – volume: 30 start-page: 1326 year: 2010 end-page: 1332 ident: b0140 article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation publication-title: Appl. Therm. Eng. – start-page: 189 year: 2014 end-page: 192 ident: b0155 article-title: Heat Exchange Theory – volume: 61 start-page: 364 year: 2013 end-page: 371 ident: b0010 article-title: Bottoming organic Rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery publication-title: Appl. Therm. Eng. – reference: Technical data from Caterpillar gas generator set, 2012. – volume: 36 start-page: 73 year: 2012 end-page: 77 ident: b0120 article-title: Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine publication-title: Appl. Therm. Eng. – volume: 35 start-page: 1033 year: 2010 end-page: 1039 ident: b0135 article-title: Efficiency optimization potential in supercritical Organic Rankine Cycles publication-title: Energy – volume: 132 start-page: 325 year: 2014 end-page: 338 ident: b0125 article-title: A multi-approach evaluation system (MA-ES) of organic rankine cycles (ORC) used in waste heat utilization publication-title: Appl. Energy – volume: 88 start-page: 659 year: 2011 end-page: 671 ident: b0020 article-title: Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator publication-title: Appl. Energy – volume: 16 start-page: 2433 year: 2014 end-page: 2453 ident: b0030 article-title: Optimization of biomass-fuelled combined cooling, heating and power (CCHP) systems integrated with subcritical or transcritical organic rankine cycles (ORCs) publication-title: Entropy – volume: 78 start-page: 437 year: 2015 end-page: 448 ident: b0060 article-title: Utilisation of diesel engine waste heat by Organic Rankine Cycle publication-title: Appl. Therm. Eng. – volume: 80 start-page: 243 year: 2014 end-page: 255 ident: b0100 article-title: Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions publication-title: Energy Convers. Manage. – volume: 113 start-page: 1188 year: 2014 end-page: 1198 ident: b0105 article-title: Parametric and working fluid analysis of a dual-loop organic Rankine cycle [DORC] used in engine waste heat recovery publication-title: Appl. Energy – volume: 72 start-page: 739 year: 2014 end-page: 751 ident: b0145 article-title: Analysis of the integrated characteristics of the CPS (combined power system) of a bottoming organic Rankine cycle and a diesel engine publication-title: Energy – volume: 51 start-page: 711 year: 2013 end-page: 722 ident: b0080 article-title: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery publication-title: Appl. Therm. Eng. – start-page: 365 year: 2002 end-page: 370 ident: b0150 article-title: Heat Exchanger Design Manual – volume: 88 start-page: 999 year: 2014 end-page: 1010 ident: b0085 article-title: Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system publication-title: Energy Convers. Manage. – year: 1989 ident: b0110 article-title: Heat Exchanger Design – volume: 46 start-page: 211 year: 2012 end-page: 220 ident: b0035 article-title: Complementary configuration and operation of a CCHP-ORC system publication-title: Energy – volume: 30 start-page: 212 year: 2010 end-page: 219 ident: b0070 article-title: Heat recovery from diesel engines: a thermodynamic comparison between kalina and ORC cycles publication-title: Appl. Therm. Eng. – volume: 36 start-page: 269 year: 2012 end-page: 278 ident: b0015 article-title: HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: study and analysis of the waste heat energy publication-title: Appl. Therm. Eng. – volume: 36 start-page: 269 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.144_b0015 article-title: HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: study and analysis of the waste heat energy publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.025 – volume: 42 start-page: 503 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.144_b0115 article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2012.03.018 – volume: 46 start-page: 211 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.144_b0035 article-title: Complementary configuration and operation of a CCHP-ORC system publication-title: Energy doi: 10.1016/j.energy.2012.08.030 – volume: 30 start-page: 212 year: 2010 ident: 10.1016/j.applthermaleng.2016.06.144_b0070 article-title: Heat recovery from diesel engines: a thermodynamic comparison between kalina and ORC cycles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.08.006 – ident: 10.1016/j.applthermaleng.2016.06.144_b0075 – volume: 42 start-page: 1491 year: 2010 ident: 10.1016/j.applthermaleng.2016.06.144_b0040 article-title: Analysis and optimization of the use of CHP–ORC systems for small commercial buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.019 – volume: 86 start-page: 992 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0025 article-title: Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.06.036 – volume: 132 start-page: 325 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0125 article-title: A multi-approach evaluation system (MA-ES) of organic rankine cycles (ORC) used in waste heat utilization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.007 – volume: 72 start-page: 739 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0145 article-title: Analysis of the integrated characteristics of the CPS (combined power system) of a bottoming organic Rankine cycle and a diesel engine publication-title: Energy doi: 10.1016/j.energy.2014.05.103 – volume: 61 start-page: 364 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.144_b0010 article-title: Bottoming organic Rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.08.016 – volume: 36 start-page: 6821 year: 2011 ident: 10.1016/j.applthermaleng.2016.06.144_b0095 article-title: A combined thermodynamic cycle used for waste heat recovery of internal combustion engine publication-title: Energy doi: 10.1016/j.energy.2011.10.014 – volume: 80 start-page: 243 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0100 article-title: Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.01.036 – volume: 113 start-page: 1188 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0105 article-title: Parametric and working fluid analysis of a dual-loop organic Rankine cycle [DORC] used in engine waste heat recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.027 – start-page: 189 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0155 – volume: 16 start-page: 5649 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.144_b0045 article-title: Technologies to recover exhaust heat from internal combustion engines publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.05.018 – volume: 88 start-page: 659 year: 2011 ident: 10.1016/j.applthermaleng.2016.06.144_b0020 article-title: Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.08.016 – volume: 51 start-page: 711 year: 2013 ident: 10.1016/j.applthermaleng.2016.06.144_b0080 article-title: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.10.017 – volume: 31 start-page: 2829 year: 2011 ident: 10.1016/j.applthermaleng.2016.06.144_b0090 article-title: Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.05.008 – volume: 119 start-page: 204 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0130 article-title: Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.12.056 – volume: 7 start-page: 2123 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0055 article-title: Effects of degree of superheat on the running performance of an organic Rankine cycle (ORC) waste heat recovery system for diesel engines under various operating conditions publication-title: Energies doi: 10.3390/en7042123 – volume: 74 start-page: 428 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0065 article-title: Study of mixtures based on hydrocarbons used in Organic Rankine Cycle (ORC) for engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2014.07.007 – year: 1989 ident: 10.1016/j.applthermaleng.2016.06.144_b0110 – volume: 78 start-page: 437 year: 2015 ident: 10.1016/j.applthermaleng.2016.06.144_b0060 article-title: Utilisation of diesel engine waste heat by Organic Rankine Cycle publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.004 – volume: 88 start-page: 999 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0085 article-title: Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.09.044 – volume: 28 start-page: 977 year: 2005 ident: 10.1016/j.applthermaleng.2016.06.144_b0005 article-title: Experimental investigation of a micro combined cooling, heating, and power system driven by a gas engine publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2005.04.006 – volume: 30 start-page: 1326 year: 2010 ident: 10.1016/j.applthermaleng.2016.06.144_b0140 article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.02.012 – start-page: 365 year: 2002 ident: 10.1016/j.applthermaleng.2016.06.144_b0150 – volume: 16 start-page: 2433 year: 2014 ident: 10.1016/j.applthermaleng.2016.06.144_b0030 article-title: Optimization of biomass-fuelled combined cooling, heating and power (CCHP) systems integrated with subcritical or transcritical organic rankine cycles (ORCs) publication-title: Entropy doi: 10.3390/e16052433 – volume: 36 start-page: 73 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.144_b0120 article-title: Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.11.060 – volume: 35 start-page: 1033 year: 2010 ident: 10.1016/j.applthermaleng.2016.06.144_b0135 article-title: Efficiency optimization potential in supercritical Organic Rankine Cycles publication-title: Energy doi: 10.1016/j.energy.2009.06.019 – volume: 47 start-page: 125 year: 2012 ident: 10.1016/j.applthermaleng.2016.06.144_b0050 article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE) publication-title: Energy doi: 10.1016/j.energy.2012.09.021 |
SSID | ssj0012874 |
Score | 2.3614423 |
Snippet | •A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 218 |
SubjectTerms | Cascade utilization Internal Combustion Engine Organic Rankine Cycle Waste heat recovery |
Title | Cascade utilization of exhaust gas and jacket water waste heat from an Internal Combustion Engine by a single loop Organic Rankine Cycle system |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.06.144 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7LCqIH8Ynrizl4rdtsk7aLB5GirIoe1AVvJWkTdantoivqxb_gX3amD13Bg-ClpSVNQ2Y68yWd-Yax3VBKExrJHYXOxxHWJTuoQ8cNLNdBwFPrUoLz-YU_GIrTG3nTYlGTC0NhlbXtr2x6aa3rO916Nrvj-_vuFfdkH90fR0RBIIFot4UISMv33r_CPDjxuZeLLtl3qPUs2_2O8aKfxISzHhSVLaFAL5_YPHGR8bubmnI9x4tsocaMcFgNa4m1TL7M5qeYBFfYR6SeKNIdUI-yOrUSCgvm9Y6IfeBWPYHKUxgp_Gon8III8xGPKGIgawyUZYINoN4gzADthKZCX9hN9SLQb6CAdhYyA1lRjKFK40zgUlH5BQPRG44OKmroVTY8PrqOBk5da8FJvIBPKHHKJiizVFjOtat5kvqeb4w0bk-nfSESg2gMzarXs2UgjU5MT4Z4dkMVKuutsXZe5GadgZ-a1EcUoblWwgqrtE18rngQulQRJ-yw_WZq46QmIqd6GFncRJyN4p-CiUkwsevjOkV0mPx6elwRcvzxuYNGivEPBYvRd_yph41_97DJ5uiKtqR7cou1J4_PZhsxzUTvlEq7w2YOT84GF58J0Pvn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVgOiFXszIFr1LiJnVQcEKpAZeuBReIW2YnNotBWUAR8Bb_MTOOySByQuCRSEi_yODPP9swbgJ1USptaKQJNxieIXch60KRBmDhhkkQULuQA57OOal_Fx9fyegxao1gYdqv0ur_S6UNt7Z_U_WjW-3d39QsRySaZP0GIgkGCGocJZqeSNZjYPzppdz4PE5jSfbjuks2AC0zCzpebF58TM9R60Jy5hH29FBN60jrjd0v1zfoczsGsh424X_VsHsZsdwFmvpEJLsJ7Sz-xszvSVCp9dCX2HNrXW-b2wRv9hLpb4L2mH3eALwQyH-lKUkZWyMiBJvQB-j3CEklVGM71RdVUDaF5Q428uVBaLHu9PlaRnDmea87AYLH1Rr3Dih16Ca4ODy5b7cCnWwjyKBEDjp1yOYmtiJ0QJjQiL1SkrJU2bJiiGce5JUBGmjVquKEvjcltQ6Z0D1OdahctQ63b69oVQFXYQhGQMMLo2MVOG5croUWShpwUJ12F3dHQZrnnIueUGGU2cjq7z34KJmPBZKGipUq8CvKzdL_i5Phjub2RFLMfcywj8_GnGtb-XcM2TLUvz06z06POyTpM8xveoW7IDagNHp_tJkGcgdnyU_gDmYX-mA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascade+utilization+of+exhaust+gas+and+jacket+water+waste+heat+from+an+Internal+Combustion+Engine+by+a+single+loop+Organic+Rankine+Cycle+system&rft.jtitle=Applied+thermal+engineering&rft.au=Ma%2C+Jiacheng&rft.au=Liu%2C+Liuchen&rft.au=Zhu%2C+Tong&rft.au=Zhang%2C+Tao&rft.date=2016-08-25&rft.issn=1359-4311&rft.volume=107&rft.spage=218&rft.epage=226&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.06.144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_06_144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |