Cascade utilization of exhaust gas and jacket water waste heat from an Internal Combustion Engine by a single loop Organic Rankine Cycle system

•A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical model.•System performance based on three working fluids is evaluated.•Heat exchanger performance under different part-load conditions is validated. This...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 107; pp. 218 - 226
Main Authors Ma, Jiacheng, Liu, Liuchen, Zhu, Tong, Zhang, Tao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical model.•System performance based on three working fluids is evaluated.•Heat exchanger performance under different part-load conditions is validated. This work presents the methodology of Internal Combustion Engine (ICE) waste heat recovery by an Organic Rankine Cycle (ORC) system. Though jacket waster heat is usually ignored due to its low temperature, the contained thermal energy is roughly the same as that of exhaust gas from an ICE with certain rated loads, which makes the recovery of this energy a subject of interest. The cascade utilization of exhaust gas and jacket water heat by single loop ORC systems is here investigated and compared with a system which only recovers exhaust gas heat. System performances are evaluated through thermal efficiency, waste heat recovery efficiency and improvement of ICE efficiency. Then the calculated heat exchanger capacity is validated under different ICE load conditions. Results show that the highest thermal efficiency (21.82%) can be reached by using R141b. The full recovery of exhaust gas heat yields the highest waste heat recovery efficiency (10.19%) and improvement of the ICE efficiency (14.23%). Preheaters and evaporators operated at high evaporating pressure may have a heat exchanger capacity which is lower than the calculated heat amount under ICE part-load conditions. It is therefore essential to validate the calculated heat exchanger capacity in real operating conditions.
AbstractList •A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical model.•System performance based on three working fluids is evaluated.•Heat exchanger performance under different part-load conditions is validated. This work presents the methodology of Internal Combustion Engine (ICE) waste heat recovery by an Organic Rankine Cycle (ORC) system. Though jacket waster heat is usually ignored due to its low temperature, the contained thermal energy is roughly the same as that of exhaust gas from an ICE with certain rated loads, which makes the recovery of this energy a subject of interest. The cascade utilization of exhaust gas and jacket water heat by single loop ORC systems is here investigated and compared with a system which only recovers exhaust gas heat. System performances are evaluated through thermal efficiency, waste heat recovery efficiency and improvement of ICE efficiency. Then the calculated heat exchanger capacity is validated under different ICE load conditions. Results show that the highest thermal efficiency (21.82%) can be reached by using R141b. The full recovery of exhaust gas heat yields the highest waste heat recovery efficiency (10.19%) and improvement of the ICE efficiency (14.23%). Preheaters and evaporators operated at high evaporating pressure may have a heat exchanger capacity which is lower than the calculated heat amount under ICE part-load conditions. It is therefore essential to validate the calculated heat exchanger capacity in real operating conditions.
Author Liu, Liuchen
Ma, Jiacheng
Zhu, Tong
Zhang, Tao
Author_xml – sequence: 1
  givenname: Jiacheng
  surname: Ma
  fullname: Ma, Jiacheng
– sequence: 2
  givenname: Liuchen
  surname: Liu
  fullname: Liu, Liuchen
– sequence: 3
  givenname: Tong
  surname: Zhu
  fullname: Zhu, Tong
  email: zhu_tong@tongji.edu.cn
– sequence: 4
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
BookMark eNqNkMFOwzAQRH0AiRb4hz1wbbCTNG0lLhAVqFQJCcHZ2jib1CWxK9sFyk_wy7iUC5y47Eo7O0-aGbIjYw0xdiF4IrgoLtcJbjZdWJHrsSPTJmm8JrxIRJ4fsYHIxrNRnglxwoberzkX6XSSD9hniV5hTbANutMfGLQ1YBug9xVufYAWPaCpYY3qhQK8YSAXpw8EK8IAjbN9fICFiYLBDkrbV9G4x8xNqw1BtQMEr03bEXTWbuDBtWi0gkc0L_uHcqei5HcR2p-x4wY7T-c_-5Q9386fyvvR8uFuUV4vRyqbiBCTZI2isajzRoiKV0LVRVYQjYmnVT3Lc0Wcz0ReZGmTZpOCV4rS8TRuPsUpNtkpuzlwlbPeO2qk0uE7fXCoOym43Ncq1_J3rXJfq-SFjLVGyNUfyMbpHt3uv_bbg51i0FdNTnqlySiqtSMVZG31_0Bf2bOlzw
CitedBy_id crossref_primary_10_1016_j_enconman_2018_11_041
crossref_primary_10_3390_app13148543
crossref_primary_10_1016_j_energy_2017_01_151
crossref_primary_10_1016_j_applthermaleng_2018_04_036
crossref_primary_10_1016_j_fuel_2022_124174
crossref_primary_10_1016_j_applthermaleng_2018_12_158
crossref_primary_10_1016_j_applthermaleng_2017_12_017
crossref_primary_10_1016_j_egyr_2022_07_073
crossref_primary_10_1016_j_cej_2024_155911
crossref_primary_10_1016_j_rser_2018_04_023
crossref_primary_10_1016_j_pecs_2021_100906
crossref_primary_10_1063_1_5034062
crossref_primary_10_1007_s11630_018_1023_2
crossref_primary_10_1016_j_csite_2022_101860
crossref_primary_10_1016_j_enconman_2019_02_072
crossref_primary_10_1007_s10973_021_10753_y
crossref_primary_10_1016_j_clet_2021_100292
crossref_primary_10_1016_j_seta_2024_103882
crossref_primary_10_1063_1_5045246
crossref_primary_10_3390_en15228365
crossref_primary_10_1002_apj_3168
crossref_primary_10_1016_j_applthermaleng_2019_114549
crossref_primary_10_18613_deudfd_881570
crossref_primary_10_1016_j_enconman_2020_112658
crossref_primary_10_1016_j_seta_2022_102650
crossref_primary_10_1016_j_enconman_2021_113947
crossref_primary_10_1016_j_energy_2021_120271
crossref_primary_10_1016_j_energy_2022_125887
crossref_primary_10_1016_j_energy_2019_03_013
crossref_primary_10_1016_j_energy_2023_127623
crossref_primary_10_1016_j_ijhydene_2024_10_419
crossref_primary_10_21926_jept_2301006
crossref_primary_10_1016_j_egyr_2021_07_088
crossref_primary_10_1155_2023_3280579
crossref_primary_10_1016_j_est_2023_108866
crossref_primary_10_3390_e23070906
crossref_primary_10_1007_s44245_022_00002_3
crossref_primary_10_1016_j_apenergy_2017_06_103
crossref_primary_10_1007_s42461_023_00801_6
crossref_primary_10_1016_j_applthermaleng_2017_09_114
Cites_doi 10.1016/j.applthermaleng.2011.10.025
10.1016/j.energy.2012.03.018
10.1016/j.energy.2012.08.030
10.1016/j.applthermaleng.2009.08.006
10.1016/j.enbuild.2010.03.019
10.1016/j.enconman.2014.06.036
10.1016/j.apenergy.2014.07.007
10.1016/j.energy.2014.05.103
10.1016/j.applthermaleng.2013.08.016
10.1016/j.energy.2011.10.014
10.1016/j.enconman.2014.01.036
10.1016/j.apenergy.2013.08.027
10.1016/j.rser.2012.05.018
10.1016/j.apenergy.2010.08.016
10.1016/j.applthermaleng.2012.10.017
10.1016/j.applthermaleng.2011.05.008
10.1016/j.apenergy.2013.12.056
10.3390/en7042123
10.1016/j.energy.2014.07.007
10.1016/j.applthermaleng.2015.01.004
10.1016/j.enconman.2014.09.044
10.1016/j.ijrefrig.2005.04.006
10.1016/j.applthermaleng.2010.02.012
10.3390/e16052433
10.1016/j.applthermaleng.2011.11.060
10.1016/j.energy.2009.06.019
10.1016/j.energy.2012.09.021
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.06.144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 226
ExternalDocumentID 10_1016_j_applthermaleng_2016_06_144
S1359431116310596
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c371t-433fce51d4f11b0b1cd636ee5e02bd944ce00914632f23760bce25860b08a8af3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 23:02:37 EDT 2025
Tue Jul 01 02:27:19 EDT 2025
Mon Oct 07 06:11:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Internal Combustion Engine
Waste heat recovery
Cascade utilization
Organic Rankine Cycle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-433fce51d4f11b0b1cd636ee5e02bd944ce00914632f23760bce25860b08a8af3
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2016_06_144
crossref_primary_10_1016_j_applthermaleng_2016_06_144
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_06_144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-25
PublicationDateYYYYMMDD 2016-08-25
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-25
  day: 25
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Maraver, Quoilin, Royo (b0030) 2014; 16
Dolz, Novella, García, Sánchez (b0015) 2012; 36
Technical data from Caterpillar gas generator set, 2012.
Fraas (b0110) 1989
He, Zhang, Zeng, Gao (b0095) 2011; 36
Koelsch, Radulovic (b0060) 2015; 78
Caresana, Brandoni, Feliciotti, Bartolini (b0020) 2011; 88
Kong, Wang, Wu, Wang, Hunangfu, Wu, Xu (b0005) 2005; 28
Saidur, Rezaei, Muzammil, Hassan, Paria, Hasanuzzaman (b0045) 2012; 16
Yang, Zhang, Song (b0055) 2014; 7
Mago, Hueffed, Chamra (b0040) 2010; 42
Zhang (b0155) 2014
Wang, Wu, Zhang (b0025) 2014; 86
Shu, Yu, Tian (b0125) 2014; 132
Bombarda, Invernizzi, Pietra (b0070) 2010; 30
Shu, Liu, Tian, Wei, Yu (b0105) 2014; 113
Qian (b0150) 2002
Peris, Navarro-Esbrí, Molés (b0010) 2013; 61
Li, Wang, Du (b0115) 2012; 42
Yang, Dong, Zhang (b0100) 2014; 80
Shu, Li, Tian, Liang, Wei, Wang (b0130) 2014; 119
Yang, Yeh (b0085) 2014; 88
Boretti (b0120) 2012; 36
Heberle, Brueggemann (b0140) 2010; 30
Kalina (b0090) 2011; 31
Shu, Gao, Tian, Wei, Liang (b0065) 2014; 74
Fang, Le, Jizhen, Jianhua, Guolian (b0035) 2012; 46
Tian, Shu, Wei, Liang, Liu (b0050) 2012; 47
Yue, Han, Pu (b0145) 2014; 72
Sprouse, Depcik (b0080) 2013; 51
Schuster, Karellas, Aumann (b0135) 2010; 35
10.1016/j.applthermaleng.2016.06.144_b0075
Li (10.1016/j.applthermaleng.2016.06.144_b0115) 2012; 42
Maraver (10.1016/j.applthermaleng.2016.06.144_b0030) 2014; 16
Caresana (10.1016/j.applthermaleng.2016.06.144_b0020) 2011; 88
Shu (10.1016/j.applthermaleng.2016.06.144_b0065) 2014; 74
He (10.1016/j.applthermaleng.2016.06.144_b0095) 2011; 36
Peris (10.1016/j.applthermaleng.2016.06.144_b0010) 2013; 61
Mago (10.1016/j.applthermaleng.2016.06.144_b0040) 2010; 42
Kalina (10.1016/j.applthermaleng.2016.06.144_b0090) 2011; 31
Yue (10.1016/j.applthermaleng.2016.06.144_b0145) 2014; 72
Shu (10.1016/j.applthermaleng.2016.06.144_b0125) 2014; 132
Yang (10.1016/j.applthermaleng.2016.06.144_b0085) 2014; 88
Shu (10.1016/j.applthermaleng.2016.06.144_b0130) 2014; 119
Zhang (10.1016/j.applthermaleng.2016.06.144_b0155) 2014
Kong (10.1016/j.applthermaleng.2016.06.144_b0005) 2005; 28
Yang (10.1016/j.applthermaleng.2016.06.144_b0100) 2014; 80
Shu (10.1016/j.applthermaleng.2016.06.144_b0105) 2014; 113
Saidur (10.1016/j.applthermaleng.2016.06.144_b0045) 2012; 16
Qian (10.1016/j.applthermaleng.2016.06.144_b0150) 2002
Yang (10.1016/j.applthermaleng.2016.06.144_b0055) 2014; 7
Wang (10.1016/j.applthermaleng.2016.06.144_b0025) 2014; 86
Koelsch (10.1016/j.applthermaleng.2016.06.144_b0060) 2015; 78
Boretti (10.1016/j.applthermaleng.2016.06.144_b0120) 2012; 36
Fang (10.1016/j.applthermaleng.2016.06.144_b0035) 2012; 46
Schuster (10.1016/j.applthermaleng.2016.06.144_b0135) 2010; 35
Dolz (10.1016/j.applthermaleng.2016.06.144_b0015) 2012; 36
Tian (10.1016/j.applthermaleng.2016.06.144_b0050) 2012; 47
Bombarda (10.1016/j.applthermaleng.2016.06.144_b0070) 2010; 30
Sprouse (10.1016/j.applthermaleng.2016.06.144_b0080) 2013; 51
Fraas (10.1016/j.applthermaleng.2016.06.144_b0110) 1989
Heberle (10.1016/j.applthermaleng.2016.06.144_b0140) 2010; 30
References_xml – volume: 42
  start-page: 1491
  year: 2010
  end-page: 1498
  ident: b0040
  article-title: Analysis and optimization of the use of CHP–ORC systems for small commercial buildings
  publication-title: Energy Build.
– volume: 31
  start-page: 2829
  year: 2011
  end-page: 2840
  ident: b0090
  article-title: Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC
  publication-title: Appl. Therm. Eng.
– volume: 74
  start-page: 428
  year: 2014
  end-page: 438
  ident: b0065
  article-title: Study of mixtures based on hydrocarbons used in Organic Rankine Cycle (ORC) for engine waste heat recovery
  publication-title: Energy
– volume: 119
  start-page: 204
  year: 2014
  end-page: 217
  ident: b0130
  article-title: Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle
  publication-title: Appl. Energy
– volume: 47
  start-page: 125
  year: 2012
  end-page: 136
  ident: b0050
  article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE)
  publication-title: Energy
– volume: 7
  start-page: 2123
  year: 2014
  end-page: 2145
  ident: b0055
  article-title: Effects of degree of superheat on the running performance of an organic Rankine cycle (ORC) waste heat recovery system for diesel engines under various operating conditions
  publication-title: Energies
– volume: 42
  start-page: 503
  year: 2012
  end-page: 509
  ident: b0115
  article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle
  publication-title: Energy
– volume: 36
  start-page: 6821
  year: 2011
  end-page: 6829
  ident: b0095
  article-title: A combined thermodynamic cycle used for waste heat recovery of internal combustion engine
  publication-title: Energy
– volume: 16
  start-page: 5649
  year: 2012
  end-page: 5659
  ident: b0045
  article-title: Technologies to recover exhaust heat from internal combustion engines
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  start-page: 977
  year: 2005
  end-page: 987
  ident: b0005
  article-title: Experimental investigation of a micro combined cooling, heating, and power system driven by a gas engine
  publication-title: Int. J. Refrig.
– volume: 86
  start-page: 992
  year: 2014
  end-page: 1000
  ident: b0025
  article-title: Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator
  publication-title: Energy Convers. Manage.
– volume: 30
  start-page: 1326
  year: 2010
  end-page: 1332
  ident: b0140
  article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation
  publication-title: Appl. Therm. Eng.
– start-page: 189
  year: 2014
  end-page: 192
  ident: b0155
  article-title: Heat Exchange Theory
– volume: 61
  start-page: 364
  year: 2013
  end-page: 371
  ident: b0010
  article-title: Bottoming organic Rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery
  publication-title: Appl. Therm. Eng.
– reference: Technical data from Caterpillar gas generator set, 2012.
– volume: 36
  start-page: 73
  year: 2012
  end-page: 77
  ident: b0120
  article-title: Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine
  publication-title: Appl. Therm. Eng.
– volume: 35
  start-page: 1033
  year: 2010
  end-page: 1039
  ident: b0135
  article-title: Efficiency optimization potential in supercritical Organic Rankine Cycles
  publication-title: Energy
– volume: 132
  start-page: 325
  year: 2014
  end-page: 338
  ident: b0125
  article-title: A multi-approach evaluation system (MA-ES) of organic rankine cycles (ORC) used in waste heat utilization
  publication-title: Appl. Energy
– volume: 88
  start-page: 659
  year: 2011
  end-page: 671
  ident: b0020
  article-title: Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator
  publication-title: Appl. Energy
– volume: 16
  start-page: 2433
  year: 2014
  end-page: 2453
  ident: b0030
  article-title: Optimization of biomass-fuelled combined cooling, heating and power (CCHP) systems integrated with subcritical or transcritical organic rankine cycles (ORCs)
  publication-title: Entropy
– volume: 78
  start-page: 437
  year: 2015
  end-page: 448
  ident: b0060
  article-title: Utilisation of diesel engine waste heat by Organic Rankine Cycle
  publication-title: Appl. Therm. Eng.
– volume: 80
  start-page: 243
  year: 2014
  end-page: 255
  ident: b0100
  article-title: Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions
  publication-title: Energy Convers. Manage.
– volume: 113
  start-page: 1188
  year: 2014
  end-page: 1198
  ident: b0105
  article-title: Parametric and working fluid analysis of a dual-loop organic Rankine cycle [DORC] used in engine waste heat recovery
  publication-title: Appl. Energy
– volume: 72
  start-page: 739
  year: 2014
  end-page: 751
  ident: b0145
  article-title: Analysis of the integrated characteristics of the CPS (combined power system) of a bottoming organic Rankine cycle and a diesel engine
  publication-title: Energy
– volume: 51
  start-page: 711
  year: 2013
  end-page: 722
  ident: b0080
  article-title: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery
  publication-title: Appl. Therm. Eng.
– start-page: 365
  year: 2002
  end-page: 370
  ident: b0150
  article-title: Heat Exchanger Design Manual
– volume: 88
  start-page: 999
  year: 2014
  end-page: 1010
  ident: b0085
  article-title: Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system
  publication-title: Energy Convers. Manage.
– year: 1989
  ident: b0110
  article-title: Heat Exchanger Design
– volume: 46
  start-page: 211
  year: 2012
  end-page: 220
  ident: b0035
  article-title: Complementary configuration and operation of a CCHP-ORC system
  publication-title: Energy
– volume: 30
  start-page: 212
  year: 2010
  end-page: 219
  ident: b0070
  article-title: Heat recovery from diesel engines: a thermodynamic comparison between kalina and ORC cycles
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 269
  year: 2012
  end-page: 278
  ident: b0015
  article-title: HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: study and analysis of the waste heat energy
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 269
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.144_b0015
  article-title: HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: study and analysis of the waste heat energy
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.025
– volume: 42
  start-page: 503
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.144_b0115
  article-title: Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.018
– volume: 46
  start-page: 211
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.144_b0035
  article-title: Complementary configuration and operation of a CCHP-ORC system
  publication-title: Energy
  doi: 10.1016/j.energy.2012.08.030
– volume: 30
  start-page: 212
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.06.144_b0070
  article-title: Heat recovery from diesel engines: a thermodynamic comparison between kalina and ORC cycles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.08.006
– ident: 10.1016/j.applthermaleng.2016.06.144_b0075
– volume: 42
  start-page: 1491
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.06.144_b0040
  article-title: Analysis and optimization of the use of CHP–ORC systems for small commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.019
– volume: 86
  start-page: 992
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0025
  article-title: Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.06.036
– volume: 132
  start-page: 325
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0125
  article-title: A multi-approach evaluation system (MA-ES) of organic rankine cycles (ORC) used in waste heat utilization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.007
– volume: 72
  start-page: 739
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0145
  article-title: Analysis of the integrated characteristics of the CPS (combined power system) of a bottoming organic Rankine cycle and a diesel engine
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.103
– volume: 61
  start-page: 364
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.144_b0010
  article-title: Bottoming organic Rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.08.016
– volume: 36
  start-page: 6821
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.06.144_b0095
  article-title: A combined thermodynamic cycle used for waste heat recovery of internal combustion engine
  publication-title: Energy
  doi: 10.1016/j.energy.2011.10.014
– volume: 80
  start-page: 243
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0100
  article-title: Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.01.036
– volume: 113
  start-page: 1188
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0105
  article-title: Parametric and working fluid analysis of a dual-loop organic Rankine cycle [DORC] used in engine waste heat recovery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.027
– start-page: 189
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0155
– volume: 16
  start-page: 5649
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.144_b0045
  article-title: Technologies to recover exhaust heat from internal combustion engines
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.05.018
– volume: 88
  start-page: 659
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.06.144_b0020
  article-title: Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.08.016
– volume: 51
  start-page: 711
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.06.144_b0080
  article-title: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.10.017
– volume: 31
  start-page: 2829
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.06.144_b0090
  article-title: Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.05.008
– volume: 119
  start-page: 204
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0130
  article-title: Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.12.056
– volume: 7
  start-page: 2123
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0055
  article-title: Effects of degree of superheat on the running performance of an organic Rankine cycle (ORC) waste heat recovery system for diesel engines under various operating conditions
  publication-title: Energies
  doi: 10.3390/en7042123
– volume: 74
  start-page: 428
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0065
  article-title: Study of mixtures based on hydrocarbons used in Organic Rankine Cycle (ORC) for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.007
– year: 1989
  ident: 10.1016/j.applthermaleng.2016.06.144_b0110
– volume: 78
  start-page: 437
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.06.144_b0060
  article-title: Utilisation of diesel engine waste heat by Organic Rankine Cycle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.004
– volume: 88
  start-page: 999
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0085
  article-title: Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.09.044
– volume: 28
  start-page: 977
  year: 2005
  ident: 10.1016/j.applthermaleng.2016.06.144_b0005
  article-title: Experimental investigation of a micro combined cooling, heating, and power system driven by a gas engine
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2005.04.006
– volume: 30
  start-page: 1326
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.06.144_b0140
  article-title: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.02.012
– start-page: 365
  year: 2002
  ident: 10.1016/j.applthermaleng.2016.06.144_b0150
– volume: 16
  start-page: 2433
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.06.144_b0030
  article-title: Optimization of biomass-fuelled combined cooling, heating and power (CCHP) systems integrated with subcritical or transcritical organic rankine cycles (ORCs)
  publication-title: Entropy
  doi: 10.3390/e16052433
– volume: 36
  start-page: 73
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.144_b0120
  article-title: Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.11.060
– volume: 35
  start-page: 1033
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.06.144_b0135
  article-title: Efficiency optimization potential in supercritical Organic Rankine Cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.019
– volume: 47
  start-page: 125
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.06.144_b0050
  article-title: Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE)
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.021
SSID ssj0012874
Score 2.3614423
Snippet •A single loop ORC is proposed to recover the waste heat of exhaust and jacket water.•Energy analysis are conducted for establish the mathematical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 218
SubjectTerms Cascade utilization
Internal Combustion Engine
Organic Rankine Cycle
Waste heat recovery
Title Cascade utilization of exhaust gas and jacket water waste heat from an Internal Combustion Engine by a single loop Organic Rankine Cycle system
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.06.144
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7LCqIH8Ynrizl4rdtsk7aLB5GirIoe1AVvJWkTdantoivqxb_gX3amD13Bg-ClpSVNQ2Y68yWd-Yax3VBKExrJHYXOxxHWJTuoQ8cNLNdBwFPrUoLz-YU_GIrTG3nTYlGTC0NhlbXtr2x6aa3rO916Nrvj-_vuFfdkH90fR0RBIIFot4UISMv33r_CPDjxuZeLLtl3qPUs2_2O8aKfxISzHhSVLaFAL5_YPHGR8bubmnI9x4tsocaMcFgNa4m1TL7M5qeYBFfYR6SeKNIdUI-yOrUSCgvm9Y6IfeBWPYHKUxgp_Gon8III8xGPKGIgawyUZYINoN4gzADthKZCX9hN9SLQb6CAdhYyA1lRjKFK40zgUlH5BQPRG44OKmroVTY8PrqOBk5da8FJvIBPKHHKJiizVFjOtat5kvqeb4w0bk-nfSESg2gMzarXs2UgjU5MT4Z4dkMVKuutsXZe5GadgZ-a1EcUoblWwgqrtE18rngQulQRJ-yw_WZq46QmIqd6GFncRJyN4p-CiUkwsevjOkV0mPx6elwRcvzxuYNGivEPBYvRd_yph41_97DJ5uiKtqR7cou1J4_PZhsxzUTvlEq7w2YOT84GF58J0Pvn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVgOiFXszIFr1LiJnVQcEKpAZeuBReIW2YnNotBWUAR8Bb_MTOOySByQuCRSEi_yODPP9swbgJ1USptaKQJNxieIXch60KRBmDhhkkQULuQA57OOal_Fx9fyegxao1gYdqv0ur_S6UNt7Z_U_WjW-3d39QsRySaZP0GIgkGCGocJZqeSNZjYPzppdz4PE5jSfbjuks2AC0zCzpebF58TM9R60Jy5hH29FBN60jrjd0v1zfoczsGsh424X_VsHsZsdwFmvpEJLsJ7Sz-xszvSVCp9dCX2HNrXW-b2wRv9hLpb4L2mH3eALwQyH-lKUkZWyMiBJvQB-j3CEklVGM71RdVUDaF5Q428uVBaLHu9PlaRnDmea87AYLH1Rr3Dih16Ca4ODy5b7cCnWwjyKBEDjp1yOYmtiJ0QJjQiL1SkrJU2bJiiGce5JUBGmjVquKEvjcltQ6Z0D1OdahctQ63b69oVQFXYQhGQMMLo2MVOG5croUWShpwUJ12F3dHQZrnnIueUGGU2cjq7z34KJmPBZKGipUq8CvKzdL_i5Phjub2RFLMfcywj8_GnGtb-XcM2TLUvz06z06POyTpM8xveoW7IDagNHp_tJkGcgdnyU_gDmYX-mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascade+utilization+of+exhaust+gas+and+jacket+water+waste+heat+from+an+Internal+Combustion+Engine+by+a+single+loop+Organic+Rankine+Cycle+system&rft.jtitle=Applied+thermal+engineering&rft.au=Ma%2C+Jiacheng&rft.au=Liu%2C+Liuchen&rft.au=Zhu%2C+Tong&rft.au=Zhang%2C+Tao&rft.date=2016-08-25&rft.issn=1359-4311&rft.volume=107&rft.spage=218&rft.epage=226&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.06.144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_06_144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon