A Visual Comparison of Silent Error Propagation

High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. Howe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 30; no. 7; pp. 3268 - 3282
Main Authors Li, Zhimin, Menon, Harshitha, Mohror, Kathryn, Liu, Shusen, Guo, Luanzheng, Bremer, Peer-Timo, Pascucci, Valerio
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will experience a random bit-flip error that corrupts a program's output also increases, which is often recognized as silent data corruption. Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application's error propagation to study a program's resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or amplified by program execution.
AbstractList High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will experience a random bit-flip error that corrupts a program's output also increases, which is often recognized as silent data corruption. Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application's error propagation to study a program's resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or amplified by program execution.
High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will experience a random bit-flip error that corrupts a program's output also increases, which is often recognized as silent data corruption. Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application's error propagation to study a program's resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or amplified by program execution.High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will experience a random bit-flip error that corrupts a program's output also increases, which is often recognized as silent data corruption. Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption is complex and difficult to interpret. To accommodate this challenge, we propose an interactive visualization system that helps HPC researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application's error propagation to study a program's resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or amplified by program execution.
High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of computational units and software stack) continue to grow as new systems are expected to process increasingly more data and reduce computing time. However, with more processing elements, the probability that these systems will experience a random bit-flip error that corrupts a program's output also increases, which is often recognized as silent data corruption. Analyzing the resiliency of HPC applications in extreme-scale computing to silent data corruption is crucial but difficult. An HPC application often contains a large number of computation units that need to be tested, and error propagation caused by error corruption is complex and difficult to interpret. Here, to accommodate this challenge, we propose an interactive visualization system that helps HPC researchers understand the resiliency of HPC applications and compare their error propagation. Our system models an application's error propagation to study a program's resiliency by constructing and visualizing its fault tolerance boundary. Coordinating with multiple interactive designs, our system enables domain experts to efficiently explore the complicated spatial and temporal correlation between error propagations. At the end, the system integrated a nonmonotonic error propagation analysis with an adjustable graph propagation visualization to help domain experts examine the details of error propagation and answer such questions as why an error is mitigated or amplified by program execution.
Author Li, Zhimin
Liu, Shusen
Pascucci, Valerio
Menon, Harshitha
Mohror, Kathryn
Guo, Luanzheng
Bremer, Peer-Timo
Author_xml – sequence: 1
  givenname: Zhimin
  orcidid: 0000-0003-4324-741X
  surname: Li
  fullname: Li, Zhimin
  email: zhimin@sci.utah.edu
  organization: Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
– sequence: 2
  givenname: Harshitha
  surname: Menon
  fullname: Menon, Harshitha
  email: gopalakrishn1@llnl.gov
  organization: Lawrence Livermore National Laboratory, Livermore, CA, USA
– sequence: 3
  givenname: Kathryn
  surname: Mohror
  fullname: Mohror, Kathryn
  email: mohror1@llnl.gov
  organization: Lawrence Livermore National Laboratory, Livermore, CA, USA
– sequence: 4
  givenname: Shusen
  orcidid: 0000-0002-6455-8391
  surname: Liu
  fullname: Liu, Shusen
  email: liu42@llnl.gov
  organization: Lawrence Livermore National Laboratory, Livermore, CA, USA
– sequence: 5
  givenname: Luanzheng
  orcidid: 0000-0001-8266-0923
  surname: Guo
  fullname: Guo, Luanzheng
  email: lenny.guo@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA, USA
– sequence: 6
  givenname: Peer-Timo
  orcidid: 0000-0003-4107-3831
  surname: Bremer
  fullname: Bremer, Peer-Timo
  email: bremer5@llnl.gov
  organization: Lawrence Livermore National Laboratory, Livermore, CA, USA
– sequence: 7
  givenname: Valerio
  orcidid: 0000-0002-8877-2042
  surname: Pascucci
  fullname: Pascucci, Valerio
  email: pascucci@sci.utah.edu
  organization: Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015425$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2478910$$D View this record in Osti.gov
BookMark eNpd0U1v1DAQBmALFdEP-AEICUVw4ZLt2BPb62O1Ki1SJZAovVqOMwFXWXuxk0P_PV7ttgdOnsMzo_G85-wkpkiMveew4hzM5f3D5mYlQIgVCgSF6hU746bjLUhQJ7UGrVuhhDpl56U8AvCuW5s37BQ1cNkJecYur5qHUBY3NZu03bkcSopNGpufYaI4N9c5p9z8yGnnfrs5pPiWvR7dVOjd8b1gv75e329u27vvN982V3etR83nFp1SZEbT9x5p1Mr0aqw7gRzUWg5aA2BnJKLTHfUghr7nigYnOyTvSWu8YJ8Oc1OZgy0-zOT_-BQj-dmKTq8Nh4q-HNAup78LldluQ_E0TS5SWooV2iiuOJem0s__0ce05Fi_YBE0Ioh6kao-HtXSb2mwuxy2Lj_Z53tVwA_A51RKpvGFcLD7TOw-E7vPxB4zqT0fDj2BiF68MQa1XOM_e-mDpg
CODEN ITVGEA
Cites_doi 10.1145/3437801.3441589
10.1109/SC.2018.00011
10.1109/DSN.2014.2
10.1145/3313831.3376381
10.1109/HPCA.2005.37
10.1109/IPDPS.2019.00096
10.1111/cgf.12935
10.1109/TVCG.2020.2994954
10.1109/DSN.2018.00016
10.1145/3014586
10.1177/1094342014522573
10.1109/TC.1984.1676475
10.1145/3009837.3009846
10.1109/TVCG.2018.2865077
10.1145/3078597.3078617
10.1109/MSPEC.2016.7420396
10.14778/2733004.2733066
10.1007/978-3-319-75178-8_44
10.1201/b17767-16
10.1109/TVCG.2018.2865026
10.1145/1735970.1736063
10.1145/2749246.2749253
10.1145/2189750.2150990
10.1145/2802658.2802665
10.1109/MICRO.2016.7783745
10.1145/2339530.2339576
10.1109/INFVIS.1999.801851
10.1145/2678373.2665685
10.1109/DATE.2009.5090716
10.1109/iolts59296.2023.10224872
10.1109/TVCG.2017.2744878
10.1109/VISUAL.2019.8933618
10.14778/2732951.2732953
10.1109/CCGrid.2015.17
10.1109/ISCA.2014.6853212
10.1109/CCECE.2013.6567840
10.14778/2735479.2735485
10.1109/T-ED.1979.19370
10.1109/DSN.2019.00033
10.1098/rsta.2015.0202
10.1111/cgf.12872
10.1145/3200691.3178502
10.1109/SC41405.2020.00092
10.1145/3318464.3389722
10.1186/1471-2105-13-275
10.1109/INFVIS.2004.1
10.1109/CLUSTER.2017.13
10.1057/palgrave.ivs.9500116
10.1198/106186008x318440
10.1016/j.jpdc.2021.02.015
10.1109/DSN48987.2021.00018
10.1177/1094342021990433
10.1109/TVCG.2014.2346458
10.1109/IPDPS.2016.11
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
DOI 10.1109/TVCG.2022.3230636
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0506
EndPage 3282
ExternalDocumentID 2478910
37015425
10_1109_TVCG_2022_3230636
9993758
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Lawrence Livermore National Laboratory
  funderid: 10.13039/100006227
– fundername: U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research
  grantid: DE- SC0014098
– fundername: U.S. Department of Energy
  grantid: DE-AC52-07NA27344 (LLNL-JRNL-843184)
  funderid: 10.13039/100000015
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
RIC
ID FETCH-LOGICAL-c371t-3a66e9f9bbc3ef769b6f50605d685d7700349533a74eb02dbb16eda543ecce773
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Mon Dec 23 02:37:57 EST 2024
Fri Jul 11 09:07:49 EDT 2025
Mon Jun 30 03:52:45 EDT 2025
Mon Jul 21 06:08:52 EDT 2025
Tue Jul 01 02:12:17 EDT 2025
Wed Aug 27 02:06:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-3a66e9f9bbc3ef769b6f50605d685d7700349533a74eb02dbb16eda543ecce773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
LLNL-JRNL-843184
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
AC52-07NA27344; SC0014098
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-4107-3831
0000-0001-8266-0923
0000-0003-4324-741X
0000-0002-6455-8391
0000-0002-8877-2042
0000000182660923
0000000264558391
000000034324741X
0000000288772042
0000000341073831
OpenAccessLink https://www.osti.gov/servlets/purl/2478910
PMID 37015425
PQID 3073302015
PQPubID 75741
PageCount 15
ParticipantIDs crossref_primary_10_1109_TVCG_2022_3230636
proquest_journals_3073302015
pubmed_primary_37015425
osti_scitechconnect_2478910
proquest_miscellaneous_2796161159
ieee_primary_9993758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Guo (ref26)
ref17
ref16
ref19
ref18
ref51
ref50
Watson (ref33) 2008
ref46
ref45
ref47
ref42
ref41
ref44
ref43
Isaacs (ref29)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
McInnes (ref49) 2018
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
Laguna (ref54)
ref28
ref27
Van der Maaten (ref48) 2008; 9
ref60
References_xml – ident: ref11
  doi: 10.1145/3437801.3441589
– ident: ref53
  doi: 10.1109/SC.2018.00011
– ident: ref50
  doi: 10.1109/DSN.2014.2
– ident: ref34
  doi: 10.1145/3313831.3376381
– ident: ref4
  doi: 10.1109/HPCA.2005.37
– ident: ref55
  doi: 10.1109/IPDPS.2019.00096
– ident: ref57
  doi: 10.1111/cgf.12935
– ident: ref16
  doi: 10.1109/TVCG.2020.2994954
– ident: ref22
  doi: 10.1109/DSN.2018.00016
– ident: ref10
  doi: 10.1145/3014586
– ident: ref1
  doi: 10.1177/1094342014522573
– ident: ref24
  doi: 10.1109/TC.1984.1676475
– start-page: 91
  volume-title: Proc. Symp. Parallel Graph. Visualization
  ident: ref26
  article-title: La VALSE: Scalable log visualization for fault characterization in supercomputers
– ident: ref60
  doi: 10.1145/3009837.3009846
– ident: ref40
  doi: 10.1109/TVCG.2018.2865077
– ident: ref51
  doi: 10.1145/3078597.3078617
– start-page: 141
  volume-title: Proc. Eurograph. Conf. Visualization
  ident: ref29
  article-title: State of the art of performance visualization
– ident: ref2
  doi: 10.1109/MSPEC.2016.7420396
– year: 2018
  ident: ref49
  article-title: Umap: Uniform manifold approximation and projection for dimension reduction
– ident: ref41
  doi: 10.14778/2733004.2733066
– ident: ref18
  doi: 10.1007/978-3-319-75178-8_44
– ident: ref47
  doi: 10.1201/b17767-16
– ident: ref28
  doi: 10.1109/TVCG.2018.2865026
– year: 2008
  ident: ref33
  article-title: Visualizing very large layered graphs with quilts
– ident: ref9
  doi: 10.1145/1735970.1736063
– ident: ref15
  doi: 10.1145/2749246.2749253
– ident: ref8
  doi: 10.1145/2189750.2150990
– ident: ref13
  doi: 10.1145/2802658.2802665
– ident: ref6
  doi: 10.1109/MICRO.2016.7783745
– ident: ref37
  doi: 10.1145/2339530.2339576
– ident: ref38
  doi: 10.1109/INFVIS.1999.801851
– ident: ref12
  doi: 10.1145/2678373.2665685
– ident: ref20
  doi: 10.1109/DATE.2009.5090716
– ident: ref5
  doi: 10.1109/iolts59296.2023.10224872
– ident: ref27
  doi: 10.1109/TVCG.2017.2744878
– ident: ref39
  doi: 10.1109/VISUAL.2019.8933618
– ident: ref44
  doi: 10.14778/2732951.2732953
– ident: ref25
  doi: 10.1109/CCGrid.2015.17
– ident: ref21
  doi: 10.1109/ISCA.2014.6853212
– ident: ref42
  doi: 10.1109/CCECE.2013.6567840
– ident: ref43
  doi: 10.14778/2735479.2735485
– ident: ref17
  doi: 10.1109/T-ED.1979.19370
– start-page: 227
  volume-title: Proc. IEEE/ACM Int. Symp. Code Gener. Optim.
  ident: ref54
  article-title: IPAS: Intelligent protection against silent output corruption in scientific applications
– ident: ref7
  doi: 10.1109/DSN.2019.00033
– ident: ref45
  doi: 10.1098/rsta.2015.0202
– ident: ref35
  doi: 10.1111/cgf.12872
– ident: ref52
  doi: 10.1145/3200691.3178502
– ident: ref23
  doi: 10.1109/SC41405.2020.00092
– ident: ref36
  doi: 10.1145/3318464.3389722
– ident: ref32
  doi: 10.1186/1471-2105-13-275
– ident: ref30
  doi: 10.1109/INFVIS.2004.1
– ident: ref14
  doi: 10.1109/CLUSTER.2017.13
– ident: ref31
  doi: 10.1057/palgrave.ivs.9500116
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref48
  article-title: Visualizing data using T-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref46
  doi: 10.1198/106186008x318440
– ident: ref19
  doi: 10.1016/j.jpdc.2021.02.015
– ident: ref56
  doi: 10.1109/DSN48987.2021.00018
– ident: ref3
  doi: 10.1177/1094342021990433
– ident: ref58
  doi: 10.1109/TVCG.2014.2346458
– ident: ref59
  doi: 10.1109/IPDPS.2016.11
SSID ssj0014489
Score 2.4222944
Snippet High-performance computing (HPC) systems play a critical role in facilitating scientific discoveries. Their scale and complexity (e.g., the number of...
SourceID osti
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3268
SubjectTerms Complexity
computer science
Computing time
Data visualization
Error analysis
error propagation
Fault tolerance
Fault tolerance boundary
Fault tolerant systems
graph visualization
High performance computing
information visualization
Interactive systems
Propagation
Reliability analysis
Resilience
silent data corruption
Subject specialists
Task analysis
Time series analysis
Visualization
Title A Visual Comparison of Silent Error Propagation
URI https://ieeexplore.ieee.org/document/9993758
https://www.ncbi.nlm.nih.gov/pubmed/37015425
https://www.proquest.com/docview/3073302015
https://www.proquest.com/docview/2796161159
https://www.osti.gov/servlets/purl/2478910
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-UwEB7UJ_dhve5uvVHBJ7HntM2teZSDFwRlYVV8C22SLrJwKj3ti7_embaniKzgUwsNJJ0vyXyTmcwAnCRJqYVyDJmbchF3GR00JWUkteTO8TwWgu4O397J6wd-8ySeVuBsvAvjve-Cz_yEXjtfvqtsS0dlU03KVGSrsIqGW39Xa_QYoJmh-_hCFaXI0gcPZhLr6f3j7AotwTSdMCLcjMoWMUXkgQpkv1NHXX0VfFS4uj5nnJ3mudyA2-WY-4CTf5O2KSb29UM6x6_-1CZ8HyhoeN7PmS1Y8fNt-PYuMeEOTM_Dx-dFi61mY53CsCrDP8-kpMKLuq7q8HeNBvffDtldeLi8uJ9dR0NphcgylTQRy6X0utRFYZkvldSFLCnVoHAyE06pLm0NMsFccV_EqSuKRHqXC84Qcq8U-wFr82ruf0HIrdPWWdw4fcy5Z0jZUeWlPOO5T_K0DOB0KWHz0mfQMJ3lEWtDyBhCxgzIBLBDEhobDsIJYJ8wMcgKKLWtpRgg25iUqwzpTgAHS6jMsAIXhvYuhlw4EQEcj59x7ZBDJJ_7ql2YVGmJjBcZXQA_e4jHnpcTZO__I9qHdRw37wN3D2CtqVt_iPSkKY66efkGc9Db5g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvMojtECQ4IKU3cTP-MChWlq29CEktlVvbhI7UoW0QdlECH4Lf4X_xkySjSoEx0qcEilWEns-e77xjGcAXidJaaR2HJmbdpFwKW00JWWkjBLOiSyWks4OH5-o-an4eC7PN-DneBbGe98Fn_kJ3Xa-fFcVLW2VTQ0pU5kOIZSH_vs3NNBW7w7eozTfMLa_t5jNo6GGQFRwnTQRz5TypjR5XnBfamVyVVJOPelUKp3WXX4WpDyZFj6PmcvzRHmXScGxb15rju-9ATeRZ0jWnw4bfRRo2Jg-olFHDO2CwWeaxGa6OJt9QNuTsQknis-pUBLXRFeoJPcVBdhVdMFLhfP53xy303X79-DXepT6EJcvk7bJJ8WPPxJI_q_DeB_uDiQ73O1nxQPY8MuHcOdK6sUtmO6GZ5erFlvNxkqMYVWGny9JDYd7dV3V4ae6wvW2w-4jOL2WP34Mm8tq6Z9CKApnClegavCxEJ6jUYJKnYlUZD7JWBnA27VE7dc-R4jtbKvYWEKCJSTYAQkBbJFExoaDMALYJgxY5D2UvLegKKeisUzoFAldADtraNhhjVlZWp05sv1EBvBqfIyrA7l8sqWv2pVl2ijk9MhZA3jSQ2r88hqQz_7-Ry_h1nxxfGSPDk4Ot-E29kH0Yco7sNnUrX-OZKzJX3RzIoSL60bPbzZiOdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Visual+Comparison+of+Silent+Error+Propagation&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Li%2C+Zhimin&rft.au=Menon%2C+Harshitha&rft.au=Mohror%2C+Kathryn&rft.au=Liu%2C+Shusen&rft.date=2024-07-01&rft.eissn=1941-0506&rft.volume=30&rft.issue=7&rft.spage=3268&rft_id=info:doi/10.1109%2FTVCG.2022.3230636&rft_id=info%3Apmid%2F37015425&rft.externalDocID=37015425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon