Detection of Microdefects in Fabric with Multifarious Patterns and Colors Using Deep Convolutional Neural Network
Automatic detection of fabric defects is important in textile quality control, particularly in detecting fabrics with multifarious patterns and colors. This study proposes a fabric defect detection system for fabrics with complex patterns and colors. The proposed system comprises five convolutional...
Saved in:
Published in | Advances in polymer technology Vol. 2024; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hindawi
12.02.2024
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic detection of fabric defects is important in textile quality control, particularly in detecting fabrics with multifarious patterns and colors. This study proposes a fabric defect detection system for fabrics with complex patterns and colors. The proposed system comprises five convolutional layers designed to extract features from the original images effectively. In addition, three fully connected layers are designed to classify the fabric defects into four categories. Using this system, the detection accuracy is improved, and the depth of the model is shortened simultaneously. Optimal detection rates for testing dirty marks, clip marks, broken yams, and defect-free were 88.01%, 90.15%, 98.01%, and 97.73%, respectively. The experimental results show that the proposed method is effective, feasible, and has significant potential for fabric defect detection. |
---|---|
AbstractList | Automatic detection of fabric defects is important in textile quality control, particularly in detecting fabrics with multifarious patterns and colors. This study proposes a fabric defect detection system for fabrics with complex patterns and colors. The proposed system comprises five convolutional layers designed to extract features from the original images effectively. In addition, three fully connected layers are designed to classify the fabric defects into four categories. Using this system, the detection accuracy is improved, and the depth of the model is shortened simultaneously. Optimal detection rates for testing dirty marks, clip marks, broken yams, and defect-free were 88.01%, 90.15%, 98.01%, and 97.73%, respectively. The experimental results show that the proposed method is effective, feasible, and has significant potential for fabric defect detection. |
Audience | Academic |
Author | Ji, Yangfeng Xia, Rongfei Chen, Yifei |
Author_xml | – sequence: 1 givenname: Rongfei orcidid: 0000-0002-2046-1811 surname: Xia fullname: Xia, Rongfei organization: Chengyi CollegeJimei University199 Jimei AvenueXiamen 361021Chinajmu.edu.cn – sequence: 2 givenname: Yifei surname: Chen fullname: Chen, Yifei organization: School of Marine EngineeringJimei University176 Shigu RoadXiamen 361021Chinajmu.edu.cn – sequence: 3 givenname: Yangfeng surname: Ji fullname: Ji, Yangfeng organization: Chengyi CollegeJimei University199 Jimei AvenueXiamen 361021Chinajmu.edu.cn |
BookMark | eNp9UctOHDEQtCIiZSG55QN8h2H9GD_miJYQkJYkh3Ae9fixmAw2sb2s-Pt4WcQx6kNJparqVtcxOoopOoS-UnJOqRBLRli_FAOTUugPaEHJoDvG2XCEFkRx0kmphk_ouJQHQijtJV-gv5euOlNDijh5fBtMTtb5xhQcIr6CKQeDd6He49vtXIOHHNK24F9Qq8uxYIgWr9KccsF3JcQNvnTuqTHxOc3bfSzM-Ifb5leou5T_fEYfPczFfXnDE3R39e336rpb__x-s7pYd4YrWjuujODeKduDsXSwfAIlmKKGWaIHa5kG6WgvNDFyGrTjoAjlg7cwMScI8BN0c8i1CR7GpxweIb-MCcL4SqS8GSHXYGY3Sm0EtRaol6RX1E9KU91r4llbR5xsWeeHrA00eYg-1QymjXWPwbQSfGj8hdI9Eb0QohnODob2z1Ky8-8HUDLuuxr3XY1vXTX56UF-H6KFXfi_-h8EHpYC |
Cites_doi | 10.1186/s40064-016-2452-6 10.1016/j.ins.2018.01.051 10.1117/1.OE.56.9.093104 10.1155/2015/258619 10.1016/j.neucom.2017.06.023 10.1016/j.neuroimage.2017.07.018 10.1016/j.measurement.2022.111665 10.1111/cote.12394 10.1109/WACV.2016.7477593 10.1109/CVPR.2015.7298594 10.1016/j.eswa.2022.116827 10.1155/2021/5592614 10.1016/j.compeleceng.2023.108706 10.1007/978-3-7908-2604-3_16 10.1177/00405175211060081 10.1038/nature14539 10.1162/neco_a_00990 10.5958/1945-919X.2018.00018.X 10.1177/1558925020903026 10.1109/TITS.2017.2732029 10.5604/12303666.1152514 10.1145/3065386 10.1016/S0031-3203(03)00005-0 10.1016/j.eswa.2021.114838 10.17485/ijst/2012/v5i8.12 10.1016/j.aej.2021.08.017 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Rongfei Xia et al. COPYRIGHT 2024 John Wiley & Sons, Inc. |
Copyright_xml | – notice: Copyright © 2024 Rongfei Xia et al. – notice: COPYRIGHT 2024 John Wiley & Sons, Inc. |
DBID | RHU RHW RHX AAYXX CITATION DOA |
DOI | 10.1155/2024/5926658 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1098-2329 |
Editor | Ahmad, Nasir M. |
Editor_xml | – sequence: 1 givenname: Nasir M. surname: Ahmad fullname: Ahmad, Nasir M. |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_68c51dda1f60471fb7818480f21c20e6 A784054555 10_1155_2024_5926658 |
GrantInformation_xml | – fundername: Jimei University grantid: CK21018 – fundername: Young and Middle-Aged Teacher Education Research Program of Fujian Province grantid: JAT201037 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8UM 930 A03 AAESR AAEVG AAJEY AAONW AAZKR ABCQN ABIJN ABJCF ABPVW ACGFO ACGFS ACIWK ACXME ADBBV ADEOM ADIZJ AEGXH AEIMD AENEX AEUQT AFBPY AFKRA AFZJQ AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F D1I DCZOG DPXWK DR1 DR2 EBS F00 F01 F04 G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HCIFZ HZ~ IAO IX1 J0M JPC KB. KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 MK4 MRFUL MRSTM MSFUL MSSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D PDBOC PIMPY Q.N Q11 QB0 QRW R.K RHU RHW RHX RWB RWI RX1 SUPJJ TUS UB1 V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WYISQ XG1 XV2 ~IA ~WT 24P AAYXX ACCMX ADMLS CITATION ITC AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c371t-37c53fe7d4acd19d3ba75271c2d089dd28a6e14580c6b98e3a70139fdab2e50a3 |
IEDL.DBID | DOA |
ISSN | 0730-6679 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Tue Jun 10 21:05:08 EDT 2025 Tue Jul 01 04:01:40 EDT 2025 Sun Jun 02 18:52:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-37c53fe7d4acd19d3ba75271c2d089dd28a6e14580c6b98e3a70139fdab2e50a3 |
ORCID | 0000-0002-2046-1811 |
OpenAccessLink | https://doaj.org/article/68c51dda1f60471fb7818480f21c20e6 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68c51dda1f60471fb7818480f21c20e6 gale_infotracacademiconefile_A784054555 crossref_primary_10_1155_2024_5926658 hindawi_primary_10_1155_2024_5926658 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-12 |
PublicationDateYYYYMMDD | 2024-02-12 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Advances in polymer technology |
PublicationYear | 2024 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 23 24 26 28 M. D. Zeiler (31) 2012 D. Kingma (33) 2014 J. Duchi (30) 2011; 12 10 11 12 13 14 15 16 17 18 19 L. Bottou (27) 1998 T. Tieleman (32) 2012 1 I. Sutskever (29) 2013; 28 2 3 4 5 6 7 8 9 S. Ioffe (25) 20 21 |
References_xml | – ident: 8 doi: 10.1186/s40064-016-2452-6 – ident: 14 doi: 10.1016/j.ins.2018.01.051 – ident: 18 doi: 10.1117/1.OE.56.9.093104 – ident: 23 doi: 10.1155/2015/258619 – ident: 24 doi: 10.1016/j.neucom.2017.06.023 – ident: 15 doi: 10.1016/j.neuroimage.2017.07.018 – ident: 20 doi: 10.1016/j.measurement.2022.111665 – ident: 3 doi: 10.1111/cote.12394 – ident: 17 doi: 10.1109/WACV.2016.7477593 – ident: 26 doi: 10.1109/CVPR.2015.7298594 – ident: 6 doi: 10.1016/j.eswa.2022.116827 – ident: 11 doi: 10.1155/2021/5592614 – year: 2014 ident: 33 article-title: Adam: a method for stochastic optimization – ident: 21 doi: 10.1016/j.compeleceng.2023.108706 – volume: 12 start-page: 2121 year: 2011 ident: 30 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: Journal of Machine Learning Research – ident: 28 doi: 10.1007/978-3-7908-2604-3_16 – ident: 19 doi: 10.1177/00405175211060081 – year: 2012 ident: 32 article-title: Lecture 6.5—RMSProp, COURSERA: neural networks for machine learning – ident: 10 doi: 10.1038/nature14539 – start-page: 9 volume-title: On-Line Learning in Neural Networks year: 1998 ident: 27 article-title: Online learning and stochastic approximations – start-page: 448 ident: 25 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – ident: 12 doi: 10.1162/neco_a_00990 – ident: 16 doi: 10.5958/1945-919X.2018.00018.X – ident: 1 doi: 10.1177/1558925020903026 – ident: 13 doi: 10.1109/TITS.2017.2732029 – ident: 9 doi: 10.5604/12303666.1152514 – ident: 22 doi: 10.1145/3065386 – year: 2012 ident: 31 article-title: ADADELTA: an adaptive learning rate method – ident: 5 doi: 10.1016/S0031-3203(03)00005-0 – volume: 28 start-page: 1139 issue: 3 year: 2013 ident: 29 article-title: On the importance of initialization and momentum in deep learning publication-title: Proceedings of Machine Learning Research – ident: 2 doi: 10.1016/j.eswa.2021.114838 – ident: 4 doi: 10.17485/ijst/2012/v5i8.12 – ident: 7 doi: 10.1016/j.aej.2021.08.017 |
SSID | ssj0011463 |
Score | 2.3219633 |
Snippet | Automatic detection of fabric defects is important in textile quality control, particularly in detecting fabrics with multifarious patterns and colors. This... |
SourceID | doaj gale crossref hindawi |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Detectors Neural networks Quality control |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4qCHoQn7i-yGHFU7Fp8-rR17IIKx4U9lbSZIJ76epu1b_vJNtdVgXxVFpSGmaS-eZrJl8I6YI2iJqSJ9YrmXDNWaIZqMRKBPe8Asji6Q2DB9l_5vdDMWxFkqa_l_AR7QI955eiQCQRepWs4gALpLw_XCwW4GSfqW3myISkKub17T_e_YY8UaB_EYbXXwIB_hwtQUtvm2y1OSG9mjlxh6xAvUs2l5QC98jbLTSxaKqmY08HoYrOQazEoKOa9kyF4YyGf6o07qj1yICR0tPHqJ5ZT6mpHb3BODeZ0lgkQG8BXvFJ_dEOPfx-0OmIl1gYvk-ee3dPN_2kPS0hsbliDUYKK3IPynFjHStcXhklMsVs5lJdOJdpI4FxoVMrq0JDblRI_7wzVQYiNfkBWavHNRwSynzBuSt8kZqwFTXDLMzbXEhdaZeBdR1yPrdk-ToTxSgjmRCiDBYvW4t3yHUw86JNkLKOD9C9ZTszSqmtYM4Z5mWKSOkrhTkE16nPsOspyA65CE4qw4RrJsaadt8AdjVIV5VXCjkq5oFCdEi39eOfvTr6X7NjshFuk3j4ywlZaybvcIoJSFOdxeH3Bceh0gc priority: 102 providerName: Hindawi Publishing |
Title | Detection of Microdefects in Fabric with Multifarious Patterns and Colors Using Deep Convolutional Neural Network |
URI | https://dx.doi.org/10.1155/2024/5926658 https://doaj.org/article/68c51dda1f60471fb7818480f21c20e6 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iCHoQn7i-yGHFU7Fp8-pxdV0WcUV8wN5KmkzQS9W16t93ku0ue9KLlxZCaYeZZL6ZdPINIV3QBlFT8sR6JROuOUs0A5VYieCeVwBZ7N4wupXDJ349FuOFVl-hJmxKDzxV3LnUVjDnDPMyRUfqK4UQw3XqM2azFCLZNmLeLJlq_x_g-s9nZe5ChAyfn4sCwSi0dl8AoMjTP_fGq88hD_5-WUCYwSbZaEND2puKtEWWoN4m6wuEgTvkvQ9NrJ2q6auno1BM5yAWZNCXmg5MhV6Nhq1VGg_WekyEMbOnd5FEs_6gpnb0Et3d5IPGWgHaB3jDkfqrnYH4_UDXEW-xPnyXPA2uHi-HSds0IbG5Yg06DCtyD8pxYx0rXF4ZJTKFynKpLpzLtJHAuNCplVWhITcqRIHemSoDkZp8jyzXrzXsE8p8wbkrfJGacCI1w2DM21xIXWmXgXUdcjrTZPk25cYoY04hRBk0XrYa75CLoOb5M4HROg6gncvWzuVfdu6Qs2CkMqy7ZmKsaY8PoKiBwarsKUxVMRwUokO6rR1_lergP6Q6JGvhnUnsEHNElpvJJxxjlNJUJ2Sl1x_dPJzEiYnX--H4B8zD5Mk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Microdefects+in+Fabric+with+Multifarious+Patterns+and+Colors+Using+Deep+Convolutional+Neural+Network&rft.jtitle=Advances+in+polymer+technology&rft.au=Xia%2C+Rongfei&rft.au=Chen%2C+Yifei&rft.au=Ji%2C+Yangfeng&rft.date=2024-02-12&rft.issn=0730-6679&rft.eissn=1098-2329&rft.volume=2024&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2024%2F5926658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2024_5926658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-6679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-6679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-6679&client=summon |