Object-based change detection from satellite imagery by segmentation optimization and multi-features fusion
This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation optimization and multi-features fusion. In the segmentation optimization, objects with optimized boundaries and proper sizes are generated by object...
Saved in:
Published in | International journal of remote sensing Vol. 38; no. 13; pp. 3886 - 3905 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
03.07.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0143-1161 1366-5901 1366-5901 |
DOI | 10.1080/01431161.2017.1308033 |
Cover
Loading…
Abstract | This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation optimization and multi-features fusion. In the segmentation optimization, objects with optimized boundaries and proper sizes are generated by object intersection and merging (OIM) processes, which ensures the accurate information extraction from image objects. Within multi-features fusion and change analysis, the Dempster and Shafer (D-S) evidence theory and the Expectation-Maximization (EM) algorithm are implemented, which effectively utilize multidimensional features besides avoiding the selection of an appropriate change threshold. The main advantages of our proposed method lie in the improvement of object boundary and the fuzzy fusion of multi-features information. The proposed approach is evaluated using two different high-resolution remote-sensing data sets, and the qualitative and quantitative analyses of the results demonstrate the effectiveness of the proposed approach. |
---|---|
AbstractList | This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation optimization and multi-features fusion. In the segmentation optimization, objects with optimized boundaries and proper sizes are generated by object intersection and merging (OIM) processes, which ensures the accurate information extraction from image objects. Within multi-features fusion and change analysis, the Dempster and Shafer (D-S) evidence theory and the Expectation-Maximization (EM) algorithm are implemented, which effectively utilize multidimensional features besides avoiding the selection of an appropriate change threshold. The main advantages of our proposed method lie in the improvement of object boundary and the fuzzy fusion of multi-features information. The proposed approach is evaluated using two different high-resolution remote-sensing data sets, and the qualitative and quantitative analyses of the results demonstrate the effectiveness of the proposed approach. |
Author | Zhang, Yongjun Peng, Daifeng |
Author_xml | – sequence: 1 givenname: Daifeng surname: Peng fullname: Peng, Daifeng organization: School of Remote Sensing and Information Engineering, Wuhan University – sequence: 2 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun email: zhangyj@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University |
BookMark | eNqFkU9v1DAQxS1UJLaFj4BkiQuXbMexHe-KC6jqP6lSL3C2HGe8eEnsxXaElk9fLymXHuA0mvHvjTzvnZOzEAMS8p7BmsEGLoEJzljH1i0wtWa8zjh_RVaMd10jt8DOyOrENCfoDTnPeQ8AnZJqRX489nu0pelNxoHa7ybskA5Y6szHQF2KE82m4Dj6gtRPZofpSPsjzbibMBTzB4uH4if_e2lMGOg0j8U3Dk2ZE2bq5lxf3pLXzowZ3z3XC_Lt5vrr1V3z8Hh7f_XlobFcsdJwpVS3FcJBb6W0bWtggA0DhHaQPXatEaiYVYPpBNsKbN2Gg-MbJ4Xk3Ap-QT4uew8p_pwxFz35bOsJJmCcs27r9Vx21aiKfniB7uOcQv2dZtu2AiCYqpRcKJtizgmdPqRqRTpqBvoUgf4bgT5FoJ8jqLpPL3TWL46VZPz4X_XnRe2Di2kyv2IaB13McYzJJROsz5r_e8UTWdChLw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3011751 crossref_primary_10_1007_s12524_019_00997_5 crossref_primary_10_1109_JSTARS_2021_3124491 crossref_primary_10_3390_rs16224223 crossref_primary_10_3390_rs11212484 crossref_primary_10_3390_rs11030359 crossref_primary_10_1109_MGRS_2019_2927260 crossref_primary_10_1109_JSTARS_2024_3522910 crossref_primary_10_1109_MGRS_2021_3063465 crossref_primary_10_3390_rs16081357 crossref_primary_10_1080_01431161_2021_1892860 crossref_primary_10_1080_01431161_2019_1711239 crossref_primary_10_1080_01431161_2023_2273245 crossref_primary_10_1109_TGRS_2020_3034373 crossref_primary_10_3390_app12168297 crossref_primary_10_1016_j_isprsjprs_2024_10_021 crossref_primary_10_1109_TGRS_2023_3332338 crossref_primary_10_1109_LGRS_2017_2763182 crossref_primary_10_1016_j_rse_2017_10_039 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_1016_j_isprsjprs_2021_03_005 crossref_primary_10_3390_su10093301 crossref_primary_10_1007_s11042_021_11779_y crossref_primary_10_3390_ijgi7060213 crossref_primary_10_1080_10106049_2021_2022013 crossref_primary_10_1080_10095020_2022_2128902 crossref_primary_10_3390_rs11020108 crossref_primary_10_1080_01431161_2021_2022241 |
Cites_doi | 10.1109/LGRS.2009.2025059 10.1080/01431161.2016.1148284 10.1016/j.jag.2006.10.002 10.1007/978-3-540-77058-9_10 10.3724/SP.J.1010.2010.00383 10.1109/TGRS.2006.888861 10.1016/j.isprsjprs.2011.02.006 10.1016/j.asoc.2013.09.010 10.1080/01431161.2014.951740 10.3390/rs70809682 10.1080/2150704X.2015.1054045 10.13485/j.cnki.11-2089.2014.0138 10.1016/j.isprsjprs.2013.02.017 10.1080/01431161.2013.805282 10.1016/j.jag.2005.06.005 10.1109/LGRS.2014.2386878 10.1023/A:1020114205638 10.1007/s11042-010-0471-9 10.1109/IGARSS.2013.6723627 10.1016/j.rse.2008.03.013 10.1007/3-540-63507-6_216 10.1016/j.jag.2011.10.013 10.1016/j.rse.2011.02.012 10.11834/jrs.20121168 10.1109/LGRS.2012.2194693 10.3390/s16081204 10.1080/0143116032000160462 10.1016/j.inffus.2004.06.004 10.1080/01431160801950162 10.1016/j.rse.2004.04.001 10.1117/12.2205593 10.1016/j.isprsjprs.2008.04.002 10.1080/01431161.2010.507263 10.1117/1.3518096 10.1016/j.rse.2007.07.023 10.1080/01431161.2011.616551 10.1007/3-540-45054-8_27 10.1016/j.rse.2010.02.018 10.1016/j.rse.2006.01.013 10.1117/1.JRS.6.063578 10.1109/TGRS.2003.817267 10.14358/PERS.70.5.627 10.1016/j.isprsjprs.2010.11.001 10.1109/LGRS.2012.2222340 10.1142/9789812777249_0001 10.1080/01431161.2016.1217442 10.1080/01431160410001720748 10.1016/j.sigpro.2015.09.020 10.1016/S0303-2434(03)00010-2 10.1109/36.843009 10.1016/j.isprsjprs.2016.07.003 10.1109/JSTARS.2015.2424275 10.1080/01431168908903939 |
ContentType | Journal Article |
Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 2017 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
DOI | 10.1080/01431161.2017.1308033 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 3905 |
ExternalDocumentID | 10_1080_01431161_2017_1308033 1308033 |
Genre | Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41322010; 41571434 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-37776944f0bc55c22a0d0810e02d5be62a4e71c7da64194e2f830f38f54533c43 |
ISSN | 0143-1161 1366-5901 |
IngestDate | Wed Jul 02 04:34:59 EDT 2025 Wed Aug 13 06:28:02 EDT 2025 Tue Jul 01 04:04:48 EDT 2025 Thu Apr 24 23:01:59 EDT 2025 Wed Dec 25 08:59:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-37776944f0bc55c22a0d0810e02d5be62a4e71c7da64194e2f830f38f54533c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1923030417 |
PQPubID | 2045515 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2000356130 proquest_journals_1923030417 crossref_citationtrail_10_1080_01431161_2017_1308033 crossref_primary_10_1080_01431161_2017_1308033 informaworld_taylorfrancis_310_1080_01431161_2017_1308033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-03 |
PublicationDateYYYYMMDD | 2017-07-03 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 Lo C. P. (CIT0031) 2000; 66 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 |
References_xml | – ident: CIT0006 doi: 10.1109/LGRS.2009.2025059 – ident: CIT0005 doi: 10.1080/01431161.2016.1148284 – ident: CIT0033 doi: 10.1016/j.jag.2006.10.002 – ident: CIT0036 doi: 10.1007/978-3-540-77058-9_10 – ident: CIT0049 doi: 10.3724/SP.J.1010.2010.00383 – ident: CIT0017 doi: 10.1109/TGRS.2006.888861 – ident: CIT0027 doi: 10.1016/j.isprsjprs.2011.02.006 – ident: CIT0018 doi: 10.1016/j.asoc.2013.09.010 – ident: CIT0004 doi: 10.1080/01431161.2014.951740 – ident: CIT0053 doi: 10.3390/rs70809682 – ident: CIT0022 doi: 10.1080/2150704X.2015.1054045 – ident: CIT0030 doi: 10.13485/j.cnki.11-2089.2014.0138 – ident: CIT0045 doi: 10.1016/j.isprsjprs.2013.02.017 – ident: CIT0040 doi: 10.1080/01431161.2013.805282 – ident: CIT0021 doi: 10.1016/j.jag.2005.06.005 – ident: CIT0048 doi: 10.1109/LGRS.2014.2386878 – ident: CIT0042 doi: 10.1023/A:1020114205638 – ident: CIT0056 doi: 10.1007/s11042-010-0471-9 – ident: CIT0019 doi: 10.1109/IGARSS.2013.6723627 – ident: CIT0002 doi: 10.1016/j.rse.2008.03.013 – ident: CIT0037 doi: 10.1007/3-540-63507-6_216 – ident: CIT0046 doi: 10.1016/j.jag.2011.10.013 – ident: CIT0016 doi: 10.1016/j.rse.2011.02.012 – ident: CIT0013 doi: 10.11834/jrs.20121168 – ident: CIT0024 doi: 10.1109/LGRS.2012.2194693 – ident: CIT0008 doi: 10.3390/s16081204 – ident: CIT0035 doi: 10.1080/0143116032000160462 – ident: CIT0041 doi: 10.1016/j.inffus.2004.06.004 – ident: CIT0011 doi: 10.1080/01431160801950162 – ident: CIT0023 doi: 10.1016/j.rse.2004.04.001 – ident: CIT0026 doi: 10.1117/12.2205593 – volume: 66 start-page: 967 issue: 8 year: 2000 ident: CIT0031 publication-title: Photogrammetric Engineering & Remote Sensing – ident: CIT0009 doi: 10.1016/j.isprsjprs.2008.04.002 – ident: CIT0044 doi: 10.1080/01431161.2010.507263 – ident: CIT0007 doi: 10.1117/1.3518096 – ident: CIT0025 doi: 10.1016/j.rse.2007.07.023 – ident: CIT0054 doi: 10.1080/01431161.2011.616551 – ident: CIT0038 doi: 10.1007/3-540-45054-8_27 – ident: CIT0051 doi: 10.1016/j.rse.2010.02.018 – ident: CIT0012 doi: 10.1016/j.rse.2006.01.013 – ident: CIT0001 doi: 10.1117/1.JRS.6.063578 – ident: CIT0029 doi: 10.1109/TGRS.2003.817267 – ident: CIT0015 doi: 10.14358/PERS.70.5.627 – ident: CIT0034 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: CIT0014 doi: 10.1109/LGRS.2012.2222340 – ident: CIT0010 doi: 10.1142/9789812777249_0001 – ident: CIT0055 doi: 10.1080/01431161.2016.1217442 – ident: CIT0032 doi: 10.1080/01431160410001720748 – ident: CIT0050 doi: 10.1016/j.sigpro.2015.09.020 – ident: CIT0020 doi: 10.1016/S0303-2434(03)00010-2 – ident: CIT0003 doi: 10.1109/36.843009 – ident: CIT0052 doi: 10.1016/j.isprsjprs.2016.07.003 – ident: CIT0039 doi: 10.1109/JSTARS.2015.2424275 – ident: CIT0043 doi: 10.1080/01431168908903939 |
SSID | ssj0006757 |
Score | 2.3786588 |
Snippet | This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3886 |
SubjectTerms | algorithms Change detection data collection Detection Feature extraction High resolution Image detection Image resolution Image segmentation Imagery Information retrieval Mathematical models Object recognition Optimization Qualitative analysis quantitative analysis Remote sensing Resolution Satellite imagery Satellites Spaceborne remote sensing |
Title | Object-based change detection from satellite imagery by segmentation optimization and multi-features fusion |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2017.1308033 https://www.proquest.com/docview/1923030417 https://www.proquest.com/docview/2000356130 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa29LBdhnUPLFs3aMBugQLZsi37WKwtgqKPS4JluxiWLXdtF6eonUP260fKsqOgBdr1YgRy5ATiJ5KiyY-EfCuU9DVsMharKGSB5-csk4liUYHcmwnPC9Mz8vQsmsyC43k4dyqusbqkUeP87711JU-RKoyBXLFK9j8k2z8UBuAzyBeuIGG4PkrG5wqjKAwtUWFLeEeFbnTb_ttUjtSZodxs9OhygXQVa_Q3a32xsDVH4C2C0ljYakzzKsHkGLJSG8rPelSu6k52V5u0900U0eGeuNUgeA2Pr-rOIhqt2-qTg-yy1JvhPlT9c1ldXK0qN_7gmcAmF47KFFHEsILV1akidrEjRjdjEccREwkPHW2JY47l7e7e0eo2DRJcOw8cVMzHk9jFOuYth8Y2i_bZeXo0OzlJp4fz6XOy48PxwR-Qnf3Jwa8fvY2GY5JsK_La_97VdiHr-n0_s-W1bHHa3rHhxjGZviav7ImC7rfw2CXPdPWGvLDN7X-v35JrFya0hQntYUIRJrSHCbUwoWpNXZhQFyYUYEK3YUJbmLwjs6PD6fcJsz02WC6k14B9kTJKgqDkKg_D3PczXoCXyDX3i1DpyM8CLb1cFlkUeEmg_TIWvBRxCZ63EHkg3pNBtaz0B0KLotSBzFWGfD-JymJMSIIHJ3EiRcn5kATdGqa5JaDHPih_Uq_jqbVLn-LSp3bph2TcT7tpGVgempC4AkobE_oq2z41qXhg7l4nzdRunzrFQxBmEHhySL72t0EN47u1rNLLVY3dXLkwh_GPj_jOJ_Jys5X2yKC5XenP4Nw26otF6j-ckaIR |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcigXvhELhRqJaxYnduL4WFVUC223l1bqzYq_oCqbRSR72P76ehxn1YJQDz1H4ziOZzy237wH8NlqUbjgZFmtqzLjeWGyRkidVRa5NyU1NmpGnsyr2Tn_flFe3KqFQVgl7qH9QBQRYzU6Nx5Gj5C4L8hJl4dUBZFZAvWMa8rYI3hcykqgigGj8000DgnxUDKNVJzBZqzi-V8zd9anO-yl_0TruAQdPgMzdn5AnlxNV72emuu_eB0f9nXP4WnKUMn-MKVewJZrX8JOEkv_uX4FV6caD28yXAAtGSqHiXV9BHW1BAtWSNdEps_ekcsFsmSsiV6Tzv1YpFKnlixDrFqkIlASOksitDHzLjKNdsSv8BzvNZwffj07mGVJsyEzTOR9iFdCVJJzT7UpS1MUDbUh66COFrbUrioa7kRuhG0qnkvuCl8z6lntQybHmOHsDWy3y9a9BWKtd1wY3SB_jNRNjQCX0LCspWCe0gnw8U8pkwjNUVfjl8pH3tM0kgpHUqWRnMB0Y_Z7YPS4z0Dengaqj0cpftA9Uewe291xzqgUHDqFSTXeSOdiAp82j4Nb411N07rlqkN1UMri5u7dA16_Bzuzs5NjdfxtfvQenuCjCDVmu7Dd_1m5DyGh6vXH6DE3iEsQ4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BIkEvlK-qCwu4EtcsTuzEybGiXRVoFw5U4mbFXwW1m61I9rD8-nocZ9VSoR56jsZxHM_42X7zBuCDUSKz3smSUhV5wtNMJ7WoVFIY1N6sqDahZuTJvDg65V9-5gObsI20StxDu14oIsRqdO5L4wZG3EeUpEs9UkFilsByxiVl7CE8KlA8HLM46HwTjD0e7jOmUYnT2wxJPP9r5sbydEO89FawDivQbBvU0PeeeHI-XXVqqv_-I-t4r497Bk8jPiX7_YR6Dg9s8wKexFLpv9Yv4fybwqObBJc_Q_q8YWJsFyhdDcF0FdLWQeezs-T3AjUy1kStSWvPFjHRqSFLH6kWMQWU-L6SQGxMnA06oy1xKzzFewWns8Mfn46SWLEh0UyknY9WQhQV544qnec6y2pqPOaglmYmV7bIam5FqoWpC55W3GauZNSx0nkcx5jmbAdGzbKxu0CMcZYLrWpUj6lUXSK9xTdclZVgjtIx8OFHSR3lzLGqxoVMB9XTOJISR1LGkRzDdGN22et53GVQXZ8FsgsHKa6veiLZHbaTYcrIGBpaiZAa76NTMYa9zWPv1HhTUzd2uWqxNihlYWv3-h6vfw-Pvx_M5PHn-dc3sIVPAs-YTWDU_VnZtx5Ndepd8JcrEpgPhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-based+change+detection+from+satellite+imagery+by+segmentation+optimization+and+multi-features+fusion&rft.jtitle=International+journal+of+remote+sensing&rft.au=Peng%2C+Daifeng&rft.au=Zhang%2C+Yongjun&rft.date=2017-07-03&rft.issn=1366-5901&rft.volume=38&rft.issue=13+p.3886-3905&rft.spage=3886&rft.epage=3905&rft_id=info:doi/10.1080%2F01431161.2017.1308033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |