Object-based change detection from satellite imagery by segmentation optimization and multi-features fusion

This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation optimization and multi-features fusion. In the segmentation optimization, objects with optimized boundaries and proper sizes are generated by object...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 38; no. 13; pp. 3886 - 3905
Main Authors Peng, Daifeng, Zhang, Yongjun
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 03.07.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0143-1161
1366-5901
1366-5901
DOI10.1080/01431161.2017.1308033

Cover

Loading…
Abstract This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation optimization and multi-features fusion. In the segmentation optimization, objects with optimized boundaries and proper sizes are generated by object intersection and merging (OIM) processes, which ensures the accurate information extraction from image objects. Within multi-features fusion and change analysis, the Dempster and Shafer (D-S) evidence theory and the Expectation-Maximization (EM) algorithm are implemented, which effectively utilize multidimensional features besides avoiding the selection of an appropriate change threshold. The main advantages of our proposed method lie in the improvement of object boundary and the fuzzy fusion of multi-features information. The proposed approach is evaluated using two different high-resolution remote-sensing data sets, and the qualitative and quantitative analyses of the results demonstrate the effectiveness of the proposed approach.
AbstractList This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation optimization and multi-features fusion. In the segmentation optimization, objects with optimized boundaries and proper sizes are generated by object intersection and merging (OIM) processes, which ensures the accurate information extraction from image objects. Within multi-features fusion and change analysis, the Dempster and Shafer (D-S) evidence theory and the Expectation-Maximization (EM) algorithm are implemented, which effectively utilize multidimensional features besides avoiding the selection of an appropriate change threshold. The main advantages of our proposed method lie in the improvement of object boundary and the fuzzy fusion of multi-features information. The proposed approach is evaluated using two different high-resolution remote-sensing data sets, and the qualitative and quantitative analyses of the results demonstrate the effectiveness of the proposed approach.
Author Zhang, Yongjun
Peng, Daifeng
Author_xml – sequence: 1
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
  organization: School of Remote Sensing and Information Engineering, Wuhan University
– sequence: 2
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  email: zhangyj@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University
BookMark eNqFkU9v1DAQxS1UJLaFj4BkiQuXbMexHe-KC6jqP6lSL3C2HGe8eEnsxXaElk9fLymXHuA0mvHvjTzvnZOzEAMS8p7BmsEGLoEJzljH1i0wtWa8zjh_RVaMd10jt8DOyOrENCfoDTnPeQ8AnZJqRX489nu0pelNxoHa7ybskA5Y6szHQF2KE82m4Dj6gtRPZofpSPsjzbibMBTzB4uH4if_e2lMGOg0j8U3Dk2ZE2bq5lxf3pLXzowZ3z3XC_Lt5vrr1V3z8Hh7f_XlobFcsdJwpVS3FcJBb6W0bWtggA0DhHaQPXatEaiYVYPpBNsKbN2Gg-MbJ4Xk3Ap-QT4uew8p_pwxFz35bOsJJmCcs27r9Vx21aiKfniB7uOcQv2dZtu2AiCYqpRcKJtizgmdPqRqRTpqBvoUgf4bgT5FoJ8jqLpPL3TWL46VZPz4X_XnRe2Di2kyv2IaB13McYzJJROsz5r_e8UTWdChLw
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3011751
crossref_primary_10_1007_s12524_019_00997_5
crossref_primary_10_1109_JSTARS_2021_3124491
crossref_primary_10_3390_rs16224223
crossref_primary_10_3390_rs11212484
crossref_primary_10_3390_rs11030359
crossref_primary_10_1109_MGRS_2019_2927260
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_3390_rs16081357
crossref_primary_10_1080_01431161_2021_1892860
crossref_primary_10_1080_01431161_2019_1711239
crossref_primary_10_1080_01431161_2023_2273245
crossref_primary_10_1109_TGRS_2020_3034373
crossref_primary_10_3390_app12168297
crossref_primary_10_1016_j_isprsjprs_2024_10_021
crossref_primary_10_1109_TGRS_2023_3332338
crossref_primary_10_1109_LGRS_2017_2763182
crossref_primary_10_1016_j_rse_2017_10_039
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1016_j_isprsjprs_2021_03_005
crossref_primary_10_3390_su10093301
crossref_primary_10_1007_s11042_021_11779_y
crossref_primary_10_3390_ijgi7060213
crossref_primary_10_1080_10106049_2021_2022013
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_3390_rs11020108
crossref_primary_10_1080_01431161_2021_2022241
Cites_doi 10.1109/LGRS.2009.2025059
10.1080/01431161.2016.1148284
10.1016/j.jag.2006.10.002
10.1007/978-3-540-77058-9_10
10.3724/SP.J.1010.2010.00383
10.1109/TGRS.2006.888861
10.1016/j.isprsjprs.2011.02.006
10.1016/j.asoc.2013.09.010
10.1080/01431161.2014.951740
10.3390/rs70809682
10.1080/2150704X.2015.1054045
10.13485/j.cnki.11-2089.2014.0138
10.1016/j.isprsjprs.2013.02.017
10.1080/01431161.2013.805282
10.1016/j.jag.2005.06.005
10.1109/LGRS.2014.2386878
10.1023/A:1020114205638
10.1007/s11042-010-0471-9
10.1109/IGARSS.2013.6723627
10.1016/j.rse.2008.03.013
10.1007/3-540-63507-6_216
10.1016/j.jag.2011.10.013
10.1016/j.rse.2011.02.012
10.11834/jrs.20121168
10.1109/LGRS.2012.2194693
10.3390/s16081204
10.1080/0143116032000160462
10.1016/j.inffus.2004.06.004
10.1080/01431160801950162
10.1016/j.rse.2004.04.001
10.1117/12.2205593
10.1016/j.isprsjprs.2008.04.002
10.1080/01431161.2010.507263
10.1117/1.3518096
10.1016/j.rse.2007.07.023
10.1080/01431161.2011.616551
10.1007/3-540-45054-8_27
10.1016/j.rse.2010.02.018
10.1016/j.rse.2006.01.013
10.1117/1.JRS.6.063578
10.1109/TGRS.2003.817267
10.14358/PERS.70.5.627
10.1016/j.isprsjprs.2010.11.001
10.1109/LGRS.2012.2222340
10.1142/9789812777249_0001
10.1080/01431161.2016.1217442
10.1080/01431160410001720748
10.1016/j.sigpro.2015.09.020
10.1016/S0303-2434(03)00010-2
10.1109/36.843009
10.1016/j.isprsjprs.2016.07.003
10.1109/JSTARS.2015.2424275
10.1080/01431168908903939
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2017.1308033
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 3905
ExternalDocumentID 10_1080_01431161_2017_1308033
1308033
Genre Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41322010; 41571434
  funderid: 10.13039/501100001809
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
TASJS
7S9
L.6
ID FETCH-LOGICAL-c371t-37776944f0bc55c22a0d0810e02d5be62a4e71c7da64194e2f830f38f54533c43
ISSN 0143-1161
1366-5901
IngestDate Wed Jul 02 04:34:59 EDT 2025
Wed Aug 13 06:28:02 EDT 2025
Tue Jul 01 04:04:48 EDT 2025
Thu Apr 24 23:01:59 EDT 2025
Wed Dec 25 08:59:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-37776944f0bc55c22a0d0810e02d5be62a4e71c7da64194e2f830f38f54533c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1923030417
PQPubID 2045515
PageCount 20
ParticipantIDs proquest_miscellaneous_2000356130
proquest_journals_1923030417
crossref_citationtrail_10_1080_01431161_2017_1308033
crossref_primary_10_1080_01431161_2017_1308033
informaworld_taylorfrancis_310_1080_01431161_2017_1308033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-03
PublicationDateYYYYMMDD 2017-07-03
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-03
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
Lo C. P. (CIT0031) 2000; 66
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
References_xml – ident: CIT0006
  doi: 10.1109/LGRS.2009.2025059
– ident: CIT0005
  doi: 10.1080/01431161.2016.1148284
– ident: CIT0033
  doi: 10.1016/j.jag.2006.10.002
– ident: CIT0036
  doi: 10.1007/978-3-540-77058-9_10
– ident: CIT0049
  doi: 10.3724/SP.J.1010.2010.00383
– ident: CIT0017
  doi: 10.1109/TGRS.2006.888861
– ident: CIT0027
  doi: 10.1016/j.isprsjprs.2011.02.006
– ident: CIT0018
  doi: 10.1016/j.asoc.2013.09.010
– ident: CIT0004
  doi: 10.1080/01431161.2014.951740
– ident: CIT0053
  doi: 10.3390/rs70809682
– ident: CIT0022
  doi: 10.1080/2150704X.2015.1054045
– ident: CIT0030
  doi: 10.13485/j.cnki.11-2089.2014.0138
– ident: CIT0045
  doi: 10.1016/j.isprsjprs.2013.02.017
– ident: CIT0040
  doi: 10.1080/01431161.2013.805282
– ident: CIT0021
  doi: 10.1016/j.jag.2005.06.005
– ident: CIT0048
  doi: 10.1109/LGRS.2014.2386878
– ident: CIT0042
  doi: 10.1023/A:1020114205638
– ident: CIT0056
  doi: 10.1007/s11042-010-0471-9
– ident: CIT0019
  doi: 10.1109/IGARSS.2013.6723627
– ident: CIT0002
  doi: 10.1016/j.rse.2008.03.013
– ident: CIT0037
  doi: 10.1007/3-540-63507-6_216
– ident: CIT0046
  doi: 10.1016/j.jag.2011.10.013
– ident: CIT0016
  doi: 10.1016/j.rse.2011.02.012
– ident: CIT0013
  doi: 10.11834/jrs.20121168
– ident: CIT0024
  doi: 10.1109/LGRS.2012.2194693
– ident: CIT0008
  doi: 10.3390/s16081204
– ident: CIT0035
  doi: 10.1080/0143116032000160462
– ident: CIT0041
  doi: 10.1016/j.inffus.2004.06.004
– ident: CIT0011
  doi: 10.1080/01431160801950162
– ident: CIT0023
  doi: 10.1016/j.rse.2004.04.001
– ident: CIT0026
  doi: 10.1117/12.2205593
– volume: 66
  start-page: 967
  issue: 8
  year: 2000
  ident: CIT0031
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: CIT0009
  doi: 10.1016/j.isprsjprs.2008.04.002
– ident: CIT0044
  doi: 10.1080/01431161.2010.507263
– ident: CIT0007
  doi: 10.1117/1.3518096
– ident: CIT0025
  doi: 10.1016/j.rse.2007.07.023
– ident: CIT0054
  doi: 10.1080/01431161.2011.616551
– ident: CIT0038
  doi: 10.1007/3-540-45054-8_27
– ident: CIT0051
  doi: 10.1016/j.rse.2010.02.018
– ident: CIT0012
  doi: 10.1016/j.rse.2006.01.013
– ident: CIT0001
  doi: 10.1117/1.JRS.6.063578
– ident: CIT0029
  doi: 10.1109/TGRS.2003.817267
– ident: CIT0015
  doi: 10.14358/PERS.70.5.627
– ident: CIT0034
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: CIT0014
  doi: 10.1109/LGRS.2012.2222340
– ident: CIT0010
  doi: 10.1142/9789812777249_0001
– ident: CIT0055
  doi: 10.1080/01431161.2016.1217442
– ident: CIT0032
  doi: 10.1080/01431160410001720748
– ident: CIT0050
  doi: 10.1016/j.sigpro.2015.09.020
– ident: CIT0020
  doi: 10.1016/S0303-2434(03)00010-2
– ident: CIT0003
  doi: 10.1109/36.843009
– ident: CIT0052
  doi: 10.1016/j.isprsjprs.2016.07.003
– ident: CIT0039
  doi: 10.1109/JSTARS.2015.2424275
– ident: CIT0043
  doi: 10.1080/01431168908903939
SSID ssj0006757
Score 2.3786588
Snippet This article presents a novel object-based change detection (OBCD) approach in high-resolution remote-sensing images by means of combining segmentation...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3886
SubjectTerms algorithms
Change detection
data collection
Detection
Feature extraction
High resolution
Image detection
Image resolution
Image segmentation
Imagery
Information retrieval
Mathematical models
Object recognition
Optimization
Qualitative analysis
quantitative analysis
Remote sensing
Resolution
Satellite imagery
Satellites
Spaceborne remote sensing
Title Object-based change detection from satellite imagery by segmentation optimization and multi-features fusion
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2017.1308033
https://www.proquest.com/docview/1923030417
https://www.proquest.com/docview/2000356130
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa29LBdhnUPLFs3aMBugQLZsi37WKwtgqKPS4JluxiWLXdtF6eonUP260fKsqOgBdr1YgRy5ATiJ5KiyY-EfCuU9DVsMharKGSB5-csk4liUYHcmwnPC9Mz8vQsmsyC43k4dyqusbqkUeP87711JU-RKoyBXLFK9j8k2z8UBuAzyBeuIGG4PkrG5wqjKAwtUWFLeEeFbnTb_ttUjtSZodxs9OhygXQVa_Q3a32xsDVH4C2C0ljYakzzKsHkGLJSG8rPelSu6k52V5u0900U0eGeuNUgeA2Pr-rOIhqt2-qTg-yy1JvhPlT9c1ldXK0qN_7gmcAmF47KFFHEsILV1akidrEjRjdjEccREwkPHW2JY47l7e7e0eo2DRJcOw8cVMzHk9jFOuYth8Y2i_bZeXo0OzlJp4fz6XOy48PxwR-Qnf3Jwa8fvY2GY5JsK_La_97VdiHr-n0_s-W1bHHa3rHhxjGZviav7ImC7rfw2CXPdPWGvLDN7X-v35JrFya0hQntYUIRJrSHCbUwoWpNXZhQFyYUYEK3YUJbmLwjs6PD6fcJsz02WC6k14B9kTJKgqDkKg_D3PczXoCXyDX3i1DpyM8CLb1cFlkUeEmg_TIWvBRxCZ63EHkg3pNBtaz0B0KLotSBzFWGfD-JymJMSIIHJ3EiRcn5kATdGqa5JaDHPih_Uq_jqbVLn-LSp3bph2TcT7tpGVgempC4AkobE_oq2z41qXhg7l4nzdRunzrFQxBmEHhySL72t0EN47u1rNLLVY3dXLkwh_GPj_jOJ_Jys5X2yKC5XenP4Nw26otF6j-ckaIR
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcigXvhELhRqJaxYnduL4WFVUC223l1bqzYq_oCqbRSR72P76ehxn1YJQDz1H4ziOZzy237wH8NlqUbjgZFmtqzLjeWGyRkidVRa5NyU1NmpGnsyr2Tn_flFe3KqFQVgl7qH9QBQRYzU6Nx5Gj5C4L8hJl4dUBZFZAvWMa8rYI3hcykqgigGj8000DgnxUDKNVJzBZqzi-V8zd9anO-yl_0TruAQdPgMzdn5AnlxNV72emuu_eB0f9nXP4WnKUMn-MKVewJZrX8JOEkv_uX4FV6caD28yXAAtGSqHiXV9BHW1BAtWSNdEps_ekcsFsmSsiV6Tzv1YpFKnlixDrFqkIlASOksitDHzLjKNdsSv8BzvNZwffj07mGVJsyEzTOR9iFdCVJJzT7UpS1MUDbUh66COFrbUrioa7kRuhG0qnkvuCl8z6lntQybHmOHsDWy3y9a9BWKtd1wY3SB_jNRNjQCX0LCspWCe0gnw8U8pkwjNUVfjl8pH3tM0kgpHUqWRnMB0Y_Z7YPS4z0Dengaqj0cpftA9Uewe291xzqgUHDqFSTXeSOdiAp82j4Nb411N07rlqkN1UMri5u7dA16_Bzuzs5NjdfxtfvQenuCjCDVmu7Dd_1m5DyGh6vXH6DE3iEsQ4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BIkEvlK-qCwu4EtcsTuzEybGiXRVoFw5U4mbFXwW1m61I9rD8-nocZ9VSoR56jsZxHM_42X7zBuCDUSKz3smSUhV5wtNMJ7WoVFIY1N6sqDahZuTJvDg65V9-5gObsI20StxDu14oIsRqdO5L4wZG3EeUpEs9UkFilsByxiVl7CE8KlA8HLM46HwTjD0e7jOmUYnT2wxJPP9r5sbydEO89FawDivQbBvU0PeeeHI-XXVqqv_-I-t4r497Bk8jPiX7_YR6Dg9s8wKexFLpv9Yv4fybwqObBJc_Q_q8YWJsFyhdDcF0FdLWQeezs-T3AjUy1kStSWvPFjHRqSFLH6kWMQWU-L6SQGxMnA06oy1xKzzFewWns8Mfn46SWLEh0UyknY9WQhQV544qnec6y2pqPOaglmYmV7bIam5FqoWpC55W3GauZNSx0nkcx5jmbAdGzbKxu0CMcZYLrWpUj6lUXSK9xTdclZVgjtIx8OFHSR3lzLGqxoVMB9XTOJISR1LGkRzDdGN22et53GVQXZ8FsgsHKa6veiLZHbaTYcrIGBpaiZAa76NTMYa9zWPv1HhTUzd2uWqxNihlYWv3-h6vfw-Pvx_M5PHn-dc3sIVPAs-YTWDU_VnZtx5Ndepd8JcrEpgPhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-based+change+detection+from+satellite+imagery+by+segmentation+optimization+and+multi-features+fusion&rft.jtitle=International+journal+of+remote+sensing&rft.au=Peng%2C+Daifeng&rft.au=Zhang%2C+Yongjun&rft.date=2017-07-03&rft.issn=1366-5901&rft.volume=38&rft.issue=13+p.3886-3905&rft.spage=3886&rft.epage=3905&rft_id=info:doi/10.1080%2F01431161.2017.1308033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon