Efficient Optical Flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on an Autonomous Pocket Drone
Micro Aerial Vehicles (FOV) are very suitable for flying in indoor environments, but autonomous navigation is challenging due to their strict hardware limitations. This paper presents a highly efficient computer vision algorithm called Edge-FS for the determination of velocity and depth. It runs at...
Saved in:
Published in | IEEE robotics and automation letters Vol. 2; no. 2; pp. 1070 - 1076 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2017.2658940 |
Cover
Loading…
Abstract | Micro Aerial Vehicles (FOV) are very suitable for flying in indoor environments, but autonomous navigation is challenging due to their strict hardware limitations. This paper presents a highly efficient computer vision algorithm called Edge-FS for the determination of velocity and depth. It runs at 20 Hz on a 4 g stereo camera with an embedded STM32F4 microprocessor (168 MHz, 192 kB) and uses edge distributions to calculate optical flow and stereo disparity. The stereo-based distance estimates are used to scale the optical flow in order to retrieve the drone's velocity. The velocity and depth measurements are used for fully autonomous flight of a 40 g pocket drone only relying on on-board sensors. This method allows the MAV to control its velocity and avoid obstacles. |
---|---|
AbstractList | Micro Aerial Vehicles (FOV) are very suitable for flying in indoor environments, but autonomous navigation is challenging due to their strict hardware limitations. This paper presents a highly efficient computer vision algorithm called Edge-FS for the determination of velocity and depth. It runs at 20 Hz on a 4 g stereo camera with an embedded STM32F4 microprocessor (168 MHz, 192 kB) and uses edge distributions to calculate optical flow and stereo disparity. The stereo-based distance estimates are used to scale the optical flow in order to retrieve the drone's velocity. The velocity and depth measurements are used for fully autonomous flight of a 40 g pocket drone only relying on on-board sensors. This method allows the MAV to control its velocity and avoid obstacles. |
Author | De Wagter, Christophe Tuyls, Karl Kappen, Hilbert de Croon, Guido McGuire, Kimberly |
Author_xml | – sequence: 1 givenname: Kimberly surname: McGuire fullname: McGuire, Kimberly email: k.n.mcguire@tudelft.nl organization: Fac. of Aerosp. Eng., Delft Univ. of Technol., Delft, Netherlands – sequence: 2 givenname: Guido surname: de Croon fullname: de Croon, Guido email: g.c.h.e.decroon@tudelft.nl organization: Fac. of Aerosp. Eng., Delft Univ. of Technol., Delft, Netherlands – sequence: 3 givenname: Christophe surname: De Wagter fullname: De Wagter, Christophe email: c.dewagter@tudelft.nl organization: Fac. of Aerosp. Eng., Delft Univ. of Technol., Delft, Netherlands – sequence: 4 givenname: Karl surname: Tuyls fullname: Tuyls, Karl email: k.tuyls@liverpool.ac.uk organization: Dept. of Comput. Sci., Univ. of Liverpool, Liverpool, UK – sequence: 5 givenname: Hilbert surname: Kappen fullname: Kappen, Hilbert email: B.Kappen@science.ru.nl organization: Fac. of Sci., Radboud Univ. of Nijmegen, Nijmegen, Netherlands |
BookMark | eNp9kE9LAzEQxYNUsNbeBS_5Aq3JJpvsHpfaqlCo-KfXJZudQHS7KUmq9Nu72xYRD55mmJnf8N67RIPWtYDQNSVTSkl-u3wupgmhcpqINMs5OUPDhEk5YVKIwa_-Ao1DeCeE0DSRLE-HaDc3xmoLbcSrbbRaNXjRuC-s2hq_RPDg8NoG61psnMdraJy2cY_nIdqNiv28v1xVISrdAC4-na1VqwEfNrjYRde6jdsF_OT0B0R85zvpV-jcqCbA-FRH6G0xf509TJar-8dZsZxoJmmcMKGVVCwjkhHNNeVUSl0ZJmjOOWW6c6RlClVFap7lBnJqBK-ymrOE1NCRIySOf7V3IXgwZaf-IDt6ZZuSkrLPr-zyK_v8ylN-HUj-gFvfGfb7_5CbI2IB4OdcZowRkbJvoTl90g |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1016_j_robot_2023_104533 crossref_primary_10_3390_drones5020052 crossref_primary_10_1109_OJCOMS_2021_3106274 crossref_primary_10_1016_j_ifacol_2019_12_529 crossref_primary_10_1016_j_engappai_2022_105036 crossref_primary_10_3390_s21186223 crossref_primary_10_1098_rstb_2021_0449 crossref_primary_10_1109_ACCESS_2020_3007315 crossref_primary_10_1139_dsa_2023_0019 crossref_primary_10_1109_ACCESS_2021_3055939 crossref_primary_10_1109_JAS_2021_1004249 crossref_primary_10_1109_JSEN_2020_2978334 crossref_primary_10_1109_TCYB_2019_2905570 crossref_primary_10_1109_LRA_2023_3337991 crossref_primary_10_1177_0142331220947507 crossref_primary_10_1109_ACCESS_2019_2958045 crossref_primary_10_1002_msd2_12098 crossref_primary_10_3390_biomimetics8040350 crossref_primary_10_1007_s11554_018_0752_5 crossref_primary_10_1126_scirobotics_aaw9710 crossref_primary_10_1109_LGRS_2024_3419925 crossref_primary_10_3390_su16052105 crossref_primary_10_1016_j_cja_2020_03_036 crossref_primary_10_1016_j_procs_2018_07_099 crossref_primary_10_1016_j_image_2023_116921 crossref_primary_10_1142_S2301385018500097 crossref_primary_10_1002_rob_21956 crossref_primary_10_3390_s22176703 crossref_primary_10_1109_LRA_2019_2956380 crossref_primary_10_3389_frobt_2020_00018 crossref_primary_10_1016_j_robot_2019_04_007 crossref_primary_10_1142_S0218348X22400734 crossref_primary_10_3390_drones8020033 crossref_primary_10_1016_j_trpro_2018_12_003 crossref_primary_10_1109_JSEN_2018_2865306 crossref_primary_10_1080_18824889_2022_2087413 crossref_primary_10_1007_s11063_021_10442_9 crossref_primary_10_1088_1757_899X_851_1_012017 crossref_primary_10_3390_jimaging7100217 crossref_primary_10_1109_TCSVT_2022_3156653 crossref_primary_10_1016_j_iot_2023_100883 crossref_primary_10_1007_s00170_020_05945_z crossref_primary_10_1109_LRA_2024_3504318 crossref_primary_10_1109_TII_2018_2869622 crossref_primary_10_3390_s17030571 crossref_primary_10_1109_ACCESS_2021_3097945 crossref_primary_10_1137_20M1328130 crossref_primary_10_1109_TMM_2021_3096083 crossref_primary_10_1109_JSEN_2022_3229421 crossref_primary_10_1109_JSEN_2017_2728724 crossref_primary_10_1371_journal_pone_0303160 crossref_primary_10_1109_LRA_2024_3349814 crossref_primary_10_1109_LRA_2024_3496336 crossref_primary_10_3390_aerospace10020183 crossref_primary_10_1109_TSUSC_2018_2810952 crossref_primary_10_3390_agronomy11061069 crossref_primary_10_1109_LRA_2021_3100153 crossref_primary_10_1016_j_measurement_2020_108911 crossref_primary_10_1109_TMM_2019_2929934 crossref_primary_10_1109_MCE_2019_2892280 crossref_primary_10_3390_rs14153824 crossref_primary_10_24003_emitter_v10i2_700 crossref_primary_10_1007_s11554_021_01187_8 crossref_primary_10_1109_LRA_2018_2789841 crossref_primary_10_1109_LRA_2022_3190097 crossref_primary_10_16984_saufenbilder_674122 crossref_primary_10_3233_JCM_204501 crossref_primary_10_1016_j_mtelec_2023_100071 crossref_primary_10_1109_ACCESS_2021_3065926 crossref_primary_10_1109_LRA_2021_3062317 crossref_primary_10_1109_TIE_2024_3429611 crossref_primary_10_1109_TCAD_2022_3163629 crossref_primary_10_1109_JIOT_2019_2917066 crossref_primary_10_1109_ACCESS_2020_3020632 crossref_primary_10_2478_auseme_2023_0002 crossref_primary_10_1109_ACCESS_2023_3292302 crossref_primary_10_1109_ACCESS_2022_3181989 crossref_primary_10_1002_advs_202405160 crossref_primary_10_1016_j_jag_2022_102739 crossref_primary_10_1109_LCSYS_2024_3401025 crossref_primary_10_1016_j_vehcom_2022_100552 crossref_primary_10_1109_ACCESS_2019_2952173 crossref_primary_10_1109_JIOT_2020_3027095 crossref_primary_10_3390_aerospace9070332 crossref_primary_10_1007_s12652_021_03352_0 crossref_primary_10_1109_LRA_2019_2913077 crossref_primary_10_3390_jimaging6080078 crossref_primary_10_1007_s10514_018_9760_3 crossref_primary_10_1016_j_icte_2020_03_007 crossref_primary_10_1088_1361_6552_ac44fc crossref_primary_10_20965_jrm_2018_p0363 |
Cites_doi | 10.1016/j.robot.2009.02.001 10.1109/IVS.2011.5940405 10.1109/ISCAS.2003.1205152 10.1109/MRA.2008.919023 10.1109/ICRA.2014.6907589 10.1117/12.571550 10.1109/ICRA.2014.6907418 10.1177/0278364915578646 10.1109/ICRA.2015.7138979 10.1109/TRO.2009.2018972 10.1109/ICRA.2013.6630807 10.1098/rspb.1980.0057 10.1109/TPAMI.2007.1166 10.1109/CVPR.2010.5539798 10.1007/s10514-015-9494-4 10.1016/0004-3702(81)90024-2 10.1109/ICCV.2005.104 10.1109/ICRA.2013.6630805 10.1109/ICRA.2016.7487496 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LRA.2017.2658940 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 1076 |
ExternalDocumentID | 10_1109_LRA_2017_2658940 7833065 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c371t-36ca7a380730c4c14177cbf36194413c766c75ebb0d489fe91f64b8d4320de7a3 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Tue Jul 01 03:53:52 EDT 2025 Thu Apr 24 23:13:27 EDT 2025 Tue Aug 26 16:57:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-36ca7a380730c4c14177cbf36194413c766c75ebb0d489fe91f64b8d4320de7a3 |
OpenAccessLink | http://resolver.tudelft.nl/uuid:caf22050-b8fd-469f-9b2d-337fcd7b4571 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1109_LRA_2017_2658940 crossref_citationtrail_10_1109_LRA_2017_2658940 ieee_primary_7833065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-April 2017-4-00 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-April |
PublicationDecade | 2010 |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 briod (ref20) 0 ref14 ref11 ref2 ref1 ref16 ref19 ref18 bouguet (ref10) 2001; 5 smeur (ref26) 2015; 38 tijmons (ref5) 2016 ref24 ref23 ref25 farnebäck (ref7) 0 ref22 ref21 dunkley (ref17) 0 shi (ref8) 0 ref9 ref4 ref3 ref6 |
References_xml | – ident: ref16 doi: 10.1016/j.robot.2009.02.001 – start-page: 2 year: 0 ident: ref17 article-title: Visual-inertial navigation for a camera-equipped 25g nano-quadrotor publication-title: IROS2014 Aerial Open Source Robotics Workshop – ident: ref3 doi: 10.1109/IVS.2011.5940405 – ident: ref18 doi: 10.1109/ISCAS.2003.1205152 – ident: ref19 doi: 10.1109/MRA.2008.919023 – ident: ref4 doi: 10.1109/ICRA.2014.6907589 – year: 2016 ident: ref5 article-title: Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV publication-title: arXiv 1604 00833 – ident: ref12 doi: 10.1117/12.571550 – ident: ref22 doi: 10.1109/ICRA.2014.6907418 – ident: ref14 doi: 10.1177/0278364915578646 – ident: ref24 doi: 10.1109/ICRA.2015.7138979 – ident: ref15 doi: 10.1109/TRO.2009.2018972 – ident: ref23 doi: 10.1109/ICRA.2013.6630807 – ident: ref25 doi: 10.1098/rspb.1980.0057 – ident: ref2 doi: 10.1109/TPAMI.2007.1166 – ident: ref1 doi: 10.1109/CVPR.2010.5539798 – year: 0 ident: ref20 article-title: Optic-flow based control of a 46g quadrotor publication-title: Proc IEEE/RSJ Int Conf Robot Autom – volume: 5 start-page: 1 year: 2001 ident: ref10 article-title: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm publication-title: Intel Corporation – ident: ref21 doi: 10.1007/s10514-015-9494-4 – ident: ref6 doi: 10.1016/0004-3702(81)90024-2 – ident: ref9 doi: 10.1109/ICCV.2005.104 – volume: 38 start-page: 450 year: 2015 ident: ref26 article-title: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles publication-title: J Guid Control Dyn – ident: ref11 doi: 10.1109/ICRA.2013.6630805 – start-page: 593 year: 0 ident: ref8 article-title: Good features to track publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref13 doi: 10.1109/ICRA.2016.7487496 – start-page: 363 year: 0 ident: ref7 article-title: Two-frame motion estimation based on polynomial expansion publication-title: Proc Scand Conf Image Anal |
SSID | ssj0001527395 |
Score | 2.4442348 |
Snippet | Micro Aerial Vehicles (FOV) are very suitable for flying in indoor environments, but autonomous navigation is challenging due to their strict hardware... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1070 |
SubjectTerms | Aerial systems: Perception and autonomy autonomous vehicle navigation Cameras Drones Image edge detection micro/nano robots Navigation Optical imaging Optical sensors visual-based navigation |
Title | Efficient Optical Flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on an Autonomous Pocket Drone |
URI | https://ieeexplore.ieee.org/document/7833065 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9RnsbDgME0Pob8sJdJpI0bx04eK2hVoXVMY1S8RbF9kRCoqUoCEg_87ZydtKsmNPEWJXeJlTv7zue73wF849byPFUm4FEhApGHNKViNEEitcyNRdlHF4ec_JTja3FxE99swOmqFgYRffIZdt2lP8u3paldqKynksg1Ou9AhzZuTa3W33iKQxJL4-VJZJj2fvweuNQt1e2TlU1ddGPN8qy1UvGWZLQNk-UYmgSSu25d6a55_gee8b2D3IGPrUvJBo0O7MIGzj7B1hrQ4B7UQ48UQYzscu6j12x0Xz6xfGbZFf1ZLNnUF5kz8mHZFMnCkXfOhjT_m9JGT3mpyZWkT7DBY3lrnbow_4QN6srVRpT1A_tF6ytW7HxRznAfrkfDP2fjoG24EJhI8SqIpMlV7iDoo9AIwwVXyugicpEOMnZGSWlUjFqHViRpgSkvpNCJFVE_tEicn2FzRq__AkyTI2oFtw7uXgi0OS9yKYg3pjUEbXIAvaUwMtOikbumGPeZ35WEaUbiy5z4slZ8B_B9xTFvkDj-Q7vnBLOia2Vy-PbtI_jgmJt8nGPYrBY1fiVXo9In0Jm8DE-8pr0CcQvTaA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLbGeAAeYGwgxmDkYS-T6F1zTZP28TTudMDdNsE27a1qEldCTNdptCDx67HT3nFCCPFWtXYa1W7sOPZngCPpvSxz4yKZVCpSZUy_VIouyrTVpfOoR8hxyMWpnl2qD9fp9Ra8XdfCIGJIPsMBX4azfF-7lkNlQ5Ml3Oj8HtxPuRi3q9b6HVFhLLE8XZ1Fxvlw_mnMyVtmMCI7m3N8Y8P2bDRTCbZk-gQWq1l0KSRfB21jB-7nHwCN_zvNHXjcO5Vi3GnBU9jC5S482oAa3IN2ErAiiFGc3Yb4tZje1D9EufTiM31brMVVKDMX5MWKKyQbR_65mNAK0BU3BsozS84kvUKMv9dfPCuMCE_EuG24OqJuv4lzWmGxEe_u6iU-g8vp5OJkFvUtFyKXGNlEiXalKRmEPomdclJJY5ytEo51kLlzRmtnUrQ29irLK8xlpZXNvEpGsUfifA7bSxr-BQhLrqhX0jPgvVLoS1mVWhFvSqsI-mwfhithFK7HI-e2GDdF2JfEeUHiK1h8RS--fThec9x2WBz_oN1jwazpepm8_PvtN_BgdrGYF_P3px8P4CEP1GXnvILt5q7F1-R4NPYw6NsvnV7Vfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Optical+Flow+and+Stereo+Vision+for+Velocity+Estimation+and+Obstacle+Avoidance+on+an+Autonomous+Pocket+Drone&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=McGuire%2C+Kimberly&rft.au=de+Croon%2C+Guido&rft.au=De+Wagter%2C+Christophe&rft.au=Tuyls%2C+Karl&rft.date=2017-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=2&rft.issue=2&rft.spage=1070&rft.epage=1076&rft_id=info:doi/10.1109%2FLRA.2017.2658940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2017_2658940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |