Chiral algebra from worldsheet

A bstract The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the wor...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 6; pp. 24 - 28
Main Author Li, Wei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 05.06.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N = 2 superconformal field theories that arise as orbifolds of 4D N = 4 SYM.
AbstractList The chiral algebra of a 4D $$ \mathcal{N} $$ N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D $$ \mathcal{N} $$ N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D $$ \mathcal{N} $$ N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D $$ \mathcal{N} $$ N = 2 superconformal field theories that arise as orbifolds of 4D $$ \mathcal{N} $$ N = 4 SYM.
The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N = 2 superconformal field theories that arise as orbifolds of 4D N = 4 SYM.
A bstract The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N = 2 superconformal field theories that arise as orbifolds of 4D N = 4 SYM.
Abstract The chiral algebra of a 4D N $$ \mathcal{N} $$ ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N $$ \mathcal{N} $$ = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N $$ \mathcal{N} $$ = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N $$ \mathcal{N} $$ = 2 superconformal field theories that arise as orbifolds of 4D N $$ \mathcal{N} $$ = 4 SYM.
ArticleNumber 24
Author Li, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-0852-7993
  surname: Li
  fullname: Li, Wei
  email: weili@mail.itp.ac.cn
  organization: Institute of Theoretical Physics, Chinese Academy of Sciences
BookMark eNp1kMtLAzEQxoMo2FbP3qTgRQ9rJ9k8ukcp1VYKetBzmM2jD7abmmwR_3u3rqgXD8MMw_f9Zvj65LgOtSPkgsItBVCjx9n0GeQ1A8Zv2joiPQqsyMZcFcd_5lPST2kDQAUtoEcuJ6t1xGqI1dKVEYc-hu3wPcTKppVzzRk58Vgld_7dB-T1fvoymWWLp4f55G6RmVzRJsupLGVunCy5NBysKNAjiNJJ4xUYxNzndMyUoYJ7AYpTUXjuhLWSqYLzfEDmHdcG3OhdXG8xfuiAa_21CHGpMTZrUzmtvBHGMkRpDC-VLb2SCj11zFLklrWsq461i-Ft71KjN2Ef6_Z9nYMUlCkKRasadSoTQ0rR-Z-rFPQhUN0Fqg-B6rZaB3SO1CrrpYu_3P8sn0Sld5w
Cites_doi 10.1007/JHEP05(2015)017
10.1142/S0217751X02013071
10.1007/978-3-0348-9217-9_28
10.1007/JHEP08(2019)143
10.1007/JHEP02(2021)081
10.1007/978-1-4612-4664-0
10.1016/S0550-3213(00)00044-4
10.1007/JHEP04(2021)216
10.1007/JHEP10(2023)131
10.1007/JHEP11(2021)047
10.1007/JHEP06(2019)035
10.1007/JHEP03(2016)183
10.1007/s00220-019-03679-y
10.1007/JHEP10(2023)105
10.1007/JHEP04(2017)152
10.1007/JHEP10(2019)062
10.1007/JHEP10(2023)174
10.1103/PhysRevD.96.046014
10.1007/JHEP10(2022)077
10.1103/PhysRevD.93.025016
10.1088/1126-6708/2003/07/062
10.1007/s00220-014-2272-x
10.1007/JHEP12(2023)104
10.1007/JHEP10(2015)101
10.1088/1126-6708/1999/03/018
10.1007/JHEP09(2013)036
10.1007/JHEP10(2019)171
10.1007/JHEP05(2019)018
10.1007/JHEP05(2015)020
10.1007/JHEP11(2021)129
10.1007/JHEP04(2019)103
10.1007/s00220-007-0258-7
10.4310/ATMP.2004.v8.n4.a1
10.1103/PhysRevLett.127.131601
10.1088/1126-6708/2001/01/001
10.1103/PhysRevX.10.021037
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP06(2024)024
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 28
ExternalDocumentID oai_doaj_org_article_7fc5cd2aa6cc4b7dbf767af1e2d1a4d2
10_1007_JHEP06_2024_024
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c371t-316b63ce6b46c40d59afa05be6cf70caa3f31827c154f5074159f4e5dd6279443
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:27:32 EDT 2025
Sat Jul 26 01:26:01 EDT 2025
Tue Jul 01 05:16:35 EDT 2025
Fri Feb 21 02:42:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords AdS-CFT Correspondence
Supersymmetric Gauge Theory
Conformal and W Symmetry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-316b63ce6b46c40d59afa05be6cf70caa3f31827c154f5074159f4e5dd6279443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0852-7993
OpenAccessLink https://www.proquest.com/docview/3065127109?pq-origsite=%requestingapplication%
PQID 3065127109
PQPubID 2034718
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_7fc5cd2aa6cc4b7dbf767af1e2d1a4d2
proquest_journals_3065127109
crossref_primary_10_1007_JHEP06_2024_024
springer_journals_10_1007_JHEP06_2024_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-05
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References K. Goldstein et al., Residues, modularity, and the Cardy limit of the 4dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP04 (2021) 216 [arXiv:2011.06605] [INSPIRE].
F. Benini and E. Milan, Black Holes in 4DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills Field Theory, Phys. Rev. X10 (2020) 021037 [arXiv:1812.09613] [INSPIRE].
GaberdielMRGopakumarRString Dual to Free N = 4 Supersymmetric Yang-Mills TheoryPhys. Rev. Lett.20211271316012021PhRvL.127m1601G434592610.1103/PhysRevLett.127.131601[arXiv:2104.08263] [INSPIRE]
EberhardtLGaberdielMRStrings on AdS3 × S3 × S3 × S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE]
Cabo-BizetACassaniDMartelliDMurthySMicroscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5black holesJHEP2019100622019JHEP...10..062C10.1007/JHEP10(2019)062[arXiv:1810.11442] [INSPIRE]
KinneyJMaldacenaJMMinwallaSRajuSAn Index for 4 dimensional super conformal theoriesCommun. Math. Phys.20072752092007CMaPh.275..209K233577410.1007/s00220-007-0258-7[hep-th/0510251] [INSPIRE]
BudzikKGaiottoDTwisted holography without conformal symmetryJHEP2023121042023JHEP...12..104B468302910.1007/JHEP12(2023)104[arXiv:2211.01419] [INSPIRE]
CostelloKPaquetteNMSharmaABurns space and holographyJHEP2023101742023JHEP...10..174C466286910.1007/JHEP10(2023)174[arXiv:2306.00940] [INSPIRE]
M.R. Gaberdiel and F. Galvagno, Worldsheet dual of freeN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 quiver gauge theories, JHEP10 (2022) 077 [arXiv:2206.08795] [INSPIRE].
JejjalaVLeiYvan LeuvenSLiWModular factorization of superconformal indicesJHEP2023101052023JHEP...10..105J465738310.1007/JHEP10(2023)105[arXiv:2210.17551] [INSPIRE]
GaberdielMRGopakumarRLiWPengCHigher Spins and Yangian SymmetriesJHEP2017041522017JHEP...04..152G365011610.1007/JHEP04(2017)152[arXiv:1702.05100] [INSPIRE]
C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math.133 (1995) 637 [hep-th/9207094] [INSPIRE].
OhJYagiJChiral algebras from Ω-deformationJHEP2019081432019JHEP...08..143O401341510.1007/JHEP08(2019)143[arXiv:1903.11123] [INSPIRE]
DeiAGaberdielMRGopakumarRKnightonBFree field world-sheet correlators for AdS3JHEP2021020812021JHEP...02..081D10.1007/JHEP02(2021)081[arXiv:2009.11306] [INSPIRE]
K. Costello and S. Li, Twisted supergravity and its quantization, arXiv:1606.00365 [INSPIRE].
A.M. Polyakov, Gauge fields and space-time, Int. J. Mod. Phys. A17S1 (2002) 119 [hep-th/0110196] [INSPIRE].
JeongSSCFT/VOA correspondence via Ω-deformationJHEP2019101712019JHEP...10..171J405585810.1007/JHEP10(2019)171[arXiv:1904.00927] [INSPIRE]
A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality, hep-th/0612119 [INSPIRE].
BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE]
GaberdielMRGopakumarRThe worldsheet dual of free super Yang-Mills in 4DJHEP2021111292021JHEP...11..129G436872810.1007/JHEP11(2021)129[arXiv:2105.10496] [INSPIRE]
EberhardtLGaberdielMRGopakumarRThe Worldsheet Dual of the Symmetric Product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE]
KutasovDLarsenFPartition sums and entropy bounds in weakly coupled CFTJHEP2001010012001JHEP...01..001K181853310.1088/1126-6708/2001/01/001[hep-th/0009244] [INSPIRE]
BianchiMMoralesJFSamtlebenHOn stringy AdS5 × S5and higher spin holographyJHEP2003070622003JHEP...07..062B10.1088/1126-6708/2003/07/062[hep-th/0305052] [INSPIRE]
BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE]
SundborgBThe Hagedorn transition, deconfinement and N = 4 SYM theoryNucl. Phys. B20005733492000NuPhB.573..349S175174110.1016/S0550-3213(00)00044-4[hep-th/9908001] [INSPIRE]
GaberdielMRPengCZadehIGHiggsing the stringy higher spin symmetryJHEP2015101012015JHEP...10..101G343553810.1007/JHEP10(2015)101[arXiv:1506.02045] [INSPIRE]
K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.09257 [INSPIRE].
BeniniFMilanEA Bethe Ansatz type formula for the superconformal indexCommun. Math. Phys.202037614132020CMaPh.376.1413B410397110.1007/s00220-019-03679-y[arXiv:1811.04107] [INSPIRE]
C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].
G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer New York (1987) [https://doi.org/10.1007/978-1-4612-4664-0].
BeemCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE]
V. Jejjala, Y. Lei, S. van Leuven and W. Li, SL(3, ℤ) Modularity and New Cardy limits of theN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP11 (2021) 047 [arXiv:2104.07030] [INSPIRE].
C. Beem et al., TheN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE].
D. Butson, Equivariant localization in factorization homology and applications in mathematical physics II: Gauge theory applications, arXiv:2011.14978 [INSPIRE].
BudzikKGaiottoDGiant gravitons in twisted holographyJHEP2023101312023JHEP...10..131B466026110.1007/JHEP10(2023)131[arXiv:2106.14859] [INSPIRE]
GaberdielMRGopakumarRLarge N = 4 HolographyJHEP2013090362013JHEP...09..036G10.1007/JHEP09(2013)036[arXiv:1305.4181] [INSPIRE]
S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
C. Beem, L. Rastelli and B.C. van Rees, MoreN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal bootstrap, Phys. Rev. D96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
K. Costello and D. Gaiotto, Vertex Operator Algebras and 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauge theories, JHEP05 (2019) 018 [arXiv:1804.06460] [INSPIRE].
AharonyOThe Hagedorn-deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE]
23644_CR41
J Kinney (23644_CR27) 2007; 275
23644_CR25
23644_CR28
23644_CR22
A Dei (23644_CR29) 2021; 02
23644_CR24
C Beem (23644_CR1) 2015; 336
A Cabo-Bizet (23644_CR35) 2019; 10
N Berkovits (23644_CR21) 1999; 03
O Aharony (23644_CR31) 2004; 8
J Oh (23644_CR9) 2019; 08
L Eberhardt (23644_CR20) 2019; 06
MR Gaberdiel (23644_CR17) 2021; 127
L Eberhardt (23644_CR19) 2019; 04
B Sundborg (23644_CR30) 2000; 573
MR Gaberdiel (23644_CR34) 2015; 10
K Costello (23644_CR16) 2023; 10
F Benini (23644_CR40) 2020; 376
K Budzik (23644_CR14) 2023; 10
23644_CR36
MR Gaberdiel (23644_CR32) 2013; 09
23644_CR37
M Bianchi (23644_CR26) 2003; 07
23644_CR38
C Beem (23644_CR2) 2015; 05
23644_CR11
23644_CR12
23644_CR13
23644_CR8
23644_CR7
23644_CR6
23644_CR5
23644_CR4
MR Gaberdiel (23644_CR18) 2021; 11
MR Gaberdiel (23644_CR33) 2017; 04
23644_CR3
D Kutasov (23644_CR23) 2001; 01
K Budzik (23644_CR15) 2023; 12
V Jejjala (23644_CR39) 2023; 10
S Jeong (23644_CR10) 2019; 10
References_xml – reference: V. Jejjala, Y. Lei, S. van Leuven and W. Li, SL(3, ℤ) Modularity and New Cardy limits of theN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP11 (2021) 047 [arXiv:2104.07030] [INSPIRE].
– reference: BudzikKGaiottoDGiant gravitons in twisted holographyJHEP2023101312023JHEP...10..131B466026110.1007/JHEP10(2023)131[arXiv:2106.14859] [INSPIRE]
– reference: C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].
– reference: SundborgBThe Hagedorn transition, deconfinement and N = 4 SYM theoryNucl. Phys. B20005733492000NuPhB.573..349S175174110.1016/S0550-3213(00)00044-4[hep-th/9908001] [INSPIRE]
– reference: DeiAGaberdielMRGopakumarRKnightonBFree field world-sheet correlators for AdS3JHEP2021020812021JHEP...02..081D10.1007/JHEP02(2021)081[arXiv:2009.11306] [INSPIRE]
– reference: AharonyOThe Hagedorn-deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE]
– reference: A.M. Polyakov, Gauge fields and space-time, Int. J. Mod. Phys. A17S1 (2002) 119 [hep-th/0110196] [INSPIRE].
– reference: K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.09257 [INSPIRE].
– reference: A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality, hep-th/0612119 [INSPIRE].
– reference: BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE]
– reference: C. Beem et al., TheN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE].
– reference: GaberdielMRGopakumarRLiWPengCHigher Spins and Yangian SymmetriesJHEP2017041522017JHEP...04..152G365011610.1007/JHEP04(2017)152[arXiv:1702.05100] [INSPIRE]
– reference: K. Costello and S. Li, Twisted supergravity and its quantization, arXiv:1606.00365 [INSPIRE].
– reference: KinneyJMaldacenaJMMinwallaSRajuSAn Index for 4 dimensional super conformal theoriesCommun. Math. Phys.20072752092007CMaPh.275..209K233577410.1007/s00220-007-0258-7[hep-th/0510251] [INSPIRE]
– reference: Cabo-BizetACassaniDMartelliDMurthySMicroscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5black holesJHEP2019100622019JHEP...10..062C10.1007/JHEP10(2019)062[arXiv:1810.11442] [INSPIRE]
– reference: K. Goldstein et al., Residues, modularity, and the Cardy limit of the 4dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP04 (2021) 216 [arXiv:2011.06605] [INSPIRE].
– reference: JejjalaVLeiYvan LeuvenSLiWModular factorization of superconformal indicesJHEP2023101052023JHEP...10..105J465738310.1007/JHEP10(2023)105[arXiv:2210.17551] [INSPIRE]
– reference: F. Benini and E. Milan, Black Holes in 4DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills Field Theory, Phys. Rev. X10 (2020) 021037 [arXiv:1812.09613] [INSPIRE].
– reference: S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
– reference: BianchiMMoralesJFSamtlebenHOn stringy AdS5 × S5and higher spin holographyJHEP2003070622003JHEP...07..062B10.1088/1126-6708/2003/07/062[hep-th/0305052] [INSPIRE]
– reference: BeemCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE]
– reference: BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE]
– reference: C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
– reference: D. Butson, Equivariant localization in factorization homology and applications in mathematical physics II: Gauge theory applications, arXiv:2011.14978 [INSPIRE].
– reference: GaberdielMRPengCZadehIGHiggsing the stringy higher spin symmetryJHEP2015101012015JHEP...10..101G343553810.1007/JHEP10(2015)101[arXiv:1506.02045] [INSPIRE]
– reference: C. Beem, L. Rastelli and B.C. van Rees, MoreN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal bootstrap, Phys. Rev. D96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
– reference: BeniniFMilanEA Bethe Ansatz type formula for the superconformal indexCommun. Math. Phys.202037614132020CMaPh.376.1413B410397110.1007/s00220-019-03679-y[arXiv:1811.04107] [INSPIRE]
– reference: CostelloKPaquetteNMSharmaABurns space and holographyJHEP2023101742023JHEP...10..174C466286910.1007/JHEP10(2023)174[arXiv:2306.00940] [INSPIRE]
– reference: K. Costello and D. Gaiotto, Vertex Operator Algebras and 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauge theories, JHEP05 (2019) 018 [arXiv:1804.06460] [INSPIRE].
– reference: GaberdielMRGopakumarRThe worldsheet dual of free super Yang-Mills in 4DJHEP2021111292021JHEP...11..129G436872810.1007/JHEP11(2021)129[arXiv:2105.10496] [INSPIRE]
– reference: M.R. Gaberdiel and F. Galvagno, Worldsheet dual of freeN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 quiver gauge theories, JHEP10 (2022) 077 [arXiv:2206.08795] [INSPIRE].
– reference: JeongSSCFT/VOA correspondence via Ω-deformationJHEP2019101712019JHEP...10..171J405585810.1007/JHEP10(2019)171[arXiv:1904.00927] [INSPIRE]
– reference: BudzikKGaiottoDTwisted holography without conformal symmetryJHEP2023121042023JHEP...12..104B468302910.1007/JHEP12(2023)104[arXiv:2211.01419] [INSPIRE]
– reference: EberhardtLGaberdielMRStrings on AdS3 × S3 × S3 × S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE]
– reference: GaberdielMRGopakumarRString Dual to Free N = 4 Supersymmetric Yang-Mills TheoryPhys. Rev. Lett.20211271316012021PhRvL.127m1601G434592610.1103/PhysRevLett.127.131601[arXiv:2104.08263] [INSPIRE]
– reference: KutasovDLarsenFPartition sums and entropy bounds in weakly coupled CFTJHEP2001010012001JHEP...01..001K181853310.1088/1126-6708/2001/01/001[hep-th/0009244] [INSPIRE]
– reference: G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer New York (1987) [https://doi.org/10.1007/978-1-4612-4664-0].
– reference: EberhardtLGaberdielMRGopakumarRThe Worldsheet Dual of the Symmetric Product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE]
– reference: E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math.133 (1995) 637 [hep-th/9207094] [INSPIRE].
– reference: GaberdielMRGopakumarRLarge N = 4 HolographyJHEP2013090362013JHEP...09..036G10.1007/JHEP09(2013)036[arXiv:1305.4181] [INSPIRE]
– reference: OhJYagiJChiral algebras from Ω-deformationJHEP2019081432019JHEP...08..143O401341510.1007/JHEP08(2019)143[arXiv:1903.11123] [INSPIRE]
– ident: 23644_CR5
  doi: 10.1007/JHEP05(2015)017
– ident: 23644_CR12
– ident: 23644_CR24
  doi: 10.1142/S0217751X02013071
– ident: 23644_CR28
  doi: 10.1007/978-3-0348-9217-9_28
– volume: 08
  start-page: 143
  year: 2019
  ident: 23644_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)143
– volume: 02
  start-page: 081
  year: 2021
  ident: 23644_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)081
– ident: 23644_CR25
  doi: 10.1007/978-1-4612-4664-0
– volume: 573
  start-page: 349
  year: 2000
  ident: 23644_CR30
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00044-4
– ident: 23644_CR37
  doi: 10.1007/JHEP04(2021)216
– volume: 10
  start-page: 131
  year: 2023
  ident: 23644_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP10(2023)131
– ident: 23644_CR38
  doi: 10.1007/JHEP11(2021)047
– volume: 06
  start-page: 035
  year: 2019
  ident: 23644_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)035
– ident: 23644_CR3
  doi: 10.1007/JHEP03(2016)183
– volume: 376
  start-page: 1413
  year: 2020
  ident: 23644_CR40
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-019-03679-y
– volume: 10
  start-page: 105
  year: 2023
  ident: 23644_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP10(2023)105
– volume: 04
  start-page: 152
  year: 2017
  ident: 23644_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)152
– volume: 10
  start-page: 062
  year: 2019
  ident: 23644_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)062
– ident: 23644_CR13
– volume: 10
  start-page: 174
  year: 2023
  ident: 23644_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP10(2023)174
– ident: 23644_CR4
  doi: 10.1103/PhysRevD.96.046014
– ident: 23644_CR11
– ident: 23644_CR22
  doi: 10.1007/JHEP10(2022)077
– ident: 23644_CR6
  doi: 10.1103/PhysRevD.93.025016
– volume: 07
  start-page: 062
  year: 2003
  ident: 23644_CR26
  publication-title: JHEP
  doi: 10.1088/1126-6708/2003/07/062
– volume: 336
  start-page: 1359
  year: 2015
  ident: 23644_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2272-x
– volume: 12
  start-page: 104
  year: 2023
  ident: 23644_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP12(2023)104
– volume: 10
  start-page: 101
  year: 2015
  ident: 23644_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP10(2015)101
– volume: 03
  start-page: 018
  year: 1999
  ident: 23644_CR21
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/03/018
– volume: 09
  start-page: 036
  year: 2013
  ident: 23644_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)036
– volume: 10
  start-page: 171
  year: 2019
  ident: 23644_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)171
– ident: 23644_CR8
  doi: 10.1007/JHEP05(2019)018
– volume: 05
  start-page: 020
  year: 2015
  ident: 23644_CR2
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)020
– volume: 11
  start-page: 129
  year: 2021
  ident: 23644_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)129
– volume: 04
  start-page: 103
  year: 2019
  ident: 23644_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)103
– volume: 275
  start-page: 209
  year: 2007
  ident: 23644_CR27
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-007-0258-7
– volume: 8
  start-page: 603
  year: 2004
  ident: 23644_CR31
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2004.v8.n4.a1
– volume: 127
  start-page: 131601
  year: 2021
  ident: 23644_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.131601
– ident: 23644_CR7
– volume: 01
  start-page: 001
  year: 2001
  ident: 23644_CR23
  publication-title: JHEP
  doi: 10.1088/1126-6708/2001/01/001
– ident: 23644_CR41
  doi: 10.1103/PhysRevX.10.021037
– ident: 23644_CR36
SSID ssj0015190
Score 2.4436953
Snippet A bstract The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its...
The chiral algebra of a 4D $$ \mathcal{N} $$ N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory...
The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet...
Abstract The chiral algebra of a 4D N $$ \mathcal{N} $$ ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 24
SubjectTerms AdS-CFT Correspondence
Algebra
Classical and Quantum Gravitation
Conformal and W Symmetry
Elementary Particles
Field theory
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Supersymmetric Gauge Theory
Symmetry
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxFMECsrA0A5RE8ePZISqVVUJxEClbpZztlWWgtrw_zk7CVAkxMKQJY6iy13O9519_o6Q28LaEjSmqVDZImGlNkkpCpZkYIw_scKE9euQD49itmDzJV9-a_Xla8IaeuBGcSPpgIOhWgsAVklTOSmkdpmlJtPMhNkXY16XTLX7B4hL0o7IJ5Wj-WzylIoBJvpsmFK2E4MCVf8OvvyxJRoizfSIHLYQMb5rRDsme3Z9QvZDqSZsT8nNePWywXHfoANT3dgfEIkD8el2ZW19RhbTyfN4lrRdDhLIZVbjJCgqkYMVFRPAUsNL7XTKKyvAyRS0zh36HZWAYMfxgABKxyw3RlB0Jpafk976dW0vSEwN4o1MI2D2Xc3BlAXiGysMBQBhNI3IoPtu9daQWaiOtrhRkfIqUnhF5N7r5fMxz0IdbqBtVGsb9ZdtItLvtKpa19gq36o-o74ENCLDTtNfw7_Ic_kf8lyRA_--UOnF-6RXb97tNWKKuroJv88H-UvISA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4CIkF8RSFUmVgaIeIxPEjGSFqVVUCMVCpm-WcbZWloDb8f85uUtQiBgZLUewoydkXf5e7-46Q-9zaAjSaqVDZPGaFNnEhchanYIzPWGHC-v-Qzy9iPGWTGZ81JEk-F2bHf_8wGQ9fE9FHE50NsO2TQ55m0tdoKEW5cRcgDEla3p7fF21tOYGZfwtO7nhAw8YyOiUnDSKMHtdTeEb27OKcHIXITFhdkF45f19iv6_HgZZt5PNBosBzuppbW1-S6Wj4Vo7jpqhBDJlMa_zmiUpkYEXFBLDE8EI7nfDKCnAyAa0zh2pGJSC2cTxs-IVjlhsjKOoOy67IweJjYa9JRA3Ci1QjPvZFzMEUOcIZKwwFAGE07ZB--97qc81doVqW4rWIlBeRwtYhT14um2GedDqcwLlQzRpW0gEHQ7UWAKySpnJSSO1SS02qmcH7dVupqkYTVspXpk-pj_jskEEr6Z_uP57n5h9jb8mxPwzxW7xLDurll71DpFBXvbBKvgEJWbUG
  priority: 102
  providerName: Springer Nature
Title Chiral algebra from worldsheet
URI https://link.springer.com/article/10.1007/JHEP06(2024)024
https://www.proquest.com/docview/3065127109
https://doaj.org/article/7fc5cd2aa6cc4b7dbf767af1e2d1a4d2
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na8IwFH9MZbDL2Cdzc-JhBz0U25im7Wmo6ESYyJjgraQv6dxFnXb__15iqzjYDg20CU37krz83kfeA3gKtY5QkpiKiQ4dHknlRCLkjodKmRMrXGijh3ydiNGMj-f-PFe4bXO3yoInWkatVmh05G2T4dxjxnPwef3lmKxRxrqap9AoQYVYcBiWodIbTKZvezsC4RO3COjjBu3xaDB1RZMEft5yGT_ai2zI_iOc-cs0anec4QWc51Cx0d2N7SWc6OUVnFqXTdxeQ72_-NxQvUnUQSJvwxwUadgAqNuF1tkNzIaD9_7IybMdONgJvIyYoUhEB7VIuEDuKj-SqXT9RAtMAxel7KS0_liABHpS3yKBKOXaV0owWlS8cwvl5Wqp76DBFOEOTxJwNtnNUUUh4RwtFENEoSSrQrP473i9C2oRF-GLdySKDYliuqrQM3TZNzPRqO2D1eYjzid3HKToo2JSCkSeBCpJAxHI1NNMeZIr6q9WUDXOl8g2PgxoFVoFpQ_Vf3zP_f-veoAz09L6cvk1KGebb_1IqCFL6lAKhy_1fILQXZ9xU4p-3crhVM5Y9wc_tMNF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VEIIF8RTlmQEkOkQkjuM0A0K8SoGCGIrEZpyzQ1na0hYh_hS_kbPbFIEEW4csceIkl8--7-x7AOxVjUlRkZmKman6PFXaT0WV-yFqbSNWuDB2HfL2TtQf-PVj_FiCzyIWxrpVFnOim6h1B-0a-aGtcB4y6zl43H31bdUou7talNAYwuLGfLyTydY_ujqn_7vPWO2ieVb3R1UFfIyScECTjshEhEZkXCAPdJyqXAVxZgTmSYBKRTnhnCVI5CKPncZNc25irQUj8PKI-p2CGR6RJreR6bXL8a4FsaGgSB8UJIfX9Yv7QBwwUoOVgPEfms8VCPjBan9txDr9VluEhREx9U6GSFqCkmkvw6xzEMX-CuyctV561G7LgpCB7dmwFM-lW-23jBmswsNEpLAG0-1O26yDxzSxnFARTbe11FGnVWJVRmiGiEIrVoaD4rtld5hCQxbJkociklZEko4ynFq5jC-zua_diU7vWY6GkkxyjFEzpQQizxKd5YlIVB4apkPFNT1vq5CqHA3IvvyGTxkqhaS_m_94n43_u9qFuXrztiEbV3c3mzBv73JeZPEWTA96b2ab-Mog23Eg8eBp0qj8Aual-bo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9irZi4TGMwUcYgh02CQ9TEdezmME3rl_oxqgqB1JvnPNtjlxbaIsS_tr9uz2lCxaTt1kMuceIkLz_7_Z79PgA-Na1NUZOZiplthjzVJkxFk4cxGuMjVriwfh3yciz6N3w4TaY78LuMhfFuleWcmE_UZo5-jbzuK5zHzHsO1l3hFjHp9L7e3Ye-gpTfaS3LaawhMrJPj2S-Lb8MOvSvPzPW6163-2FRYSDEhoxXNAGJTDTQiowL5JFJUu10lGRWoJMRat1whHkmkYiGS3LtmzpuE2MEIyDzBvX7CqrSW0UVqLa648nV8x4GcaOoTCYUyfqw351E4pyRUryIGH-hB_NyAS847l_bsrm2672FNwVNDb6tcbUPO3b2DnZzd1FcHsBp-_bXgtp9kRAytwMfpBLkyVeXt9auDuFmK3J4D5XZfGaPIGCGOE-sibT7yupo0iZxLCsMQ0RhNKvBefnd6m6dUEOVqZPXIlJeRIqOGrS8XJ4v85mw8xPzxU9VDCwlHSZomNYCkWfSZE4KqV1smYk1N_S8k1KqqhieS7UBUw0uSklvmv_xPsf_7-oMXhMi1ffBePQB9vxNuUtZcgKV1eLBfiTysspOC5QE8GPbwPwDvIz_TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+algebra+from+worldsheet&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Wei&rft.date=2024-06-05&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2024&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282024%29024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP06_2024_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon