Chiral algebra from worldsheet
A bstract The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the wor...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 6; pp. 24 - 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
05.06.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The chiral algebra of a 4D
N
≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D
N
= 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D
N
= 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at
generic
coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D
N
= 2 superconformal field theories that arise as orbifolds of 4D
N
= 4 SYM. |
---|---|
AbstractList | The chiral algebra of a 4D $$ \mathcal{N} $$ N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D $$ \mathcal{N} $$ N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D $$ \mathcal{N} $$ N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D $$ \mathcal{N} $$ N = 2 superconformal field theories that arise as orbifolds of 4D $$ \mathcal{N} $$ N = 4 SYM. The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N = 2 superconformal field theories that arise as orbifolds of 4D N = 4 SYM. A bstract The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N = 2 superconformal field theories that arise as orbifolds of 4D N = 4 SYM. Abstract The chiral algebra of a 4D N $$ \mathcal{N} $$ ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet rich) structure has been useful in constraining and classifying 4D N $$ \mathcal{N} $$ = 2 SCFTs. We study how the chiral algebra arises from the worldsheet perspective. In the worldsheet CFT dual of 4D N $$ \mathcal{N} $$ = 4 SYM at the free point, we extract the subsector that corresponds to the spacetime Schur operators at generic coupling, and show how they generate the chiral algebra. The result can be easily generalized to 4D N $$ \mathcal{N} $$ = 2 superconformal field theories that arise as orbifolds of 4D N $$ \mathcal{N} $$ = 4 SYM. |
ArticleNumber | 24 |
Author | Li, Wei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-0852-7993 surname: Li fullname: Li, Wei email: weili@mail.itp.ac.cn organization: Institute of Theoretical Physics, Chinese Academy of Sciences |
BookMark | eNp1kMtLAzEQxoMo2FbP3qTgRQ9rJ9k8ukcp1VYKetBzmM2jD7abmmwR_3u3rqgXD8MMw_f9Zvj65LgOtSPkgsItBVCjx9n0GeQ1A8Zv2joiPQqsyMZcFcd_5lPST2kDQAUtoEcuJ6t1xGqI1dKVEYc-hu3wPcTKppVzzRk58Vgld_7dB-T1fvoymWWLp4f55G6RmVzRJsupLGVunCy5NBysKNAjiNJJ4xUYxNzndMyUoYJ7AYpTUXjuhLWSqYLzfEDmHdcG3OhdXG8xfuiAa_21CHGpMTZrUzmtvBHGMkRpDC-VLb2SCj11zFLklrWsq461i-Ft71KjN2Ef6_Z9nYMUlCkKRasadSoTQ0rR-Z-rFPQhUN0Fqg-B6rZaB3SO1CrrpYu_3P8sn0Sld5w |
Cites_doi | 10.1007/JHEP05(2015)017 10.1142/S0217751X02013071 10.1007/978-3-0348-9217-9_28 10.1007/JHEP08(2019)143 10.1007/JHEP02(2021)081 10.1007/978-1-4612-4664-0 10.1016/S0550-3213(00)00044-4 10.1007/JHEP04(2021)216 10.1007/JHEP10(2023)131 10.1007/JHEP11(2021)047 10.1007/JHEP06(2019)035 10.1007/JHEP03(2016)183 10.1007/s00220-019-03679-y 10.1007/JHEP10(2023)105 10.1007/JHEP04(2017)152 10.1007/JHEP10(2019)062 10.1007/JHEP10(2023)174 10.1103/PhysRevD.96.046014 10.1007/JHEP10(2022)077 10.1103/PhysRevD.93.025016 10.1088/1126-6708/2003/07/062 10.1007/s00220-014-2272-x 10.1007/JHEP12(2023)104 10.1007/JHEP10(2015)101 10.1088/1126-6708/1999/03/018 10.1007/JHEP09(2013)036 10.1007/JHEP10(2019)171 10.1007/JHEP05(2019)018 10.1007/JHEP05(2015)020 10.1007/JHEP11(2021)129 10.1007/JHEP04(2019)103 10.1007/s00220-007-0258-7 10.4310/ATMP.2004.v8.n4.a1 10.1103/PhysRevLett.127.131601 10.1088/1126-6708/2001/01/001 10.1103/PhysRevX.10.021037 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP06(2024)024 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 28 |
ExternalDocumentID | oai_doaj_org_article_7fc5cd2aa6cc4b7dbf767af1e2d1a4d2 10_1007_JHEP06_2024_024 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c371t-316b63ce6b46c40d59afa05be6cf70caa3f31827c154f5074159f4e5dd6279443 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:27:32 EDT 2025 Sat Jul 26 01:26:01 EDT 2025 Tue Jul 01 05:16:35 EDT 2025 Fri Feb 21 02:42:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | AdS-CFT Correspondence Supersymmetric Gauge Theory Conformal and W Symmetry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-316b63ce6b46c40d59afa05be6cf70caa3f31827c154f5074159f4e5dd6279443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0852-7993 |
OpenAccessLink | https://www.proquest.com/docview/3065127109?pq-origsite=%requestingapplication% |
PQID | 3065127109 |
PQPubID | 2034718 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7fc5cd2aa6cc4b7dbf767af1e2d1a4d2 proquest_journals_3065127109 crossref_primary_10_1007_JHEP06_2024_024 springer_journals_10_1007_JHEP06_2024_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-05 |
PublicationDateYYYYMMDD | 2024-06-05 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | K. Goldstein et al., Residues, modularity, and the Cardy limit of the 4dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP04 (2021) 216 [arXiv:2011.06605] [INSPIRE]. F. Benini and E. Milan, Black Holes in 4DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills Field Theory, Phys. Rev. X10 (2020) 021037 [arXiv:1812.09613] [INSPIRE]. GaberdielMRGopakumarRString Dual to Free N = 4 Supersymmetric Yang-Mills TheoryPhys. Rev. Lett.20211271316012021PhRvL.127m1601G434592610.1103/PhysRevLett.127.131601[arXiv:2104.08263] [INSPIRE] EberhardtLGaberdielMRStrings on AdS3 × S3 × S3 × S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE] Cabo-BizetACassaniDMartelliDMurthySMicroscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5black holesJHEP2019100622019JHEP...10..062C10.1007/JHEP10(2019)062[arXiv:1810.11442] [INSPIRE] KinneyJMaldacenaJMMinwallaSRajuSAn Index for 4 dimensional super conformal theoriesCommun. Math. Phys.20072752092007CMaPh.275..209K233577410.1007/s00220-007-0258-7[hep-th/0510251] [INSPIRE] BudzikKGaiottoDTwisted holography without conformal symmetryJHEP2023121042023JHEP...12..104B468302910.1007/JHEP12(2023)104[arXiv:2211.01419] [INSPIRE] CostelloKPaquetteNMSharmaABurns space and holographyJHEP2023101742023JHEP...10..174C466286910.1007/JHEP10(2023)174[arXiv:2306.00940] [INSPIRE] M.R. Gaberdiel and F. Galvagno, Worldsheet dual of freeN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 quiver gauge theories, JHEP10 (2022) 077 [arXiv:2206.08795] [INSPIRE]. JejjalaVLeiYvan LeuvenSLiWModular factorization of superconformal indicesJHEP2023101052023JHEP...10..105J465738310.1007/JHEP10(2023)105[arXiv:2210.17551] [INSPIRE] GaberdielMRGopakumarRLiWPengCHigher Spins and Yangian SymmetriesJHEP2017041522017JHEP...04..152G365011610.1007/JHEP04(2017)152[arXiv:1702.05100] [INSPIRE] C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math.133 (1995) 637 [hep-th/9207094] [INSPIRE]. OhJYagiJChiral algebras from Ω-deformationJHEP2019081432019JHEP...08..143O401341510.1007/JHEP08(2019)143[arXiv:1903.11123] [INSPIRE] DeiAGaberdielMRGopakumarRKnightonBFree field world-sheet correlators for AdS3JHEP2021020812021JHEP...02..081D10.1007/JHEP02(2021)081[arXiv:2009.11306] [INSPIRE] K. Costello and S. Li, Twisted supergravity and its quantization, arXiv:1606.00365 [INSPIRE]. A.M. Polyakov, Gauge fields and space-time, Int. J. Mod. Phys. A17S1 (2002) 119 [hep-th/0110196] [INSPIRE]. JeongSSCFT/VOA correspondence via Ω-deformationJHEP2019101712019JHEP...10..171J405585810.1007/JHEP10(2019)171[arXiv:1904.00927] [INSPIRE] A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality, hep-th/0612119 [INSPIRE]. BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE] GaberdielMRGopakumarRThe worldsheet dual of free super Yang-Mills in 4DJHEP2021111292021JHEP...11..129G436872810.1007/JHEP11(2021)129[arXiv:2105.10496] [INSPIRE] EberhardtLGaberdielMRGopakumarRThe Worldsheet Dual of the Symmetric Product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE] KutasovDLarsenFPartition sums and entropy bounds in weakly coupled CFTJHEP2001010012001JHEP...01..001K181853310.1088/1126-6708/2001/01/001[hep-th/0009244] [INSPIRE] BianchiMMoralesJFSamtlebenHOn stringy AdS5 × S5and higher spin holographyJHEP2003070622003JHEP...07..062B10.1088/1126-6708/2003/07/062[hep-th/0305052] [INSPIRE] BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE] SundborgBThe Hagedorn transition, deconfinement and N = 4 SYM theoryNucl. Phys. B20005733492000NuPhB.573..349S175174110.1016/S0550-3213(00)00044-4[hep-th/9908001] [INSPIRE] GaberdielMRPengCZadehIGHiggsing the stringy higher spin symmetryJHEP2015101012015JHEP...10..101G343553810.1007/JHEP10(2015)101[arXiv:1506.02045] [INSPIRE] K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.09257 [INSPIRE]. BeniniFMilanEA Bethe Ansatz type formula for the superconformal indexCommun. Math. Phys.202037614132020CMaPh.376.1413B410397110.1007/s00220-019-03679-y[arXiv:1811.04107] [INSPIRE] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D93 (2016) 025016 [arXiv:1507.05637] [INSPIRE]. G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer New York (1987) [https://doi.org/10.1007/978-1-4612-4664-0]. BeemCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE] V. Jejjala, Y. Lei, S. van Leuven and W. Li, SL(3, ℤ) Modularity and New Cardy limits of theN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP11 (2021) 047 [arXiv:2104.07030] [INSPIRE]. C. Beem et al., TheN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. D. Butson, Equivariant localization in factorization homology and applications in mathematical physics II: Gauge theory applications, arXiv:2011.14978 [INSPIRE]. BudzikKGaiottoDGiant gravitons in twisted holographyJHEP2023101312023JHEP...10..131B466026110.1007/JHEP10(2023)131[arXiv:2106.14859] [INSPIRE] GaberdielMRGopakumarRLarge N = 4 HolographyJHEP2013090362013JHEP...09..036G10.1007/JHEP09(2013)036[arXiv:1305.4181] [INSPIRE] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE]. C. Beem, L. Rastelli and B.C. van Rees, MoreN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal bootstrap, Phys. Rev. D96 (2017) 046014 [arXiv:1612.02363] [INSPIRE]. K. Costello and D. Gaiotto, Vertex Operator Algebras and 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauge theories, JHEP05 (2019) 018 [arXiv:1804.06460] [INSPIRE]. AharonyOThe Hagedorn-deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE] 23644_CR41 J Kinney (23644_CR27) 2007; 275 23644_CR25 23644_CR28 23644_CR22 A Dei (23644_CR29) 2021; 02 23644_CR24 C Beem (23644_CR1) 2015; 336 A Cabo-Bizet (23644_CR35) 2019; 10 N Berkovits (23644_CR21) 1999; 03 O Aharony (23644_CR31) 2004; 8 J Oh (23644_CR9) 2019; 08 L Eberhardt (23644_CR20) 2019; 06 MR Gaberdiel (23644_CR17) 2021; 127 L Eberhardt (23644_CR19) 2019; 04 B Sundborg (23644_CR30) 2000; 573 MR Gaberdiel (23644_CR34) 2015; 10 K Costello (23644_CR16) 2023; 10 F Benini (23644_CR40) 2020; 376 K Budzik (23644_CR14) 2023; 10 23644_CR36 MR Gaberdiel (23644_CR32) 2013; 09 23644_CR37 M Bianchi (23644_CR26) 2003; 07 23644_CR38 C Beem (23644_CR2) 2015; 05 23644_CR11 23644_CR12 23644_CR13 23644_CR8 23644_CR7 23644_CR6 23644_CR5 23644_CR4 MR Gaberdiel (23644_CR18) 2021; 11 MR Gaberdiel (23644_CR33) 2017; 04 23644_CR3 D Kutasov (23644_CR23) 2001; 01 K Budzik (23644_CR15) 2023; 12 V Jejjala (23644_CR39) 2023; 10 S Jeong (23644_CR10) 2019; 10 |
References_xml | – reference: V. Jejjala, Y. Lei, S. van Leuven and W. Li, SL(3, ℤ) Modularity and New Cardy limits of theN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP11 (2021) 047 [arXiv:2104.07030] [INSPIRE]. – reference: BudzikKGaiottoDGiant gravitons in twisted holographyJHEP2023101312023JHEP...10..131B466026110.1007/JHEP10(2023)131[arXiv:2106.14859] [INSPIRE] – reference: C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D93 (2016) 025016 [arXiv:1507.05637] [INSPIRE]. – reference: SundborgBThe Hagedorn transition, deconfinement and N = 4 SYM theoryNucl. Phys. B20005733492000NuPhB.573..349S175174110.1016/S0550-3213(00)00044-4[hep-th/9908001] [INSPIRE] – reference: DeiAGaberdielMRGopakumarRKnightonBFree field world-sheet correlators for AdS3JHEP2021020812021JHEP...02..081D10.1007/JHEP02(2021)081[arXiv:2009.11306] [INSPIRE] – reference: AharonyOThe Hagedorn-deconfinement phase transition in weakly coupled large N gauge theoriesAdv. Theor. Math. Phys.20048603214149810.4310/ATMP.2004.v8.n4.a1[hep-th/0310285] [INSPIRE] – reference: A.M. Polyakov, Gauge fields and space-time, Int. J. Mod. Phys. A17S1 (2002) 119 [hep-th/0110196] [INSPIRE]. – reference: K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.09257 [INSPIRE]. – reference: A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality, hep-th/0612119 [INSPIRE]. – reference: BerkovitsNVafaCWittenEConformal field theory of AdS background with Ramond-Ramond fluxJHEP1999030181999JHEP...03..018B169677010.1088/1126-6708/1999/03/018[hep-th/9902098] [INSPIRE] – reference: C. Beem et al., TheN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. – reference: GaberdielMRGopakumarRLiWPengCHigher Spins and Yangian SymmetriesJHEP2017041522017JHEP...04..152G365011610.1007/JHEP04(2017)152[arXiv:1702.05100] [INSPIRE] – reference: K. Costello and S. Li, Twisted supergravity and its quantization, arXiv:1606.00365 [INSPIRE]. – reference: KinneyJMaldacenaJMMinwallaSRajuSAn Index for 4 dimensional super conformal theoriesCommun. Math. Phys.20072752092007CMaPh.275..209K233577410.1007/s00220-007-0258-7[hep-th/0510251] [INSPIRE] – reference: Cabo-BizetACassaniDMartelliDMurthySMicroscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5black holesJHEP2019100622019JHEP...10..062C10.1007/JHEP10(2019)062[arXiv:1810.11442] [INSPIRE] – reference: K. Goldstein et al., Residues, modularity, and the Cardy limit of the 4dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal index, JHEP04 (2021) 216 [arXiv:2011.06605] [INSPIRE]. – reference: JejjalaVLeiYvan LeuvenSLiWModular factorization of superconformal indicesJHEP2023101052023JHEP...10..105J465738310.1007/JHEP10(2023)105[arXiv:2210.17551] [INSPIRE] – reference: F. Benini and E. Milan, Black Holes in 4DN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills Field Theory, Phys. Rev. X10 (2020) 021037 [arXiv:1812.09613] [INSPIRE]. – reference: S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE]. – reference: BianchiMMoralesJFSamtlebenHOn stringy AdS5 × S5and higher spin holographyJHEP2003070622003JHEP...07..062B10.1088/1126-6708/2003/07/062[hep-th/0305052] [INSPIRE] – reference: BeemCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE] – reference: BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE] – reference: C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. – reference: D. Butson, Equivariant localization in factorization homology and applications in mathematical physics II: Gauge theory applications, arXiv:2011.14978 [INSPIRE]. – reference: GaberdielMRPengCZadehIGHiggsing the stringy higher spin symmetryJHEP2015101012015JHEP...10..101G343553810.1007/JHEP10(2015)101[arXiv:1506.02045] [INSPIRE] – reference: C. Beem, L. Rastelli and B.C. van Rees, MoreN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal bootstrap, Phys. Rev. D96 (2017) 046014 [arXiv:1612.02363] [INSPIRE]. – reference: BeniniFMilanEA Bethe Ansatz type formula for the superconformal indexCommun. Math. Phys.202037614132020CMaPh.376.1413B410397110.1007/s00220-019-03679-y[arXiv:1811.04107] [INSPIRE] – reference: CostelloKPaquetteNMSharmaABurns space and holographyJHEP2023101742023JHEP...10..174C466286910.1007/JHEP10(2023)174[arXiv:2306.00940] [INSPIRE] – reference: K. Costello and D. Gaiotto, Vertex Operator Algebras and 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 gauge theories, JHEP05 (2019) 018 [arXiv:1804.06460] [INSPIRE]. – reference: GaberdielMRGopakumarRThe worldsheet dual of free super Yang-Mills in 4DJHEP2021111292021JHEP...11..129G436872810.1007/JHEP11(2021)129[arXiv:2105.10496] [INSPIRE] – reference: M.R. Gaberdiel and F. Galvagno, Worldsheet dual of freeN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 quiver gauge theories, JHEP10 (2022) 077 [arXiv:2206.08795] [INSPIRE]. – reference: JeongSSCFT/VOA correspondence via Ω-deformationJHEP2019101712019JHEP...10..171J405585810.1007/JHEP10(2019)171[arXiv:1904.00927] [INSPIRE] – reference: BudzikKGaiottoDTwisted holography without conformal symmetryJHEP2023121042023JHEP...12..104B468302910.1007/JHEP12(2023)104[arXiv:2211.01419] [INSPIRE] – reference: EberhardtLGaberdielMRStrings on AdS3 × S3 × S3 × S1JHEP2019060352019JHEP...06..035E10.1007/JHEP06(2019)035[arXiv:1904.01585] [INSPIRE] – reference: GaberdielMRGopakumarRString Dual to Free N = 4 Supersymmetric Yang-Mills TheoryPhys. Rev. Lett.20211271316012021PhRvL.127m1601G434592610.1103/PhysRevLett.127.131601[arXiv:2104.08263] [INSPIRE] – reference: KutasovDLarsenFPartition sums and entropy bounds in weakly coupled CFTJHEP2001010012001JHEP...01..001K181853310.1088/1126-6708/2001/01/001[hep-th/0009244] [INSPIRE] – reference: G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer New York (1987) [https://doi.org/10.1007/978-1-4612-4664-0]. – reference: EberhardtLGaberdielMRGopakumarRThe Worldsheet Dual of the Symmetric Product CFTJHEP2019041032019JHEP...04..103E395397110.1007/JHEP04(2019)103[arXiv:1812.01007] [INSPIRE] – reference: E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math.133 (1995) 637 [hep-th/9207094] [INSPIRE]. – reference: GaberdielMRGopakumarRLarge N = 4 HolographyJHEP2013090362013JHEP...09..036G10.1007/JHEP09(2013)036[arXiv:1305.4181] [INSPIRE] – reference: OhJYagiJChiral algebras from Ω-deformationJHEP2019081432019JHEP...08..143O401341510.1007/JHEP08(2019)143[arXiv:1903.11123] [INSPIRE] – ident: 23644_CR5 doi: 10.1007/JHEP05(2015)017 – ident: 23644_CR12 – ident: 23644_CR24 doi: 10.1142/S0217751X02013071 – ident: 23644_CR28 doi: 10.1007/978-3-0348-9217-9_28 – volume: 08 start-page: 143 year: 2019 ident: 23644_CR9 publication-title: JHEP doi: 10.1007/JHEP08(2019)143 – volume: 02 start-page: 081 year: 2021 ident: 23644_CR29 publication-title: JHEP doi: 10.1007/JHEP02(2021)081 – ident: 23644_CR25 doi: 10.1007/978-1-4612-4664-0 – volume: 573 start-page: 349 year: 2000 ident: 23644_CR30 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00044-4 – ident: 23644_CR37 doi: 10.1007/JHEP04(2021)216 – volume: 10 start-page: 131 year: 2023 ident: 23644_CR14 publication-title: JHEP doi: 10.1007/JHEP10(2023)131 – ident: 23644_CR38 doi: 10.1007/JHEP11(2021)047 – volume: 06 start-page: 035 year: 2019 ident: 23644_CR20 publication-title: JHEP doi: 10.1007/JHEP06(2019)035 – ident: 23644_CR3 doi: 10.1007/JHEP03(2016)183 – volume: 376 start-page: 1413 year: 2020 ident: 23644_CR40 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03679-y – volume: 10 start-page: 105 year: 2023 ident: 23644_CR39 publication-title: JHEP doi: 10.1007/JHEP10(2023)105 – volume: 04 start-page: 152 year: 2017 ident: 23644_CR33 publication-title: JHEP doi: 10.1007/JHEP04(2017)152 – volume: 10 start-page: 062 year: 2019 ident: 23644_CR35 publication-title: JHEP doi: 10.1007/JHEP10(2019)062 – ident: 23644_CR13 – volume: 10 start-page: 174 year: 2023 ident: 23644_CR16 publication-title: JHEP doi: 10.1007/JHEP10(2023)174 – ident: 23644_CR4 doi: 10.1103/PhysRevD.96.046014 – ident: 23644_CR11 – ident: 23644_CR22 doi: 10.1007/JHEP10(2022)077 – ident: 23644_CR6 doi: 10.1103/PhysRevD.93.025016 – volume: 07 start-page: 062 year: 2003 ident: 23644_CR26 publication-title: JHEP doi: 10.1088/1126-6708/2003/07/062 – volume: 336 start-page: 1359 year: 2015 ident: 23644_CR1 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2272-x – volume: 12 start-page: 104 year: 2023 ident: 23644_CR15 publication-title: JHEP doi: 10.1007/JHEP12(2023)104 – volume: 10 start-page: 101 year: 2015 ident: 23644_CR34 publication-title: JHEP doi: 10.1007/JHEP10(2015)101 – volume: 03 start-page: 018 year: 1999 ident: 23644_CR21 publication-title: JHEP doi: 10.1088/1126-6708/1999/03/018 – volume: 09 start-page: 036 year: 2013 ident: 23644_CR32 publication-title: JHEP doi: 10.1007/JHEP09(2013)036 – volume: 10 start-page: 171 year: 2019 ident: 23644_CR10 publication-title: JHEP doi: 10.1007/JHEP10(2019)171 – ident: 23644_CR8 doi: 10.1007/JHEP05(2019)018 – volume: 05 start-page: 020 year: 2015 ident: 23644_CR2 publication-title: JHEP doi: 10.1007/JHEP05(2015)020 – volume: 11 start-page: 129 year: 2021 ident: 23644_CR18 publication-title: JHEP doi: 10.1007/JHEP11(2021)129 – volume: 04 start-page: 103 year: 2019 ident: 23644_CR19 publication-title: JHEP doi: 10.1007/JHEP04(2019)103 – volume: 275 start-page: 209 year: 2007 ident: 23644_CR27 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-007-0258-7 – volume: 8 start-page: 603 year: 2004 ident: 23644_CR31 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2004.v8.n4.a1 – volume: 127 start-page: 131601 year: 2021 ident: 23644_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.131601 – ident: 23644_CR7 – volume: 01 start-page: 001 year: 2001 ident: 23644_CR23 publication-title: JHEP doi: 10.1088/1126-6708/2001/01/001 – ident: 23644_CR41 doi: 10.1103/PhysRevX.10.021037 – ident: 23644_CR36 |
SSID | ssj0015190 |
Score | 2.4436953 |
Snippet | A
bstract
The chiral algebra of a 4D
N
≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its... The chiral algebra of a 4D $$ \mathcal{N} $$ N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory... The chiral algebra of a 4D N ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D theory and its rigid (yet... Abstract The chiral algebra of a 4D N $$ \mathcal{N} $$ ≥ 2 superconformal field theory is a vertex operator algebra generated by the Schur subsector of the 4D... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 24 |
SubjectTerms | AdS-CFT Correspondence Algebra Classical and Quantum Gravitation Conformal and W Symmetry Elementary Particles Field theory Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Supersymmetric Gauge Theory Symmetry |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxFMECsrA0A5RE8ePZISqVVUJxEClbpZztlWWgtrw_zk7CVAkxMKQJY6iy13O9519_o6Q28LaEjSmqVDZImGlNkkpCpZkYIw_scKE9euQD49itmDzJV9-a_Xla8IaeuBGcSPpgIOhWgsAVklTOSmkdpmlJtPMhNkXY16XTLX7B4hL0o7IJ5Wj-WzylIoBJvpsmFK2E4MCVf8OvvyxJRoizfSIHLYQMb5rRDsme3Z9QvZDqSZsT8nNePWywXHfoANT3dgfEIkD8el2ZW19RhbTyfN4lrRdDhLIZVbjJCgqkYMVFRPAUsNL7XTKKyvAyRS0zh36HZWAYMfxgABKxyw3RlB0Jpafk976dW0vSEwN4o1MI2D2Xc3BlAXiGysMBQBhNI3IoPtu9daQWaiOtrhRkfIqUnhF5N7r5fMxz0IdbqBtVGsb9ZdtItLvtKpa19gq36o-o74ENCLDTtNfw7_Ic_kf8lyRA_--UOnF-6RXb97tNWKKuroJv88H-UvISA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4CIkF8RSFUmVgaIeIxPEjGSFqVVUCMVCpm-WcbZWloDb8f85uUtQiBgZLUewoydkXf5e7-46Q-9zaAjSaqVDZPGaFNnEhchanYIzPWGHC-v-Qzy9iPGWTGZ81JEk-F2bHf_8wGQ9fE9FHE50NsO2TQ55m0tdoKEW5cRcgDEla3p7fF21tOYGZfwtO7nhAw8YyOiUnDSKMHtdTeEb27OKcHIXITFhdkF45f19iv6_HgZZt5PNBosBzuppbW1-S6Wj4Vo7jpqhBDJlMa_zmiUpkYEXFBLDE8EI7nfDKCnAyAa0zh2pGJSC2cTxs-IVjlhsjKOoOy67IweJjYa9JRA3Ci1QjPvZFzMEUOcIZKwwFAGE07ZB--97qc81doVqW4rWIlBeRwtYhT14um2GedDqcwLlQzRpW0gEHQ7UWAKySpnJSSO1SS02qmcH7dVupqkYTVspXpk-pj_jskEEr6Z_uP57n5h9jb8mxPwzxW7xLDurll71DpFBXvbBKvgEJWbUG priority: 102 providerName: Springer Nature |
Title | Chiral algebra from worldsheet |
URI | https://link.springer.com/article/10.1007/JHEP06(2024)024 https://www.proquest.com/docview/3065127109 https://doaj.org/article/7fc5cd2aa6cc4b7dbf767af1e2d1a4d2 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na8IwFH9MZbDL2Cdzc-JhBz0U25im7Wmo6ESYyJjgraQv6dxFnXb__15iqzjYDg20CU37krz83kfeA3gKtY5QkpiKiQ4dHknlRCLkjodKmRMrXGijh3ydiNGMj-f-PFe4bXO3yoInWkatVmh05G2T4dxjxnPwef3lmKxRxrqap9AoQYVYcBiWodIbTKZvezsC4RO3COjjBu3xaDB1RZMEft5yGT_ai2zI_iOc-cs0anec4QWc51Cx0d2N7SWc6OUVnFqXTdxeQ72_-NxQvUnUQSJvwxwUadgAqNuF1tkNzIaD9_7IybMdONgJvIyYoUhEB7VIuEDuKj-SqXT9RAtMAxel7KS0_liABHpS3yKBKOXaV0owWlS8cwvl5Wqp76DBFOEOTxJwNtnNUUUh4RwtFENEoSSrQrP473i9C2oRF-GLdySKDYliuqrQM3TZNzPRqO2D1eYjzid3HKToo2JSCkSeBCpJAxHI1NNMeZIr6q9WUDXOl8g2PgxoFVoFpQ_Vf3zP_f-veoAz09L6cvk1KGebb_1IqCFL6lAKhy_1fILQXZ9xU4p-3crhVM5Y9wc_tMNF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VEIIF8RTlmQEkOkQkjuM0A0K8SoGCGIrEZpyzQ1na0hYh_hS_kbPbFIEEW4csceIkl8--7-x7AOxVjUlRkZmKman6PFXaT0WV-yFqbSNWuDB2HfL2TtQf-PVj_FiCzyIWxrpVFnOim6h1B-0a-aGtcB4y6zl43H31bdUou7talNAYwuLGfLyTydY_ujqn_7vPWO2ieVb3R1UFfIyScECTjshEhEZkXCAPdJyqXAVxZgTmSYBKRTnhnCVI5CKPncZNc25irQUj8PKI-p2CGR6RJreR6bXL8a4FsaGgSB8UJIfX9Yv7QBwwUoOVgPEfms8VCPjBan9txDr9VluEhREx9U6GSFqCkmkvw6xzEMX-CuyctV561G7LgpCB7dmwFM-lW-23jBmswsNEpLAG0-1O26yDxzSxnFARTbe11FGnVWJVRmiGiEIrVoaD4rtld5hCQxbJkociklZEko4ynFq5jC-zua_diU7vWY6GkkxyjFEzpQQizxKd5YlIVB4apkPFNT1vq5CqHA3IvvyGTxkqhaS_m_94n43_u9qFuXrztiEbV3c3mzBv73JeZPEWTA96b2ab-Mog23Eg8eBp0qj8Aual-bo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH9irZi4TGMwUcYgh02CQ9TEdezmME3rl_oxqgqB1JvnPNtjlxbaIsS_tr9uz2lCxaTt1kMuceIkLz_7_Z79PgA-Na1NUZOZiplthjzVJkxFk4cxGuMjVriwfh3yciz6N3w4TaY78LuMhfFuleWcmE_UZo5-jbzuK5zHzHsO1l3hFjHp9L7e3Ye-gpTfaS3LaawhMrJPj2S-Lb8MOvSvPzPW6163-2FRYSDEhoxXNAGJTDTQiowL5JFJUu10lGRWoJMRat1whHkmkYiGS3LtmzpuE2MEIyDzBvX7CqrSW0UVqLa648nV8x4GcaOoTCYUyfqw351E4pyRUryIGH-hB_NyAS847l_bsrm2672FNwVNDb6tcbUPO3b2DnZzd1FcHsBp-_bXgtp9kRAytwMfpBLkyVeXt9auDuFmK3J4D5XZfGaPIGCGOE-sibT7yupo0iZxLCsMQ0RhNKvBefnd6m6dUEOVqZPXIlJeRIqOGrS8XJ4v85mw8xPzxU9VDCwlHSZomNYCkWfSZE4KqV1smYk1N_S8k1KqqhieS7UBUw0uSklvmv_xPsf_7-oMXhMi1ffBePQB9vxNuUtZcgKV1eLBfiTysspOC5QE8GPbwPwDvIz_TA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+algebra+from+worldsheet&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Wei&rft.date=2024-06-05&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2024&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282024%29024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP06_2024_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |