Phosphorylation of the nuclear poly(A) binding protein (PABPN1) during mitosis protects mRNA from hyperadenylation and maintains transcriptome dynamics
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nucl...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 16; pp. 9886 - 9903 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
09.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. Graphical Abstract Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. Graphical Abstract Graphical Abstract Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. |
Author | Brown, Courtney L Neugebauer, Karla M Kanyo, Jean Gordon, Jackson M Schärfen, Leonard Phizicky, David V Arias Escayola, Dahyana Lam, TuKiet T Simon, Matthew D |
Author_xml | – sequence: 1 givenname: Jackson M orcidid: 0000-0002-9081-5320 surname: Gordon fullname: Gordon, Jackson M – sequence: 2 givenname: David V orcidid: 0000-0002-4219-702X surname: Phizicky fullname: Phizicky, David V – sequence: 3 givenname: Leonard orcidid: 0000-0003-0234-7609 surname: Schärfen fullname: Schärfen, Leonard – sequence: 4 givenname: Courtney L surname: Brown fullname: Brown, Courtney L – sequence: 5 givenname: Dahyana surname: Arias Escayola fullname: Arias Escayola, Dahyana – sequence: 6 givenname: Jean orcidid: 0000-0003-4814-7573 surname: Kanyo fullname: Kanyo, Jean – sequence: 7 givenname: TuKiet T orcidid: 0000-0002-4850-3462 surname: Lam fullname: Lam, TuKiet T – sequence: 8 givenname: Matthew D orcidid: 0000-0001-7423-5265 surname: Simon fullname: Simon, Matthew D – sequence: 9 givenname: Karla M orcidid: 0000-0002-3835-6761 surname: Neugebauer fullname: Neugebauer, Karla M email: karla.neugebauer@yale.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38943343$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFrFDEUxoNU7LZ68i45yZYyNplkspmTrMWqUOoieg6ZTLITnSRjkhHmL_HfNWW3RS8eHg_e-_F9j_edgRMfvAbgJUZvMGrJlZfxav9D6obVT8AKE1ZXtGX1CVghgpoKI8pPwVlK3xHCFDf0GTglvKWEULICv3dDSNMQ4jLKbIOHwcA8aOhnNWoZ4RTGZb29gJ31vfV7OMWQtfVwvdu-293hC9jP8X7ubA7JpsNe5QTdl7stNDE4OCyTjrLX_sFC-h46aX0ulWCO0icV7ZSD07BfvHRWpefgqZFj0i-O_Rx8u3n_9fpjdfv5w6fr7W2lyAbnqjYdUYzzdqMMV0a35QmUIE2avpNcUoZqJLHCiLPyn41p69a0pGOsYdy0nJJz8PagO82d073SvtwziilaJ-MigrTi3423g9iHXwJjwjFpeFFYHxVi-DnrlIWzSelxlF6HOQmCNuVUUvOmoK_-Nnt0eYijAJcHQMWQUtTmEcFI3IctStjiGHahXx_oME__Bf8AKnOt3A |
Cites_doi | 10.1016/j.gde.2020.11.002 10.1038/s41467-023-42620-9 10.1038/s41467-020-15171-6 10.1093/bioinformatics/bts635 10.1038/nmeth.2019 10.1038/384282a0 10.1016/j.cell.2014.10.055 10.1371/journal.pgen.1003078 10.1038/s41592-020-01018-x 10.1093/nar/gkx1240 10.1016/j.molcel.2019.09.016 10.1126/science.aal4671 10.1101/pdb.prot071449 10.1093/bioinformatics/btw044 10.1038/s41580-021-00417-y 10.1093/bioinformatics/btp352 10.1093/bioinformatics/bty560 10.1016/j.chembiol.2010.07.004 10.1186/s13059-014-0550-8 10.1007/s00213-018-5071-9 10.1074/jbc.M109.018226 10.1093/nar/gkx759 10.1093/emboj/19.17.4723 10.1126/science.1144467 10.1093/hmg/10.21.2341 10.1101/pdb.prot087379 10.1111/febs.12294 10.1093/emboj/cdg347 10.1038/s41586-022-05575-3 10.1038/s41586-018-0279-8 10.1261/rna.079294.122 10.1093/bioinformatics/btq033 10.1146/annurev-biochem-052521-012445 10.7554/eLife.71356 10.1371/journal.pgen.1005610 10.15252/embr.202357128 10.1083/jcb.200107017 10.1242/dev.193128 10.1016/j.nbd.2006.05.015 10.1261/rna.079451.122 10.1038/nmeth.4582 10.1002/wrna.1816 10.1261/rna.7217105 10.12688/f1000research.29032.2 10.1016/j.molcel.2016.09.025 10.1006/excr.1994.1235 10.1016/j.celrep.2018.08.084 10.1093/bioinformatics/bty191 10.1126/science.aam5794 10.1101/gad.284802.116 10.1016/j.cell.2012.03.022 10.1016/j.molcel.2016.04.007 10.1093/bioinformatics/btr026 10.1186/s13059-018-1414-4 10.1093/nar/gkac263 10.7554/eLife.16955 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkae562 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 9903 |
ExternalDocumentID | PMC11381358 38943343 10_1093_nar_gkae562 10.1093/nar/gkae562 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences of the National Institutes of Health grantid: 1S10OD030363-01A1 – fundername: NIH HHS grantid: S10 OD018034 – fundername: NIH HHS grantid: S10 OD019967 – fundername: NIH HHS grantid: S10 OD030363 – fundername: NIH HHS grantid: R01 GM112766 – fundername: NIGMS NIH HHS grantid: R01 GM112766 – fundername: Yale School of Medicine – fundername: NINDS NIH HHS grantid: F31 NS129248 – fundername: Karla Neugebauer – fundername: Yale Center for Genomic Analysis – fundername: ; – fundername: ; grantid: 1S10OD030363-01A1 – fundername: ; grantid: R01 GM112766; R01 GM137117; F32GM134598; F31NS129248; S10OD02365101A1; S10OD019967; S10OD018034 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c371t-2fb3c68897cf8cfe9562430e35dba8a46020a1c1086e567f929f93b66568f9843 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:35:22 EDT 2025 Fri Jul 11 03:40:31 EDT 2025 Thu Apr 03 07:03:27 EDT 2025 Tue Jul 01 02:59:30 EDT 2025 Mon Jun 30 08:34:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-2fb3c68897cf8cfe9562430e35dba8a46020a1c1086e567f929f93b66568f9843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-7423-5265 0000-0002-3835-6761 0000-0002-4850-3462 0000-0002-4219-702X 0000-0003-0234-7609 0000-0002-9081-5320 0000-0003-4814-7573 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkae562 |
PMID | 38943343 |
PQID | 3073713285 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11381358 proquest_miscellaneous_3073713285 pubmed_primary_38943343 crossref_primary_10_1093_nar_gkae562 oup_primary_10_1093_nar_gkae562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-09 |
PublicationDateYYYYMMDD | 2024-09-09 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Brantley (2024090903594589100_B58) 2021; 148 Lim (2024090903594589100_B53) 2018; 361 Galganski (2024090903594589100_B18) 2017; 45 Eichhorn (2024090903594589100_B5) 2016; 5 Snead (2024090903594589100_B48) 2019; 76 Huang (2024090903594589100_B13) 2023; 24 Lim (2024090903594589100_B52) 2014; 159 Pluta (2024090903594589100_B43) 2023; 15 Rio (2024090903594589100_B49) 2012; 2012 Torregrossa (2024090903594589100_B26) 2019; 236 Palozola (2024090903594589100_B19) 2017; 358 Gavish-Izakson (2024090903594589100_B42) 2018; 46 Kühn (2024090903594589100_B8) 2009; 284 Schindelin (2024090903594589100_B23) 2012; 9 Kerwitz (2024090903594589100_B7) 2003; 22 Gordon (2024090903594589100_B15) 2021; 67 Tang (2024090903594589100_B34) 2020; 11 Contreras (2024090903594589100_B56) 2023; 14 Li (2024090903594589100_B31) 2018; 34 Mölder (2024090903594589100_B35) 2021; 10 Park (2024090903594589100_B20) 2016; 62 Rai (2024090903594589100_B45) 2018; 559 Marie-Josée Sasseville (2024090903594589100_B47) 2006; 23 Sacco-Bubulya (2024090903594589100_B46) 2002; 156 McCarthy (2024090903594589100_B51) 2010; 17 Bresson (2024090903594589100_B21) 2015; 11 Dobin (2024090903594589100_B37) 2013; 29 Krause (2024090903594589100_B16) 1994; 214 Colgan (2024090903594589100_B50) 1996; 384 Gray (2024090903594589100_B3) 2000; 19 Passmore (2024090903594589100_B2) 2022; 23 Tavanez (2024090903594589100_B17) 2005; 11 Boreikaitė (2024090903594589100_B1) 2023; 92 Lim (2024090903594589100_B6) 2016; 30 Kwiatek (2024090903594589100_B14) 2023; 29 Stringer (2024090903594589100_B24) 2021; 18 Fan (2024090903594589100_B9) 2001; 10 Gilbert (2024090903594589100_B25) 2007; 317 Nicholson-Shaw (2024090903594589100_B55) 2022; 50 Schofield (2024090903594589100_B28) 2018; 15 Johnson (2024090903594589100_B44) 2023; 613 Quinlan (2024090903594589100_B33) 2010; 26 Narasimhan (2024090903594589100_B40) 2016; 32 Meola (2024090903594589100_B11) 2016; 64 Schmieder (2024090903594589100_B30) 2011; 27 Feoktistova (2024090903594589100_B27) 2016; 2016 Martin (2024090903594589100_B29) 2011; 17 Bernstein (2024090903594589100_B4) 1989; 9 Chen (2024090903594589100_B36) 2018; 34 Ha (2024090903594589100_B38) 2018; 19 Jenal (2024090903594589100_B12) 2012; 149 Beaulieu (2024090903594589100_B54) 2012; 8 Vock (2024090903594589100_B41) 2023; 29 Woo (2024090903594589100_B57) 2018; 24 Krenning (2024090903594589100_B22) 2022; 11 Banerjee (2024090903594589100_B10) 2013; 280 Li (2024090903594589100_B32) 2009; 25 Love (2024090903594589100_B39) 2014; 15 |
References_xml | – volume: 67 start-page: 67 year: 2021 ident: 2024090903594589100_B15 article-title: Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2020.11.002 – volume: 14 start-page: 6745 year: 2023 ident: 2024090903594589100_B56 article-title: PAPγ associates with PAXT nuclear exosome to control the abundance of PROMPT ncRNAs publication-title: Nat. Commun. doi: 10.1038/s41467-023-42620-9 – volume: 11 start-page: 1438 year: 2020 ident: 2024090903594589100_B34 article-title: Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns publication-title: Nat. Commun. doi: 10.1038/s41467-020-15171-6 – volume: 29 start-page: 15 year: 2013 ident: 2024090903594589100_B37 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 9 start-page: 676 year: 2012 ident: 2024090903594589100_B23 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 384 start-page: 282 year: 1996 ident: 2024090903594589100_B50 article-title: Cell-cycle related regulation of poly(A) polymerase by phosphorylation publication-title: Nature doi: 10.1038/384282a0 – volume: 159 start-page: 1365 year: 2014 ident: 2024090903594589100_B52 article-title: Uridylation by TUT4 and TUT7 marks mRNA for degradation publication-title: Cell doi: 10.1016/j.cell.2014.10.055 – volume: 8 start-page: e1003078 year: 2012 ident: 2024090903594589100_B54 article-title: Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003078 – volume: 18 start-page: 100 year: 2021 ident: 2024090903594589100_B24 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01018-x – volume: 46 start-page: 730 year: 2018 ident: 2024090903594589100_B42 article-title: Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1240 – volume: 76 start-page: 295 year: 2019 ident: 2024090903594589100_B48 article-title: The Control Centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.016 – volume: 358 start-page: 119 year: 2017 ident: 2024090903594589100_B19 article-title: Mitotic transcription and waves of gene reactivation during mitotic exit publication-title: Science doi: 10.1126/science.aal4671 – volume: 2012 start-page: 1078 year: 2012 ident: 2024090903594589100_B49 article-title: Filter-binding assay for analysis of RNA-protein interactions publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot071449 – volume: 32 start-page: 1749 year: 2016 ident: 2024090903594589100_B40 article-title: BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw044 – volume: 23 start-page: 93 year: 2022 ident: 2024090903594589100_B2 article-title: Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00417-y – volume: 25 start-page: 2078 year: 2009 ident: 2024090903594589100_B32 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 34 start-page: i884 year: 2018 ident: 2024090903594589100_B36 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 17 start-page: 675 year: 2010 ident: 2024090903594589100_B51 article-title: Third generation DNA sequencing: pacific biosciences’ single molecule real time technology publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2010.07.004 – volume: 15 start-page: 550 year: 2014 ident: 2024090903594589100_B39 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 236 start-page: 531 year: 2019 ident: 2024090903594589100_B26 article-title: Phosphoproteomic analysis of cocaine memory extinction and reconsolidation in the nucleus accumbens publication-title: Psychopharmacology (Berl.) doi: 10.1007/s00213-018-5071-9 – volume: 284 start-page: 22803 year: 2009 ident: 2024090903594589100_B8 article-title: Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.018226 – volume: 45 start-page: 10350 year: 2017 ident: 2024090903594589100_B18 article-title: Nuclear speckles: molecular organization, biological function and role in disease publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx759 – volume: 17 start-page: 3 year: 2011 ident: 2024090903594589100_B29 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: 2011 – volume: 19 start-page: 4723 year: 2000 ident: 2024090903594589100_B3 article-title: Multiple portions of poly(A)-binding protein stimulate translation in vivo publication-title: EMBO J. doi: 10.1093/emboj/19.17.4723 – volume: 317 start-page: 1224 year: 2007 ident: 2024090903594589100_B25 article-title: Cap-independent translation is required for starvation-induced differentiation in yeast publication-title: Science doi: 10.1126/science.1144467 – volume: 10 start-page: 2341 year: 2001 ident: 2024090903594589100_B9 article-title: Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.21.2341 – volume: 2016 start-page: pdb.prot087379 year: 2016 ident: 2024090903594589100_B27 article-title: Crystal violet assay for determining viability of cultured cells publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot087379 – volume: 280 start-page: 4230 year: 2013 ident: 2024090903594589100_B10 article-title: PABPN1: molecular function and muscle disease publication-title: FEBS J. doi: 10.1111/febs.12294 – volume: 22 start-page: 3705 year: 2003 ident: 2024090903594589100_B7 article-title: Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA publication-title: EMBO J. doi: 10.1093/emboj/cdg347 – volume: 613 start-page: 759 year: 2023 ident: 2024090903594589100_B44 article-title: An atlas of substrate specificities for the human serine/threonine kinome publication-title: Nature doi: 10.1038/s41586-022-05575-3 – volume: 559 start-page: 211 year: 2018 ident: 2024090903594589100_B45 article-title: Kinase-controlled phase transition of membraneless organelles in mitosis publication-title: Nature doi: 10.1038/s41586-018-0279-8 – volume: 29 start-page: 644 year: 2023 ident: 2024090903594589100_B14 article-title: PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention publication-title: RNA doi: 10.1261/rna.079294.122 – volume: 26 start-page: 841 year: 2010 ident: 2024090903594589100_B33 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 9 start-page: 659 year: 1989 ident: 2024090903594589100_B4 article-title: The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro publication-title: Mol. Cell. Biol. – volume: 92 start-page: 199 year: 2023 ident: 2024090903594589100_B1 article-title: 3′-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-052521-012445 – volume: 11 start-page: e71356 year: 2022 ident: 2024090903594589100_B22 article-title: Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition publication-title: eLife doi: 10.7554/eLife.71356 – volume: 11 start-page: e1005610 year: 2015 ident: 2024090903594589100_B21 article-title: Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005610 – volume: 24 start-page: e57128 year: 2023 ident: 2024090903594589100_B13 article-title: The polyA tail facilitates splicing of last introns with weak 3′ splice sites via PABPN1 publication-title: EMBO Rep. doi: 10.15252/embr.202357128 – volume: 156 start-page: 425 year: 2002 ident: 2024090903594589100_B46 article-title: Disassembly of interchromatin granule clusters alters the coordination of transcription and pre-mRNA splicing publication-title: J. Cell Biol. doi: 10.1083/jcb.200107017 – volume: 148 start-page: dev193128 year: 2021 ident: 2024090903594589100_B58 article-title: Cell cycle control during early embryogenesis publication-title: Development doi: 10.1242/dev.193128 – volume: 23 start-page: 621 year: 2006 ident: 2024090903594589100_B47 article-title: The dynamism of PABPN1 nuclear inclusions during the cell cycle publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.05.015 – volume: 29 start-page: 958 year: 2023 ident: 2024090903594589100_B41 article-title: bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with bayesian hierarchical modeling publication-title: RNA doi: 10.1261/rna.079451.122 – volume: 15 start-page: 221 year: 2018 ident: 2024090903594589100_B28 article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding publication-title: Nat. Methods doi: 10.1038/nmeth.4582 – volume: 15 start-page: e1816 year: 2023 ident: 2024090903594589100_B43 article-title: Cyclin-dependent kinases: masters of the eukaryotic universe publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1816 – volume: 11 start-page: 752 year: 2005 ident: 2024090903594589100_B17 article-title: In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1 publication-title: RNA doi: 10.1261/rna.7217105 – volume: 10 start-page: 33 year: 2021 ident: 2024090903594589100_B35 article-title: Sustainable data analysis with Snakemake publication-title: F1000Res doi: 10.12688/f1000research.29032.2 – volume: 64 start-page: 520 year: 2016 ident: 2024090903594589100_B11 article-title: Identification of a nuclear exosome decay pathway for processed transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.025 – volume: 214 start-page: 75 year: 1994 ident: 2024090903594589100_B16 article-title: Immunodetection of poly(A) binding protein II in the cell nucleus publication-title: Exp. Cell. Res. doi: 10.1006/excr.1994.1235 – volume: 24 start-page: 3630 year: 2018 ident: 2024090903594589100_B57 article-title: TED-Seq identifies the dynamics of poly(A) length during ER stress publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.08.084 – volume: 34 start-page: 3094 year: 2018 ident: 2024090903594589100_B31 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 361 start-page: 701 year: 2018 ident: 2024090903594589100_B53 article-title: Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation publication-title: Science doi: 10.1126/science.aam5794 – volume: 30 start-page: 1671 year: 2016 ident: 2024090903594589100_B6 article-title: mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development publication-title: Genes Dev. doi: 10.1101/gad.284802.116 – volume: 149 start-page: 538 year: 2012 ident: 2024090903594589100_B12 article-title: The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites publication-title: Cell doi: 10.1016/j.cell.2012.03.022 – volume: 62 start-page: 462 year: 2016 ident: 2024090903594589100_B20 article-title: Regulation of poly(A) tail and translation during the somatic cell cycle publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.007 – volume: 27 start-page: 863 year: 2011 ident: 2024090903594589100_B30 article-title: Quality control and preprocessing of metagenomic datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr026 – volume: 19 start-page: 45 year: 2018 ident: 2024090903594589100_B38 article-title: QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data publication-title: Genome Biol. doi: 10.1186/s13059-018-1414-4 – volume: 50 start-page: 4685 year: 2022 ident: 2024090903594589100_B55 article-title: Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac263 – volume: 5 start-page: e16955 year: 2016 ident: 2024090903594589100_B5 article-title: mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos publication-title: eLife doi: 10.7554/eLife.16955 |
SSID | ssj0014154 |
Score | 2.4705937 |
Snippet | Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by... Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9886 |
SubjectTerms | Cell Nucleus - genetics Cell Nucleus - metabolism HeLa Cells Humans Mitosis - genetics Phosphorylation Poly A - metabolism Poly(A)-Binding Protein I - genetics Poly(A)-Binding Protein I - metabolism Polyadenylation RNA and RNA-protein complexes RNA Stability - genetics RNA, Messenger - genetics RNA, Messenger - metabolism Transcriptome |
Title | Phosphorylation of the nuclear poly(A) binding protein (PABPN1) during mitosis protects mRNA from hyperadenylation and maintains transcriptome dynamics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38943343 https://www.proquest.com/docview/3073713285 https://pubmed.ncbi.nlm.nih.gov/PMC11381358 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb5wwELXaXNpL1Sb92H5sJlJUJQcUwMaYI40SRZGyXVWJtDdke00XpZgVbA77S_p3OzbsKhtV7RmDEQ_PPHtm3hByHGUmUVzywIiQBUzimpMpZ4EMuWY6Nkr4dkA3E351x65nyWxIkO3-EsLP6JmV7dnPe2kSb2rR_TqJ_Nvvs22wAH1QrxLlRTWZGMrwnty743h2itkeccqnqZGPfM3la_JqIImQ96i-Ic-M3ScHucUNcr2Gr-DTNv15-D55cb5p2XZAfk8XTbdcNO26z3CDpgQkeGCdaLFsYdn8Wp_kp6AqX8sCXqShsnAyzb9NJ9Ep9EWLUOMy76oOBhGHDuofkxxcJQoscN_aSjRWmymknUMtK-uOGDpYOdfnDVFTG5j37e67t-Tu8uL2_CoYOi8EmqbRKohLRTUXIkt1KXRpcBMVMxoamsyVFJJxJJky0q5LE37atESOVWZUcSSHoswEo-_Inm2s-UBApanSGlleViJ5SalAKyAjyXUYS2GSZESON7AUy15go-gD47RA9IoBvRE5RMj-PeJoA2eBn93FPaQ1zUNXODOGe_FY4GTve3i3D6JOf54yOiJiB_jtACe_vXvFVgsvwx1FyHZoIj7-99U-kZcxciGfmpZ9Jnur9sF8QS6zUmPyPA0vxv4kYOz_6j-CnfcF |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+the+nuclear+poly%28A%29+binding+protein+%28PABPN1%29+during+mitosis+protects+mRNA+from+hyperadenylation+and+maintains+transcriptome+dynamics&rft.jtitle=Nucleic+acids+research&rft.au=Gordon%2C+Jackson+M&rft.au=Phizicky%2C+David+V&rft.au=Sch%C3%A4rfen%2C+Leonard&rft.au=Brown%2C+Courtney+L&rft.date=2024-09-09&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=52&rft.issue=16&rft.spage=9886&rft_id=info:doi/10.1093%2Fnar%2Fgkae562&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |