Phosphorylation of the nuclear poly(A) binding protein (PABPN1) during mitosis protects mRNA from hyperadenylation and maintains transcriptome dynamics

Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nucl...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 52; no. 16; pp. 9886 - 9903
Main Authors Gordon, Jackson M, Phizicky, David V, Schärfen, Leonard, Brown, Courtney L, Arias Escayola, Dahyana, Kanyo, Jean, Lam, TuKiet T, Simon, Matthew D, Neugebauer, Karla M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 09.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. Graphical Abstract Graphical Abstract
AbstractList Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. Graphical Abstract
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle. Graphical Abstract Graphical Abstract
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.
Author Brown, Courtney L
Neugebauer, Karla M
Kanyo, Jean
Gordon, Jackson M
Schärfen, Leonard
Phizicky, David V
Arias Escayola, Dahyana
Lam, TuKiet T
Simon, Matthew D
Author_xml – sequence: 1
  givenname: Jackson M
  orcidid: 0000-0002-9081-5320
  surname: Gordon
  fullname: Gordon, Jackson M
– sequence: 2
  givenname: David V
  orcidid: 0000-0002-4219-702X
  surname: Phizicky
  fullname: Phizicky, David V
– sequence: 3
  givenname: Leonard
  orcidid: 0000-0003-0234-7609
  surname: Schärfen
  fullname: Schärfen, Leonard
– sequence: 4
  givenname: Courtney L
  surname: Brown
  fullname: Brown, Courtney L
– sequence: 5
  givenname: Dahyana
  surname: Arias Escayola
  fullname: Arias Escayola, Dahyana
– sequence: 6
  givenname: Jean
  orcidid: 0000-0003-4814-7573
  surname: Kanyo
  fullname: Kanyo, Jean
– sequence: 7
  givenname: TuKiet T
  orcidid: 0000-0002-4850-3462
  surname: Lam
  fullname: Lam, TuKiet T
– sequence: 8
  givenname: Matthew D
  orcidid: 0000-0001-7423-5265
  surname: Simon
  fullname: Simon, Matthew D
– sequence: 9
  givenname: Karla M
  orcidid: 0000-0002-3835-6761
  surname: Neugebauer
  fullname: Neugebauer, Karla M
  email: karla.neugebauer@yale.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38943343$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFrFDEUxoNU7LZ68i45yZYyNplkspmTrMWqUOoieg6ZTLITnSRjkhHmL_HfNWW3RS8eHg_e-_F9j_edgRMfvAbgJUZvMGrJlZfxav9D6obVT8AKE1ZXtGX1CVghgpoKI8pPwVlK3xHCFDf0GTglvKWEULICv3dDSNMQ4jLKbIOHwcA8aOhnNWoZ4RTGZb29gJ31vfV7OMWQtfVwvdu-293hC9jP8X7ubA7JpsNe5QTdl7stNDE4OCyTjrLX_sFC-h46aX0ulWCO0icV7ZSD07BfvHRWpefgqZFj0i-O_Rx8u3n_9fpjdfv5w6fr7W2lyAbnqjYdUYzzdqMMV0a35QmUIE2avpNcUoZqJLHCiLPyn41p69a0pGOsYdy0nJJz8PagO82d073SvtwziilaJ-MigrTi3423g9iHXwJjwjFpeFFYHxVi-DnrlIWzSelxlF6HOQmCNuVUUvOmoK_-Nnt0eYijAJcHQMWQUtTmEcFI3IctStjiGHahXx_oME__Bf8AKnOt3A
Cites_doi 10.1016/j.gde.2020.11.002
10.1038/s41467-023-42620-9
10.1038/s41467-020-15171-6
10.1093/bioinformatics/bts635
10.1038/nmeth.2019
10.1038/384282a0
10.1016/j.cell.2014.10.055
10.1371/journal.pgen.1003078
10.1038/s41592-020-01018-x
10.1093/nar/gkx1240
10.1016/j.molcel.2019.09.016
10.1126/science.aal4671
10.1101/pdb.prot071449
10.1093/bioinformatics/btw044
10.1038/s41580-021-00417-y
10.1093/bioinformatics/btp352
10.1093/bioinformatics/bty560
10.1016/j.chembiol.2010.07.004
10.1186/s13059-014-0550-8
10.1007/s00213-018-5071-9
10.1074/jbc.M109.018226
10.1093/nar/gkx759
10.1093/emboj/19.17.4723
10.1126/science.1144467
10.1093/hmg/10.21.2341
10.1101/pdb.prot087379
10.1111/febs.12294
10.1093/emboj/cdg347
10.1038/s41586-022-05575-3
10.1038/s41586-018-0279-8
10.1261/rna.079294.122
10.1093/bioinformatics/btq033
10.1146/annurev-biochem-052521-012445
10.7554/eLife.71356
10.1371/journal.pgen.1005610
10.15252/embr.202357128
10.1083/jcb.200107017
10.1242/dev.193128
10.1016/j.nbd.2006.05.015
10.1261/rna.079451.122
10.1038/nmeth.4582
10.1002/wrna.1816
10.1261/rna.7217105
10.12688/f1000research.29032.2
10.1016/j.molcel.2016.09.025
10.1006/excr.1994.1235
10.1016/j.celrep.2018.08.084
10.1093/bioinformatics/bty191
10.1126/science.aam5794
10.1101/gad.284802.116
10.1016/j.cell.2012.03.022
10.1016/j.molcel.2016.04.007
10.1093/bioinformatics/btr026
10.1186/s13059-018-1414-4
10.1093/nar/gkac263
10.7554/eLife.16955
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkae562
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 9903
ExternalDocumentID PMC11381358
38943343
10_1093_nar_gkae562
10.1093/nar/gkae562
Genre Journal Article
GrantInformation_xml – fundername: National Institute of General Medical Sciences of the National Institutes of Health
  grantid: 1S10OD030363-01A1
– fundername: NIH HHS
  grantid: S10 OD018034
– fundername: NIH HHS
  grantid: S10 OD019967
– fundername: NIH HHS
  grantid: S10 OD030363
– fundername: NIH HHS
  grantid: R01 GM112766
– fundername: NIGMS NIH HHS
  grantid: R01 GM112766
– fundername: Yale School of Medicine
– fundername: NINDS NIH HHS
  grantid: F31 NS129248
– fundername: Karla Neugebauer
– fundername: Yale Center for Genomic Analysis
– fundername: ;
– fundername: ;
  grantid: 1S10OD030363-01A1
– fundername: ;
  grantid: R01 GM112766; R01 GM137117; F32GM134598; F31NS129248; S10OD02365101A1; S10OD019967; S10OD018034
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c371t-2fb3c68897cf8cfe9562430e35dba8a46020a1c1086e567f929f93b66568f9843
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:35:22 EDT 2025
Fri Jul 11 03:40:31 EDT 2025
Thu Apr 03 07:03:27 EDT 2025
Tue Jul 01 02:59:30 EDT 2025
Mon Jun 30 08:34:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-2fb3c68897cf8cfe9562430e35dba8a46020a1c1086e567f929f93b66568f9843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors should be regarded as Joint First Authors.
ORCID 0000-0001-7423-5265
0000-0002-3835-6761
0000-0002-4850-3462
0000-0002-4219-702X
0000-0003-0234-7609
0000-0002-9081-5320
0000-0003-4814-7573
OpenAccessLink https://dx.doi.org/10.1093/nar/gkae562
PMID 38943343
PQID 3073713285
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11381358
proquest_miscellaneous_3073713285
pubmed_primary_38943343
crossref_primary_10_1093_nar_gkae562
oup_primary_10_1093_nar_gkae562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-09
PublicationDateYYYYMMDD 2024-09-09
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Brantley (2024090903594589100_B58) 2021; 148
Lim (2024090903594589100_B53) 2018; 361
Galganski (2024090903594589100_B18) 2017; 45
Eichhorn (2024090903594589100_B5) 2016; 5
Snead (2024090903594589100_B48) 2019; 76
Huang (2024090903594589100_B13) 2023; 24
Lim (2024090903594589100_B52) 2014; 159
Pluta (2024090903594589100_B43) 2023; 15
Rio (2024090903594589100_B49) 2012; 2012
Torregrossa (2024090903594589100_B26) 2019; 236
Palozola (2024090903594589100_B19) 2017; 358
Gavish-Izakson (2024090903594589100_B42) 2018; 46
Kühn (2024090903594589100_B8) 2009; 284
Schindelin (2024090903594589100_B23) 2012; 9
Kerwitz (2024090903594589100_B7) 2003; 22
Gordon (2024090903594589100_B15) 2021; 67
Tang (2024090903594589100_B34) 2020; 11
Contreras (2024090903594589100_B56) 2023; 14
Li (2024090903594589100_B31) 2018; 34
Mölder (2024090903594589100_B35) 2021; 10
Park (2024090903594589100_B20) 2016; 62
Rai (2024090903594589100_B45) 2018; 559
Marie-Josée Sasseville (2024090903594589100_B47) 2006; 23
Sacco-Bubulya (2024090903594589100_B46) 2002; 156
McCarthy (2024090903594589100_B51) 2010; 17
Bresson (2024090903594589100_B21) 2015; 11
Dobin (2024090903594589100_B37) 2013; 29
Krause (2024090903594589100_B16) 1994; 214
Colgan (2024090903594589100_B50) 1996; 384
Gray (2024090903594589100_B3) 2000; 19
Passmore (2024090903594589100_B2) 2022; 23
Tavanez (2024090903594589100_B17) 2005; 11
Boreikaitė (2024090903594589100_B1) 2023; 92
Lim (2024090903594589100_B6) 2016; 30
Kwiatek (2024090903594589100_B14) 2023; 29
Stringer (2024090903594589100_B24) 2021; 18
Fan (2024090903594589100_B9) 2001; 10
Gilbert (2024090903594589100_B25) 2007; 317
Nicholson-Shaw (2024090903594589100_B55) 2022; 50
Schofield (2024090903594589100_B28) 2018; 15
Johnson (2024090903594589100_B44) 2023; 613
Quinlan (2024090903594589100_B33) 2010; 26
Narasimhan (2024090903594589100_B40) 2016; 32
Meola (2024090903594589100_B11) 2016; 64
Schmieder (2024090903594589100_B30) 2011; 27
Feoktistova (2024090903594589100_B27) 2016; 2016
Martin (2024090903594589100_B29) 2011; 17
Bernstein (2024090903594589100_B4) 1989; 9
Chen (2024090903594589100_B36) 2018; 34
Ha (2024090903594589100_B38) 2018; 19
Jenal (2024090903594589100_B12) 2012; 149
Beaulieu (2024090903594589100_B54) 2012; 8
Vock (2024090903594589100_B41) 2023; 29
Woo (2024090903594589100_B57) 2018; 24
Krenning (2024090903594589100_B22) 2022; 11
Banerjee (2024090903594589100_B10) 2013; 280
Li (2024090903594589100_B32) 2009; 25
Love (2024090903594589100_B39) 2014; 15
References_xml – volume: 67
  start-page: 67
  year: 2021
  ident: 2024090903594589100_B15
  article-title: Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2020.11.002
– volume: 14
  start-page: 6745
  year: 2023
  ident: 2024090903594589100_B56
  article-title: PAPγ associates with PAXT nuclear exosome to control the abundance of PROMPT ncRNAs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42620-9
– volume: 11
  start-page: 1438
  year: 2020
  ident: 2024090903594589100_B34
  article-title: Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15171-6
– volume: 29
  start-page: 15
  year: 2013
  ident: 2024090903594589100_B37
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 9
  start-page: 676
  year: 2012
  ident: 2024090903594589100_B23
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 384
  start-page: 282
  year: 1996
  ident: 2024090903594589100_B50
  article-title: Cell-cycle related regulation of poly(A) polymerase by phosphorylation
  publication-title: Nature
  doi: 10.1038/384282a0
– volume: 159
  start-page: 1365
  year: 2014
  ident: 2024090903594589100_B52
  article-title: Uridylation by TUT4 and TUT7 marks mRNA for degradation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.055
– volume: 8
  start-page: e1003078
  year: 2012
  ident: 2024090903594589100_B54
  article-title: Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003078
– volume: 18
  start-page: 100
  year: 2021
  ident: 2024090903594589100_B24
  article-title: Cellpose: a generalist algorithm for cellular segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 46
  start-page: 730
  year: 2018
  ident: 2024090903594589100_B42
  article-title: Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1240
– volume: 76
  start-page: 295
  year: 2019
  ident: 2024090903594589100_B48
  article-title: The Control Centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.016
– volume: 358
  start-page: 119
  year: 2017
  ident: 2024090903594589100_B19
  article-title: Mitotic transcription and waves of gene reactivation during mitotic exit
  publication-title: Science
  doi: 10.1126/science.aal4671
– volume: 2012
  start-page: 1078
  year: 2012
  ident: 2024090903594589100_B49
  article-title: Filter-binding assay for analysis of RNA-protein interactions
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot071449
– volume: 32
  start-page: 1749
  year: 2016
  ident: 2024090903594589100_B40
  article-title: BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw044
– volume: 23
  start-page: 93
  year: 2022
  ident: 2024090903594589100_B2
  article-title: Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00417-y
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2024090903594589100_B32
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 34
  start-page: i884
  year: 2018
  ident: 2024090903594589100_B36
  article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 17
  start-page: 675
  year: 2010
  ident: 2024090903594589100_B51
  article-title: Third generation DNA sequencing: pacific biosciences’ single molecule real time technology
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2010.07.004
– volume: 15
  start-page: 550
  year: 2014
  ident: 2024090903594589100_B39
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 236
  start-page: 531
  year: 2019
  ident: 2024090903594589100_B26
  article-title: Phosphoproteomic analysis of cocaine memory extinction and reconsolidation in the nucleus accumbens
  publication-title: Psychopharmacology (Berl.)
  doi: 10.1007/s00213-018-5071-9
– volume: 284
  start-page: 22803
  year: 2009
  ident: 2024090903594589100_B8
  article-title: Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.018226
– volume: 45
  start-page: 10350
  year: 2017
  ident: 2024090903594589100_B18
  article-title: Nuclear speckles: molecular organization, biological function and role in disease
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx759
– volume: 17
  start-page: 3
  year: 2011
  ident: 2024090903594589100_B29
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: 2011
– volume: 19
  start-page: 4723
  year: 2000
  ident: 2024090903594589100_B3
  article-title: Multiple portions of poly(A)-binding protein stimulate translation in vivo
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.17.4723
– volume: 317
  start-page: 1224
  year: 2007
  ident: 2024090903594589100_B25
  article-title: Cap-independent translation is required for starvation-induced differentiation in yeast
  publication-title: Science
  doi: 10.1126/science.1144467
– volume: 10
  start-page: 2341
  year: 2001
  ident: 2024090903594589100_B9
  article-title: Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.21.2341
– volume: 2016
  start-page: pdb.prot087379
  year: 2016
  ident: 2024090903594589100_B27
  article-title: Crystal violet assay for determining viability of cultured cells
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot087379
– volume: 280
  start-page: 4230
  year: 2013
  ident: 2024090903594589100_B10
  article-title: PABPN1: molecular function and muscle disease
  publication-title: FEBS J.
  doi: 10.1111/febs.12294
– volume: 22
  start-page: 3705
  year: 2003
  ident: 2024090903594589100_B7
  article-title: Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg347
– volume: 613
  start-page: 759
  year: 2023
  ident: 2024090903594589100_B44
  article-title: An atlas of substrate specificities for the human serine/threonine kinome
  publication-title: Nature
  doi: 10.1038/s41586-022-05575-3
– volume: 559
  start-page: 211
  year: 2018
  ident: 2024090903594589100_B45
  article-title: Kinase-controlled phase transition of membraneless organelles in mitosis
  publication-title: Nature
  doi: 10.1038/s41586-018-0279-8
– volume: 29
  start-page: 644
  year: 2023
  ident: 2024090903594589100_B14
  article-title: PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention
  publication-title: RNA
  doi: 10.1261/rna.079294.122
– volume: 26
  start-page: 841
  year: 2010
  ident: 2024090903594589100_B33
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 9
  start-page: 659
  year: 1989
  ident: 2024090903594589100_B4
  article-title: The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro
  publication-title: Mol. Cell. Biol.
– volume: 92
  start-page: 199
  year: 2023
  ident: 2024090903594589100_B1
  article-title: 3′-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-052521-012445
– volume: 11
  start-page: e71356
  year: 2022
  ident: 2024090903594589100_B22
  article-title: Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition
  publication-title: eLife
  doi: 10.7554/eLife.71356
– volume: 11
  start-page: e1005610
  year: 2015
  ident: 2024090903594589100_B21
  article-title: Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005610
– volume: 24
  start-page: e57128
  year: 2023
  ident: 2024090903594589100_B13
  article-title: The polyA tail facilitates splicing of last introns with weak 3′ splice sites via PABPN1
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202357128
– volume: 156
  start-page: 425
  year: 2002
  ident: 2024090903594589100_B46
  article-title: Disassembly of interchromatin granule clusters alters the coordination of transcription and pre-mRNA splicing
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200107017
– volume: 148
  start-page: dev193128
  year: 2021
  ident: 2024090903594589100_B58
  article-title: Cell cycle control during early embryogenesis
  publication-title: Development
  doi: 10.1242/dev.193128
– volume: 23
  start-page: 621
  year: 2006
  ident: 2024090903594589100_B47
  article-title: The dynamism of PABPN1 nuclear inclusions during the cell cycle
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.05.015
– volume: 29
  start-page: 958
  year: 2023
  ident: 2024090903594589100_B41
  article-title: bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with bayesian hierarchical modeling
  publication-title: RNA
  doi: 10.1261/rna.079451.122
– volume: 15
  start-page: 221
  year: 2018
  ident: 2024090903594589100_B28
  article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4582
– volume: 15
  start-page: e1816
  year: 2023
  ident: 2024090903594589100_B43
  article-title: Cyclin-dependent kinases: masters of the eukaryotic universe
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1816
– volume: 11
  start-page: 752
  year: 2005
  ident: 2024090903594589100_B17
  article-title: In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1
  publication-title: RNA
  doi: 10.1261/rna.7217105
– volume: 10
  start-page: 33
  year: 2021
  ident: 2024090903594589100_B35
  article-title: Sustainable data analysis with Snakemake
  publication-title: F1000Res
  doi: 10.12688/f1000research.29032.2
– volume: 64
  start-page: 520
  year: 2016
  ident: 2024090903594589100_B11
  article-title: Identification of a nuclear exosome decay pathway for processed transcripts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.09.025
– volume: 214
  start-page: 75
  year: 1994
  ident: 2024090903594589100_B16
  article-title: Immunodetection of poly(A) binding protein II in the cell nucleus
  publication-title: Exp. Cell. Res.
  doi: 10.1006/excr.1994.1235
– volume: 24
  start-page: 3630
  year: 2018
  ident: 2024090903594589100_B57
  article-title: TED-Seq identifies the dynamics of poly(A) length during ER stress
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.08.084
– volume: 34
  start-page: 3094
  year: 2018
  ident: 2024090903594589100_B31
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 361
  start-page: 701
  year: 2018
  ident: 2024090903594589100_B53
  article-title: Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation
  publication-title: Science
  doi: 10.1126/science.aam5794
– volume: 30
  start-page: 1671
  year: 2016
  ident: 2024090903594589100_B6
  article-title: mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development
  publication-title: Genes Dev.
  doi: 10.1101/gad.284802.116
– volume: 149
  start-page: 538
  year: 2012
  ident: 2024090903594589100_B12
  article-title: The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.022
– volume: 62
  start-page: 462
  year: 2016
  ident: 2024090903594589100_B20
  article-title: Regulation of poly(A) tail and translation during the somatic cell cycle
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.04.007
– volume: 27
  start-page: 863
  year: 2011
  ident: 2024090903594589100_B30
  article-title: Quality control and preprocessing of metagenomic datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr026
– volume: 19
  start-page: 45
  year: 2018
  ident: 2024090903594589100_B38
  article-title: QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1414-4
– volume: 50
  start-page: 4685
  year: 2022
  ident: 2024090903594589100_B55
  article-title: Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac263
– volume: 5
  start-page: e16955
  year: 2016
  ident: 2024090903594589100_B5
  article-title: mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos
  publication-title: eLife
  doi: 10.7554/eLife.16955
SSID ssj0014154
Score 2.4705937
Snippet Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by...
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9886
SubjectTerms Cell Nucleus - genetics
Cell Nucleus - metabolism
HeLa Cells
Humans
Mitosis - genetics
Phosphorylation
Poly A - metabolism
Poly(A)-Binding Protein I - genetics
Poly(A)-Binding Protein I - metabolism
Polyadenylation
RNA and RNA-protein complexes
RNA Stability - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcriptome
Title Phosphorylation of the nuclear poly(A) binding protein (PABPN1) during mitosis protects mRNA from hyperadenylation and maintains transcriptome dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/38943343
https://www.proquest.com/docview/3073713285
https://pubmed.ncbi.nlm.nih.gov/PMC11381358
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb5wwELXaXNpL1Sb92H5sJlJUJQcUwMaYI40SRZGyXVWJtDdke00XpZgVbA77S_p3OzbsKhtV7RmDEQ_PPHtm3hByHGUmUVzywIiQBUzimpMpZ4EMuWY6Nkr4dkA3E351x65nyWxIkO3-EsLP6JmV7dnPe2kSb2rR_TqJ_Nvvs22wAH1QrxLlRTWZGMrwnty743h2itkeccqnqZGPfM3la_JqIImQ96i-Ic-M3ScHucUNcr2Gr-DTNv15-D55cb5p2XZAfk8XTbdcNO26z3CDpgQkeGCdaLFsYdn8Wp_kp6AqX8sCXqShsnAyzb9NJ9Ep9EWLUOMy76oOBhGHDuofkxxcJQoscN_aSjRWmymknUMtK-uOGDpYOdfnDVFTG5j37e67t-Tu8uL2_CoYOi8EmqbRKohLRTUXIkt1KXRpcBMVMxoamsyVFJJxJJky0q5LE37atESOVWZUcSSHoswEo-_Inm2s-UBApanSGlleViJ5SalAKyAjyXUYS2GSZESON7AUy15go-gD47RA9IoBvRE5RMj-PeJoA2eBn93FPaQ1zUNXODOGe_FY4GTve3i3D6JOf54yOiJiB_jtACe_vXvFVgsvwx1FyHZoIj7-99U-kZcxciGfmpZ9Jnur9sF8QS6zUmPyPA0vxv4kYOz_6j-CnfcF
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+of+the+nuclear+poly%28A%29+binding+protein+%28PABPN1%29+during+mitosis+protects+mRNA+from+hyperadenylation+and+maintains+transcriptome+dynamics&rft.jtitle=Nucleic+acids+research&rft.au=Gordon%2C+Jackson+M&rft.au=Phizicky%2C+David+V&rft.au=Sch%C3%A4rfen%2C+Leonard&rft.au=Brown%2C+Courtney+L&rft.date=2024-09-09&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=52&rft.issue=16&rft.spage=9886&rft_id=info:doi/10.1093%2Fnar%2Fgkae562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon