New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations

The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 5; no. 1; pp. 447 - 454
Main Authors Durur, Hülya, Tasbozan, Orkun, Kurt, Ali
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.01.2020
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional partial differential equations are converted into nonlinear ordinary differential equations. This is an important impact because both Caputo definition and Riemann–Liouville definition do not satisfy the chain rule. By using conformable fractional derivatives, reliable solutions can be achieved for conformable fractional partial differential equations.
AbstractList The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional partial differential equations are converted into nonlinear ordinary differential equations. This is an important impact because both Caputo definition and Riemann–Liouville definition do not satisfy the chain rule. By using conformable fractional derivatives, reliable solutions can be achieved for conformable fractional partial differential equations.
Author Durur, Hülya
Kurt, Ali
Tasbozan, Orkun
Author_xml – sequence: 1
  givenname: Hülya
  surname: Durur
  fullname: Durur, Hülya
  email: hulyadurur@ardahan.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering, Ardahan University, Ardahan, Turkey
– sequence: 2
  givenname: Orkun
  surname: Tasbozan
  fullname: Tasbozan, Orkun
  organization: Department of Mathematics, Faculty of Science and Art, Mustafa Kemal University, Hatay, Turkey
– sequence: 3
  givenname: Ali
  surname: Kurt
  fullname: Kurt, Ali
  organization: Department of Mathematics, Faculty of Science and Art, Pamukkale University, Denizli, Turkey
BookMark eNp9kEtLw0AUhQepYK39Ae4GXCdmHkmajdCWtgpVF9b1MJmHTEky7UxC6b930gqKoKt74J7vcu65BoPGNgqAW5TEmOaTe143PsYJTmIUJ0lC8QUYYkppNMnSbPBDX4Gx99tgwQSRLMNDUL6oA5w2vDq2RvAKvtmqa41tPLQazm2jrat5WSm4MbWCS8dFvw3GGZeQNxKurJXw2UqjjZJwZjvvTaP8Hi72HT9dugGXmldejb_mCLwvF5v5Y7R-XT3Np-tIkBy1EU6FUEpjWehUUJ2WpS7SIuwk5xKXIa2mWS-kIBMkixJRSSQpEkElJxknI3B3vrtzdt8p37Kt7VzI6hlBBcIkIykNLnR2CWe9d0qznTM1d0eGEta3yfo2Wd8mQ-zUZmDyX4ww7em51nFT_Us-nMkDr1rlpPpw3TGI72h_simiNCefOAmSWw
CitedBy_id crossref_primary_10_35414_akufemubid_946217
crossref_primary_10_1140_epjs_s11734_022_00457_1
crossref_primary_10_32604_cmc_2022_029432
crossref_primary_10_1155_2021_1426212
crossref_primary_10_3390_axioms11090449
crossref_primary_10_1140_epjp_s13360_022_02525_w
crossref_primary_10_1038_s41598_024_74606_y
crossref_primary_10_1007_s11082_024_06636_9
crossref_primary_10_3390_fractalfract6110631
crossref_primary_10_32604_cmc_2023_032950
crossref_primary_10_1109_ACCESS_2022_3217663
crossref_primary_10_3390_fractalfract4030041
crossref_primary_10_1088_1742_6596_1897_1_012051
crossref_primary_10_1155_2022_4717663
crossref_primary_10_25092_baunfbed_848234
crossref_primary_10_3390_fractalfract5040277
crossref_primary_10_35193_bseufbd_833244
crossref_primary_10_1007_s11182_021_02431_1
crossref_primary_10_1115_1_4066389
crossref_primary_10_3390_fractalfract6040184
crossref_primary_10_3390_sym13040618
crossref_primary_10_32604_sv_2021_014157
crossref_primary_10_32604_cmc_2022_028921
crossref_primary_10_1007_s12346_021_00541_2
crossref_primary_10_2478_amns_2021_2_00023
crossref_primary_10_1007_s00521_024_10361_5
crossref_primary_10_1142_S021798492150353X
crossref_primary_10_1016_j_aej_2020_08_034
crossref_primary_10_1080_10255842_2022_2145887
crossref_primary_10_1007_s11042_022_14270_4
crossref_primary_10_35193_bseufbd_1119693
crossref_primary_10_3390_computation9030031
crossref_primary_10_1140_epjp_s13360_022_02421_3
crossref_primary_10_1186_s13662_020_02831_6
crossref_primary_10_32604_cmc_2022_027629
crossref_primary_10_1016_j_joes_2022_04_036
crossref_primary_10_2478_amns_2020_2_00074
crossref_primary_10_1155_2021_5554280
crossref_primary_10_1155_2022_4070131
crossref_primary_10_1142_S0218348X2240240X
crossref_primary_10_2478_amns_2022_2_0179
crossref_primary_10_53570_jnt_1018383
crossref_primary_10_1016_j_rinp_2024_107790
crossref_primary_10_1016_j_oceaneng_2022_112202
crossref_primary_10_1140_epjp_s13360_021_01350_x
crossref_primary_10_1155_2021_2536720
crossref_primary_10_1016_j_arabjc_2022_104493
crossref_primary_10_1140_epjp_s13360_020_00646_8
crossref_primary_10_1016_j_bspc_2022_103888
crossref_primary_10_32604_cmc_2022_029437
crossref_primary_10_3390_sym14102113
crossref_primary_10_25092_baunfbed_743062
crossref_primary_10_2478_amns_2021_2_00089
Cites_doi 10.1016/j.physleta.2007.09.003
10.1016/j.oceaneng.2018.04.075
10.1016/j.physleta.2006.11.035
10.1063/1.4930488
10.1098/rspa.1967.0119
10.1016/j.aej.2017.05.028
10.1016/j.cam.2014.01.002
10.1140/epjp/i2013-13140-y
10.1142/S0217979218503654
10.1119/1.17120
10.1515/math-2015-0081
10.11121/ijocta.01.2019.00561
10.1016/S0375-9601(03)00196-8
10.22436/jnsa.010.07.06
10.1016/j.cam.2014.10.016
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2020.1.00042
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 454
ExternalDocumentID 10_2478_amns_2020_1_00042
10_2478_amns_2020_1_0004251447
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c371t-25cceef2d9f5c4f5bbf959c37daad2b662f46d2b6dc381d9b14d3d390c4da36a3
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:42:37 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 03:14:26 EDT 2025
Thu Jul 10 10:36:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-25cceef2d9f5c4f5bbf959c37daad2b662f46d2b6dc381d9b14d3d390c4da36a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191236354?pq-origsite=%requestingapplication%
PQID 3191236354
PQPubID 6761185
PageCount 8
ParticipantIDs proquest_journals_3191236354
crossref_primary_10_2478_amns_2020_1_00042
crossref_citationtrail_10_2478_amns_2020_1_00042
walterdegruyter_journals_10_2478_amns_2020_1_0004251447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2020
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2025012701014419359_j_amns.2020.1.00042_ref_004_w2aab3b7e2691b1b6b1ab2ab4Aa
2025012701014419359_j_amns.2020.1.00042_ref_012_w2aab3b7e2691b1b6b1ab2ac12Aa
2025012701014419359_j_amns.2020.1.00042_ref_002_w2aab3b7e2691b1b6b1ab2ab2Aa
2025012701014419359_j_amns.2020.1.00042_ref_009_w2aab3b7e2691b1b6b1ab2ab9Aa
2025012701014419359_j_amns.2020.1.00042_ref_014_w2aab3b7e2691b1b6b1ab2ac14Aa
2025012701014419359_j_amns.2020.1.00042_ref_011_w2aab3b7e2691b1b6b1ab2ac11Aa
2025012701014419359_j_amns.2020.1.00042_ref_007_w2aab3b7e2691b1b6b1ab2ab7Aa
2025012701014419359_j_amns.2020.1.00042_ref_005_w2aab3b7e2691b1b6b1ab2ab5Aa
2025012701014419359_j_amns.2020.1.00042_ref_016_w2aab3b7e2691b1b6b1ab2ac16Aa
2025012701014419359_j_amns.2020.1.00042_ref_013_w2aab3b7e2691b1b6b1ab2ac13Aa
2025012701014419359_j_amns.2020.1.00042_ref_003_w2aab3b7e2691b1b6b1ab2ab3Aa
2025012701014419359_j_amns.2020.1.00042_ref_008_w2aab3b7e2691b1b6b1ab2ab8Aa
2025012701014419359_j_amns.2020.1.00042_ref_001_w2aab3b7e2691b1b6b1ab2ab1Aa
2025012701014419359_j_amns.2020.1.00042_ref_006_w2aab3b7e2691b1b6b1ab2ab6Aa
2025012701014419359_j_amns.2020.1.00042_ref_010_w2aab3b7e2691b1b6b1ab2ac10Aa
2025012701014419359_j_amns.2020.1.00042_ref_015_w2aab3b7e2691b1b6b1ab2ac15Aa
References_xml – ident: 2025012701014419359_j_amns.2020.1.00042_ref_010_w2aab3b7e2691b1b6b1ab2ac10Aa
  doi: 10.1016/j.physleta.2007.09.003
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_008_w2aab3b7e2691b1b6b1ab2ab8Aa
  doi: 10.1016/j.oceaneng.2018.04.075
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_011_w2aab3b7e2691b1b6b1ab2ac11Aa
  doi: 10.1016/j.physleta.2006.11.035
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_014_w2aab3b7e2691b1b6b1ab2ac14Aa
  doi: 10.1063/1.4930488
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_009_w2aab3b7e2691b1b6b1ab2ab9Aa
  doi: 10.1098/rspa.1967.0119
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_015_w2aab3b7e2691b1b6b1ab2ac15Aa
  doi: 10.1016/j.aej.2017.05.028
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_005_w2aab3b7e2691b1b6b1ab2ab5Aa
  doi: 10.1016/j.cam.2014.01.002
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_004_w2aab3b7e2691b1b6b1ab2ab4Aa
  doi: 10.1140/epjp/i2013-13140-y
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_012_w2aab3b7e2691b1b6b1ab2ac12Aa
  doi: 10.1142/S0217979218503654
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_006_w2aab3b7e2691b1b6b1ab2ab6Aa
  doi: 10.1119/1.17120
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_002_w2aab3b7e2691b1b6b1ab2ab2Aa
  doi: 10.1515/math-2015-0081
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_016_w2aab3b7e2691b1b6b1ab2ac16Aa
  doi: 10.11121/ijocta.01.2019.00561
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_007_w2aab3b7e2691b1b6b1ab2ab7Aa
  doi: 10.1016/S0375-9601(03)00196-8
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_013_w2aab3b7e2691b1b6b1ab2ac13Aa
  doi: 10.22436/jnsa.010.07.06
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_001_w2aab3b7e2691b1b6b1ab2ab1Aa
  doi: 10.1016/j.cam.2014.10.016
– ident: 2025012701014419359_j_amns.2020.1.00042_ref_003_w2aab3b7e2691b1b6b1ab2ab3Aa
SSID ssj0002313662
Score 2.3236573
Snippet The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 447
SubjectTerms 26A33
auxiliary equation method
bad and good modified Boussinesq equations
conformable fractional derivative
Title New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations
URI https://www.degruyter.com/doi/10.2478/amns.2020.1.00042
https://www.proquest.com/docview/3191236354
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYvPDCNn5oZQz5gadJEY3txM3TtE7tEFIRQkPwFtk-GyFB0jatpv33u0vcViDBW6TYfrg7333-zr5j7GwAWohCQGKU9okioqlIZZrkIWiJBxKvDFEDk6v84lZd3mf3kXBr4rXKlU9sHTXUjjjyczQVKhQiM_VjOkuoaxRlV2MLjQ9sB13wAA9fO8PR1fXNmmVB9CLzXHTpTKH04Nw8V1SlW6CzaCt1ipcBaYMy9_62-WrwD_Plv8UqP9qGnfEnthfxIv_ZKfgz2_LVPvsYsSOPO7M5YBa9FW8rjLTkNF_TXbwOnJ71ETa1T57Tmw8-nnfvGXDg0AA3FfDfdQ18UsNjoIWH9bJpb8TP-GjWVQNvDtntePTn10US-yckTup0kYjMYQgMAoqQORUyawPqAv-BMSAsyiWonD7AYdyGwqYKJMii7xQYmRt5xLaruvJfGLcgbZEZ7Z1XSpvC5JCbfrBi4Eyw0O-x_kqIpYvFxanHxVOJhwySe0lyL0nuZVq2cu-x7-sp066yxnuDT1aaKeMma8qNSfSYfqWtzag310SoqPTx-wt_Zbs0peNcTtj2Yr703xCFLOwpOtO7yWk0uP__7t-C
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9ACX8lYDBXyAC9KqWdu7mz0gRCAhpU2EUCv1ZmyPjZDKbpNNVPVP8RsZ7yMRSPTW20prj1bj2Xl6vgF4PcSM85xjpGXmIhkSTXks4ij1PhMUkDipQ2pgNk-nZ_LLeXK-A7-7XphwrbLTibWixtKGHPkhiUoAChGJfH-5iMLUqFBd7UZoNGJx7K6vKGSr3h19ovN9w_lkfPpxGrVTBSIrsngV8cSSYfAcc59Y6RNjPH0hvUOtkZs05V6m4QEtWTPMTSxRoMgHVqIWqRZE9w7sSkGhTA92R-P512-brA55S4IoNOVTLrPhof5VBFRwTsqpRgblfxvArVe7d1XXx9H9WK6vV109tjZzkwew1_qn7EMjUA9hxxWP4H7rq7JWE1SPwZB2ZDWiSZ0MZ5v0Gis9C22EwRc2F46FHhM2WTb9E7RwpJHpAtnnskQ2K_GnD4RH5bqqb-Av2HjRoI9XT-DsVjj7FHpFWbh9YAaFyROdOeukzHSuU0z1wBs-tNobHPRh0DFR2RbMPMzUuFAU1AS-q8B3FfiuYlXzvQ9vN1suGySPmxYfdCej2p-6UlsR7EP2z2ltV_2XJrmmMnt2M-FXcHd6OjtRJ0fz4-dwL2xv8j0H0Fst1-4FeUAr87IVOwbfb1vS_wBjBR3U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kBfHiW1yfOXgSitskbbZHX-v6FlTwFpJOIoK2ug_Ef2-SdlcU9eCtkMfhSzPzZSbzBWC7jYLSjGKkuDAR94GmLGZxlFormDuQGK58aODiMu3e8dP75H4C4lEtTLD7GLKVuy9ow1VlLtq76rnw4trU7fEgsOms7qRIMpo0YHKve3xzNQ6sOMLC0pRWGcyfx371QZ_EcuYtpKjRPPSG74NRSjR4ms4czNQUkexVazoPE6ZYgNmaLpJ6M_YXQTsDRYKoSIhHk3GEi5SW-Eo-T0f1kyG-zIN0elUJg-u4r5CoAslxWSK5KPHR-on3y2E_XIJ_JUevlQB4fwnuOke3B92ofjIhypmIBxFNcuf1LMXMJjm3idbWwe_aUCmk2uFieeo_MHeuGjMdc2TIslbOUbFUsWVoFGVhVoBoZDpLlDC54VyoTKWYqpbVtJ0rq7HVhNYIRJnXeuL-WYsn6c4VHnfpcZcedxnLgHsTdsZDXioxjb86r49WRtb7qi-dwfByMSzhTRDfVuuz169zOnbIxeq_R27B1PVhR56fXJ6twbRvroIx69AY9IZmw9GTgd6sf8gPB7Hh6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Analytical+Solutions+of+Conformable+Time+Fractional+Bad+and+Good+Modified+Boussinesq+Equations&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Durur%2C+H%C3%BClya&rft.au=Tasbozan%2C+Orkun&rft.au=Ali%2C+Kurt&rft.date=2020-01-01&rft.pub=De+Gruyter+Poland&rft.eissn=2444-8656&rft.volume=5&rft.issue=1&rft.spage=447&rft.epage=454&rft_id=info:doi/10.2478%2Famns.2020.1.00042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon