New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations
The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 5; no. 1; pp. 447 - 454 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.01.2020
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional partial differential equations are converted into nonlinear ordinary differential equations. This is an important impact because both Caputo definition and Riemann–Liouville definition do not satisfy the chain rule. By using conformable fractional derivatives, reliable solutions can be achieved for conformable fractional partial differential equations. |
---|---|
AbstractList | The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation method, which can be considered as a model of shallow water waves. By using the conformable wave transform and chain rule, nonlinear fractional partial differential equations are converted into nonlinear ordinary differential equations. This is an important impact because both Caputo definition and Riemann–Liouville definition do not satisfy the chain rule. By using conformable fractional derivatives, reliable solutions can be achieved for conformable fractional partial differential equations. |
Author | Durur, Hülya Kurt, Ali Tasbozan, Orkun |
Author_xml | – sequence: 1 givenname: Hülya surname: Durur fullname: Durur, Hülya email: hulyadurur@ardahan.edu.tr organization: Department of Computer Engineering, Faculty of Engineering, Ardahan University, Ardahan, Turkey – sequence: 2 givenname: Orkun surname: Tasbozan fullname: Tasbozan, Orkun organization: Department of Mathematics, Faculty of Science and Art, Mustafa Kemal University, Hatay, Turkey – sequence: 3 givenname: Ali surname: Kurt fullname: Kurt, Ali organization: Department of Mathematics, Faculty of Science and Art, Pamukkale University, Denizli, Turkey |
BookMark | eNp9kEtLw0AUhQepYK39Ae4GXCdmHkmajdCWtgpVF9b1MJmHTEky7UxC6b930gqKoKt74J7vcu65BoPGNgqAW5TEmOaTe143PsYJTmIUJ0lC8QUYYkppNMnSbPBDX4Gx99tgwQSRLMNDUL6oA5w2vDq2RvAKvtmqa41tPLQazm2jrat5WSm4MbWCS8dFvw3GGZeQNxKurJXw2UqjjZJwZjvvTaP8Hi72HT9dugGXmldejb_mCLwvF5v5Y7R-XT3Np-tIkBy1EU6FUEpjWehUUJ2WpS7SIuwk5xKXIa2mWS-kIBMkixJRSSQpEkElJxknI3B3vrtzdt8p37Kt7VzI6hlBBcIkIykNLnR2CWe9d0qznTM1d0eGEta3yfo2Wd8mQ-zUZmDyX4ww7em51nFT_Us-nMkDr1rlpPpw3TGI72h_simiNCefOAmSWw |
CitedBy_id | crossref_primary_10_35414_akufemubid_946217 crossref_primary_10_1140_epjs_s11734_022_00457_1 crossref_primary_10_32604_cmc_2022_029432 crossref_primary_10_1155_2021_1426212 crossref_primary_10_3390_axioms11090449 crossref_primary_10_1140_epjp_s13360_022_02525_w crossref_primary_10_1038_s41598_024_74606_y crossref_primary_10_1007_s11082_024_06636_9 crossref_primary_10_3390_fractalfract6110631 crossref_primary_10_32604_cmc_2023_032950 crossref_primary_10_1109_ACCESS_2022_3217663 crossref_primary_10_3390_fractalfract4030041 crossref_primary_10_1088_1742_6596_1897_1_012051 crossref_primary_10_1155_2022_4717663 crossref_primary_10_25092_baunfbed_848234 crossref_primary_10_3390_fractalfract5040277 crossref_primary_10_35193_bseufbd_833244 crossref_primary_10_1007_s11182_021_02431_1 crossref_primary_10_1115_1_4066389 crossref_primary_10_3390_fractalfract6040184 crossref_primary_10_3390_sym13040618 crossref_primary_10_32604_sv_2021_014157 crossref_primary_10_32604_cmc_2022_028921 crossref_primary_10_1007_s12346_021_00541_2 crossref_primary_10_2478_amns_2021_2_00023 crossref_primary_10_1007_s00521_024_10361_5 crossref_primary_10_1142_S021798492150353X crossref_primary_10_1016_j_aej_2020_08_034 crossref_primary_10_1080_10255842_2022_2145887 crossref_primary_10_1007_s11042_022_14270_4 crossref_primary_10_35193_bseufbd_1119693 crossref_primary_10_3390_computation9030031 crossref_primary_10_1140_epjp_s13360_022_02421_3 crossref_primary_10_1186_s13662_020_02831_6 crossref_primary_10_32604_cmc_2022_027629 crossref_primary_10_1016_j_joes_2022_04_036 crossref_primary_10_2478_amns_2020_2_00074 crossref_primary_10_1155_2021_5554280 crossref_primary_10_1155_2022_4070131 crossref_primary_10_1142_S0218348X2240240X crossref_primary_10_2478_amns_2022_2_0179 crossref_primary_10_53570_jnt_1018383 crossref_primary_10_1016_j_rinp_2024_107790 crossref_primary_10_1016_j_oceaneng_2022_112202 crossref_primary_10_1140_epjp_s13360_021_01350_x crossref_primary_10_1155_2021_2536720 crossref_primary_10_1016_j_arabjc_2022_104493 crossref_primary_10_1140_epjp_s13360_020_00646_8 crossref_primary_10_1016_j_bspc_2022_103888 crossref_primary_10_32604_cmc_2022_029437 crossref_primary_10_3390_sym14102113 crossref_primary_10_25092_baunfbed_743062 crossref_primary_10_2478_amns_2021_2_00089 |
Cites_doi | 10.1016/j.physleta.2007.09.003 10.1016/j.oceaneng.2018.04.075 10.1016/j.physleta.2006.11.035 10.1063/1.4930488 10.1098/rspa.1967.0119 10.1016/j.aej.2017.05.028 10.1016/j.cam.2014.01.002 10.1140/epjp/i2013-13140-y 10.1142/S0217979218503654 10.1119/1.17120 10.1515/math-2015-0081 10.11121/ijocta.01.2019.00561 10.1016/S0375-9601(03)00196-8 10.22436/jnsa.010.07.06 10.1016/j.cam.2014.10.016 |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/amns.2020.1.00042 |
DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
EndPage | 454 |
ExternalDocumentID | 10_2478_amns_2020_1_00042 10_2478_amns_2020_1_0004251447 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c371t-25cceef2d9f5c4f5bbf959c37daad2b662f46d2b6dc381d9b14d3d390c4da36a3 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:42:37 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 03:14:26 EDT 2025 Thu Jul 10 10:36:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-25cceef2d9f5c4f5bbf959c37daad2b662f46d2b6dc381d9b14d3d390c4da36a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191236354?pq-origsite=%requestingapplication% |
PQID | 3191236354 |
PQPubID | 6761185 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3191236354 crossref_primary_10_2478_amns_2020_1_00042 crossref_citationtrail_10_2478_amns_2020_1_00042 walterdegruyter_journals_10_2478_amns_2020_1_0004251447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2020 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2025012701014419359_j_amns.2020.1.00042_ref_004_w2aab3b7e2691b1b6b1ab2ab4Aa 2025012701014419359_j_amns.2020.1.00042_ref_012_w2aab3b7e2691b1b6b1ab2ac12Aa 2025012701014419359_j_amns.2020.1.00042_ref_002_w2aab3b7e2691b1b6b1ab2ab2Aa 2025012701014419359_j_amns.2020.1.00042_ref_009_w2aab3b7e2691b1b6b1ab2ab9Aa 2025012701014419359_j_amns.2020.1.00042_ref_014_w2aab3b7e2691b1b6b1ab2ac14Aa 2025012701014419359_j_amns.2020.1.00042_ref_011_w2aab3b7e2691b1b6b1ab2ac11Aa 2025012701014419359_j_amns.2020.1.00042_ref_007_w2aab3b7e2691b1b6b1ab2ab7Aa 2025012701014419359_j_amns.2020.1.00042_ref_005_w2aab3b7e2691b1b6b1ab2ab5Aa 2025012701014419359_j_amns.2020.1.00042_ref_016_w2aab3b7e2691b1b6b1ab2ac16Aa 2025012701014419359_j_amns.2020.1.00042_ref_013_w2aab3b7e2691b1b6b1ab2ac13Aa 2025012701014419359_j_amns.2020.1.00042_ref_003_w2aab3b7e2691b1b6b1ab2ab3Aa 2025012701014419359_j_amns.2020.1.00042_ref_008_w2aab3b7e2691b1b6b1ab2ab8Aa 2025012701014419359_j_amns.2020.1.00042_ref_001_w2aab3b7e2691b1b6b1ab2ab1Aa 2025012701014419359_j_amns.2020.1.00042_ref_006_w2aab3b7e2691b1b6b1ab2ab6Aa 2025012701014419359_j_amns.2020.1.00042_ref_010_w2aab3b7e2691b1b6b1ab2ac10Aa 2025012701014419359_j_amns.2020.1.00042_ref_015_w2aab3b7e2691b1b6b1ab2ac15Aa |
References_xml | – ident: 2025012701014419359_j_amns.2020.1.00042_ref_010_w2aab3b7e2691b1b6b1ab2ac10Aa doi: 10.1016/j.physleta.2007.09.003 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_008_w2aab3b7e2691b1b6b1ab2ab8Aa doi: 10.1016/j.oceaneng.2018.04.075 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_011_w2aab3b7e2691b1b6b1ab2ac11Aa doi: 10.1016/j.physleta.2006.11.035 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_014_w2aab3b7e2691b1b6b1ab2ac14Aa doi: 10.1063/1.4930488 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_009_w2aab3b7e2691b1b6b1ab2ab9Aa doi: 10.1098/rspa.1967.0119 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_015_w2aab3b7e2691b1b6b1ab2ac15Aa doi: 10.1016/j.aej.2017.05.028 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_005_w2aab3b7e2691b1b6b1ab2ab5Aa doi: 10.1016/j.cam.2014.01.002 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_004_w2aab3b7e2691b1b6b1ab2ab4Aa doi: 10.1140/epjp/i2013-13140-y – ident: 2025012701014419359_j_amns.2020.1.00042_ref_012_w2aab3b7e2691b1b6b1ab2ac12Aa doi: 10.1142/S0217979218503654 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_006_w2aab3b7e2691b1b6b1ab2ab6Aa doi: 10.1119/1.17120 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_002_w2aab3b7e2691b1b6b1ab2ab2Aa doi: 10.1515/math-2015-0081 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_016_w2aab3b7e2691b1b6b1ab2ac16Aa doi: 10.11121/ijocta.01.2019.00561 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_007_w2aab3b7e2691b1b6b1ab2ab7Aa doi: 10.1016/S0375-9601(03)00196-8 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_013_w2aab3b7e2691b1b6b1ab2ac13Aa doi: 10.22436/jnsa.010.07.06 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_001_w2aab3b7e2691b1b6b1ab2ab1Aa doi: 10.1016/j.cam.2014.10.016 – ident: 2025012701014419359_j_amns.2020.1.00042_ref_003_w2aab3b7e2691b1b6b1ab2ab3Aa |
SSID | ssj0002313662 |
Score | 2.3236573 |
Snippet | The main purpose of this article is to obtain the new solutions of fractional bad and good modified Boussinesq equations with the aid of auxiliary equation... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 447 |
SubjectTerms | 26A33 auxiliary equation method bad and good modified Boussinesq equations conformable fractional derivative |
Title | New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations |
URI | https://www.degruyter.com/doi/10.2478/amns.2020.1.00042 https://www.proquest.com/docview/3191236354 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYvPDCNn5oZQz5gadJEY3txM3TtE7tEFIRQkPwFtk-GyFB0jatpv33u0vcViDBW6TYfrg7333-zr5j7GwAWohCQGKU9okioqlIZZrkIWiJBxKvDFEDk6v84lZd3mf3kXBr4rXKlU9sHTXUjjjyczQVKhQiM_VjOkuoaxRlV2MLjQ9sB13wAA9fO8PR1fXNmmVB9CLzXHTpTKH04Nw8V1SlW6CzaCt1ipcBaYMy9_62-WrwD_Plv8UqP9qGnfEnthfxIv_ZKfgz2_LVPvsYsSOPO7M5YBa9FW8rjLTkNF_TXbwOnJ71ETa1T57Tmw8-nnfvGXDg0AA3FfDfdQ18UsNjoIWH9bJpb8TP-GjWVQNvDtntePTn10US-yckTup0kYjMYQgMAoqQORUyawPqAv-BMSAsyiWonD7AYdyGwqYKJMii7xQYmRt5xLaruvJfGLcgbZEZ7Z1XSpvC5JCbfrBi4Eyw0O-x_kqIpYvFxanHxVOJhwySe0lyL0nuZVq2cu-x7-sp066yxnuDT1aaKeMma8qNSfSYfqWtzag310SoqPTx-wt_Zbs0peNcTtj2Yr703xCFLOwpOtO7yWk0uP__7t-C |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9ACX8lYDBXyAC9KqWdu7mz0gRCAhpU2EUCv1ZmyPjZDKbpNNVPVP8RsZ7yMRSPTW20prj1bj2Xl6vgF4PcSM85xjpGXmIhkSTXks4ij1PhMUkDipQ2pgNk-nZ_LLeXK-A7-7XphwrbLTibWixtKGHPkhiUoAChGJfH-5iMLUqFBd7UZoNGJx7K6vKGSr3h19ovN9w_lkfPpxGrVTBSIrsngV8cSSYfAcc59Y6RNjPH0hvUOtkZs05V6m4QEtWTPMTSxRoMgHVqIWqRZE9w7sSkGhTA92R-P512-brA55S4IoNOVTLrPhof5VBFRwTsqpRgblfxvArVe7d1XXx9H9WK6vV109tjZzkwew1_qn7EMjUA9hxxWP4H7rq7JWE1SPwZB2ZDWiSZ0MZ5v0Gis9C22EwRc2F46FHhM2WTb9E7RwpJHpAtnnskQ2K_GnD4RH5bqqb-Av2HjRoI9XT-DsVjj7FHpFWbh9YAaFyROdOeukzHSuU0z1wBs-tNobHPRh0DFR2RbMPMzUuFAU1AS-q8B3FfiuYlXzvQ9vN1suGySPmxYfdCej2p-6UlsR7EP2z2ltV_2XJrmmMnt2M-FXcHd6OjtRJ0fz4-dwL2xv8j0H0Fst1-4FeUAr87IVOwbfb1vS_wBjBR3U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kBfHiW1yfOXgSitskbbZHX-v6FlTwFpJOIoK2ug_Ef2-SdlcU9eCtkMfhSzPzZSbzBWC7jYLSjGKkuDAR94GmLGZxlFormDuQGK58aODiMu3e8dP75H4C4lEtTLD7GLKVuy9ow1VlLtq76rnw4trU7fEgsOms7qRIMpo0YHKve3xzNQ6sOMLC0pRWGcyfx371QZ_EcuYtpKjRPPSG74NRSjR4ms4czNQUkexVazoPE6ZYgNmaLpJ6M_YXQTsDRYKoSIhHk3GEi5SW-Eo-T0f1kyG-zIN0elUJg-u4r5CoAslxWSK5KPHR-on3y2E_XIJ_JUevlQB4fwnuOke3B92ofjIhypmIBxFNcuf1LMXMJjm3idbWwe_aUCmk2uFieeo_MHeuGjMdc2TIslbOUbFUsWVoFGVhVoBoZDpLlDC54VyoTKWYqpbVtJ0rq7HVhNYIRJnXeuL-WYsn6c4VHnfpcZcedxnLgHsTdsZDXioxjb86r49WRtb7qi-dwfByMSzhTRDfVuuz169zOnbIxeq_R27B1PVhR56fXJ6twbRvroIx69AY9IZmw9GTgd6sf8gPB7Hh6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Analytical+Solutions+of+Conformable+Time+Fractional+Bad+and+Good+Modified+Boussinesq+Equations&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Durur%2C+H%C3%BClya&rft.au=Tasbozan%2C+Orkun&rft.au=Ali%2C+Kurt&rft.date=2020-01-01&rft.pub=De+Gruyter+Poland&rft.eissn=2444-8656&rft.volume=5&rft.issue=1&rft.spage=447&rft.epage=454&rft_id=info:doi/10.2478%2Famns.2020.1.00042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |