High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China

Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 816; p. 151633
Main Authors Ge, Yihui, Fu, Qingyan, Yi, Min, Chao, Yuan, Lei, Xiaoning, Xu, Xueyi, Yang, Zhenchun, Hu, Jianlin, Kan, Haidong, Cai, Jing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in UFPs concentrations in European and American, but have never been applied in developing countries with heavy air pollution. This study developed a land-use regression (LUR) model for UFP exposure assessment in Shanghai, a typic mega city of China, where dense population resides. A 30-minute measurement of particle number concentrations of UFPs was collected at each visit at 144 fixed sites, and each was visited three times in each season of winter, spring, and summer. The annual adjusted average was calculated and regressed against pre-selected geographic information system-derived predictor variables using a stepwise variable selection method. The final LUR model explained 69% of the spatial variability in UFP with a root mean square error of 6008 particles cm−3. The 10-fold cross validation R2 reached 0.68, revealing the robustness of the model. The final predictors included traffic-related NOx emissions, number of restaurants, building footprint area, and distance to the nearest national road. These predictors were within a relatively small buffer size, ranging from 50 m to 100 m, indicating great spatial variations of UFP particle number concentration and the need of high-resolution models for UFP exposure assessment in urban areas. We concluded that based on a purpose-designed short-term monitoring network, LUR model can be applied to predict UFPs spatial surface in a mega city of China. Majority of the spatial variability in the annual mean of ambient UFP was explained in the model comprised primarily of traffic-, building-, and restaurant-related predictors. [Display omitted] •Lack of suitable exposure assessment metrics limits epidemiological studies of UFPs.•We built the first UFPs LUR model in China, upon specific-monitoring network.•The model comprised primarily of traffic-, building-&restaurant-related predictors.•The model explained majority of spatial variability in ambient UFP concentrations.•This study may support future population-based epidemiological studies of UFPs.
AbstractList Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in UFPs concentrations in European and American, but have never been applied in developing countries with heavy air pollution. This study developed a land-use regression (LUR) model for UFP exposure assessment in Shanghai, a typic mega city of China, where dense population resides. A 30-minute measurement of particle number concentrations of UFPs was collected at each visit at 144 fixed sites, and each was visited three times in each season of winter, spring, and summer. The annual adjusted average was calculated and regressed against pre-selected geographic information system-derived predictor variables using a stepwise variable selection method. The final LUR model explained 69% of the spatial variability in UFP with a root mean square error of 6008 particles cm−3. The 10-fold cross validation R2 reached 0.68, revealing the robustness of the model. The final predictors included traffic-related NOx emissions, number of restaurants, building footprint area, and distance to the nearest national road. These predictors were within a relatively small buffer size, ranging from 50 m to 100 m, indicating great spatial variations of UFP particle number concentration and the need of high-resolution models for UFP exposure assessment in urban areas. We concluded that based on a purpose-designed short-term monitoring network, LUR model can be applied to predict UFPs spatial surface in a mega city of China. Majority of the spatial variability in the annual mean of ambient UFP was explained in the model comprised primarily of traffic-, building-, and restaurant-related predictors. [Display omitted] •Lack of suitable exposure assessment metrics limits epidemiological studies of UFPs.•We built the first UFPs LUR model in China, upon specific-monitoring network.•The model comprised primarily of traffic-, building-&restaurant-related predictors.•The model explained majority of spatial variability in ambient UFP concentrations.•This study may support future population-based epidemiological studies of UFPs.
Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use in large population-based studies. Land use regression (LUR) models have been used increasingly for modeling small-scale spatial variation in UFPs concentrations in European and American, but have never been applied in developing countries with heavy air pollution. This study developed a land-use regression (LUR) model for UFP exposure assessment in Shanghai, a typic mega city of China, where dense population resides. A 30-minute measurement of particle number concentrations of UFPs was collected at each visit at 144 fixed sites, and each was visited three times in each season of winter, spring, and summer. The annual adjusted average was calculated and regressed against pre-selected geographic information system-derived predictor variables using a stepwise variable selection method. The final LUR model explained 69% of the spatial variability in UFP with a root mean square error of 6008 particles cm . The 10-fold cross validation R reached 0.68, revealing the robustness of the model. The final predictors included traffic-related NO emissions, number of restaurants, building footprint area, and distance to the nearest national road. These predictors were within a relatively small buffer size, ranging from 50 m to 100 m, indicating great spatial variations of UFP particle number concentration and the need of high-resolution models for UFP exposure assessment in urban areas. We concluded that based on a purpose-designed short-term monitoring network, LUR model can be applied to predict UFPs spatial surface in a mega city of China. Majority of the spatial variability in the annual mean of ambient UFP was explained in the model comprised primarily of traffic-, building-, and restaurant-related predictors.
ArticleNumber 151633
Author Cai, Jing
Fu, Qingyan
Yang, Zhenchun
Hu, Jianlin
Lei, Xiaoning
Ge, Yihui
Xu, Xueyi
Yi, Min
Chao, Yuan
Kan, Haidong
Author_xml – sequence: 1
  givenname: Yihui
  surname: Ge
  fullname: Ge, Yihui
  organization: School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
– sequence: 2
  givenname: Qingyan
  surname: Fu
  fullname: Fu, Qingyan
  organization: Shanghai Environmental Monitoring Center, Shanghai 200233, China
– sequence: 3
  givenname: Min
  surname: Yi
  fullname: Yi, Min
  organization: Shanghai Environmental Monitoring Center, Shanghai 200233, China
– sequence: 4
  givenname: Yuan
  surname: Chao
  fullname: Chao, Yuan
  organization: Shanghai Environmental Monitoring Center, Shanghai 200233, China
– sequence: 5
  givenname: Xiaoning
  surname: Lei
  fullname: Lei, Xiaoning
  organization: School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
– sequence: 6
  givenname: Xueyi
  surname: Xu
  fullname: Xu, Xueyi
  organization: School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
– sequence: 7
  givenname: Zhenchun
  surname: Yang
  fullname: Yang, Zhenchun
  organization: MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, United Kingdom
– sequence: 8
  givenname: Jianlin
  surname: Hu
  fullname: Hu, Jianlin
  organization: Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 9
  givenname: Haidong
  surname: Kan
  fullname: Kan, Haidong
  email: kanh@fudan.edu.cn
  organization: School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
– sequence: 10
  givenname: Jing
  surname: Cai
  fullname: Cai, Jing
  email: jingcai@fudan.edu.cn
  organization: School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34785221$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1OwzAQhC1UBG3hFcAPQIqdP9tHVPEnVeIAnKONs2ldpXZkOxW8PakKvbKXlUYzs6tvRibWWSTklrMFZ7y83y6CNtFFtPtFylK-4AUvs-yMTLkUKuEsLSdkylguE1UqcUlmIWzZOELyC3KZ5UIWacqnZHgx6w0NPUQDHfUYXDdE4yztwDbJEHDU1qMcDtrONdjR1nk6-BosHbrooTUWaQ8-Gt0hxa_ehcEjhRDG1A5tpMbS9w3Y9QbMHV1ujIUrct5CF_D6d8_J59Pjx_IlWb09vy4fVonOBI9JWsiiUJzpOsdUsVK3UkCjdY6FwKIpgdV1DUq2jW5zBWmdC60ynbdSFqC4yOZEHHu1dyF4bKvemx3474qz6gCy2lYnkNUBZHUEOSZvjsl-qHfYnHJ_5EbDw9GA4_97g_5QhFZjYzzqWDXO_HvkB2NYjhk
CitedBy_id crossref_primary_10_1007_s11356_022_22151_4
crossref_primary_10_1016_j_envpol_2022_119470
crossref_primary_10_3390_su16135314
crossref_primary_10_1016_j_aeaoa_2023_100221
crossref_primary_10_1016_j_jtho_2023_05_024
crossref_primary_10_1016_j_scitotenv_2022_157524
crossref_primary_10_1016_j_envpol_2024_123664
crossref_primary_10_1016_j_envres_2022_115061
crossref_primary_10_3389_fenvs_2024_1399339
Cites_doi 10.1016/j.envres.2015.12.016
10.1016/j.envpol.2016.02.041
10.1021/es505791g
10.1021/es100008x
10.1016/j.envres.2017.08.040
10.1021/acs.est.6b05920
10.1021/es0606780
10.1021/acs.est.7b05059
10.1016/j.envres.2005.12.013
10.1016/j.atmosenv.2017.02.028
10.1016/j.atmosenv.2020.117267
10.1016/j.scitotenv.2016.11.160
10.1177/0361198105193900118
10.1007/s11270-015-2726-6
10.1016/j.scitotenv.2008.01.038
10.1039/B615795E
10.3390/ijerph13111054
10.1021/acs.est.6b03476
10.1016/j.atmosenv.2010.03.035
10.1080/136588197242158
10.1016/j.scitotenv.2014.04.106
10.1016/j.envpol.2020.114027
10.1289/ehp.7939
10.1016/j.envpol.2015.04.011
10.1016/j.atmosenv.2012.01.058
10.1016/j.atmosenv.2015.02.018
10.1186/s12940-016-0137-9
10.1021/acs.est.9b02086
10.1021/es304495s
10.1016/j.scitotenv.2020.140059
10.1016/j.proeng.2017.10.062
10.1016/j.atmosenv.2014.05.070
10.1016/j.scitotenv.2019.134234
10.1016/j.atmosenv.2010.08.016
10.1021/es1023042
10.1021/es402156g
10.1021/es301948k
10.1016/j.scitotenv.2017.03.094
10.1016/j.scitotenv.2015.07.051
10.1016/j.atmosenv.2013.01.061
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/j.scitotenv.2021.151633
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2021_151633
34785221
S0048969721067097
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/S019669/1
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
AAHBH
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
53G
AAQXK
AAYJJ
AAYXX
ABEFU
ABTAH
ABXDB
ADMUD
AFJKZ
AGHFR
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
ID FETCH-LOGICAL-c371t-25855910cb4e2906cf87adcc4e57e5d6a0bbba98fdcf49a2b47c93c4f885a9173
IEDL.DBID .~1
ISSN 0048-9697
IngestDate Thu Sep 26 18:37:03 EDT 2024
Sat Sep 28 08:19:08 EDT 2024
Fri Feb 23 02:41:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ultrafine particles
Purpose-designed monitoring network
Spatial variation
Exposure assessment
Land use regression model
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-25855910cb4e2906cf87adcc4e57e5d6a0bbba98fdcf49a2b47c93c4f885a9173
PMID 34785221
ParticipantIDs crossref_primary_10_1016_j_scitotenv_2021_151633
pubmed_primary_34785221
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_151633
PublicationCentury 2000
PublicationDate 2022-04-10
PublicationDateYYYYMMDD 2022-04-10
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Davis, Lents, Osses, Nikkila, Barth (bb0050) 2005; 1939
Saha, Li, Apte, Robinson, Presto (bb0175) 2019; 53
Pirhadi, Mousavi, Sowlat, Janssen, Cassee, Sioutas (bb0160) 2020; 260
Abernethy, Allen, McKendry, Brauer (bb0010) 2013; 47
Kumar, Robins, Vardoulakis, Britter (bb0120) 2010; 44
Sioutas, Delfino, Singh (bb0185) 2005; 113
Weichenthal, Van Ryswyk, Goldstein, Shekarrizfard, Hatzopoulou (bb0210) 2016; 208
Zhu, Li, Liao, Fan, Li (bb0240) 2014; 5
Abdullahi, Delgado-Saborit, Harrison (bb0005) 2013; 71
Amini, Taghavi-Shahri, Henderson, Naddafi, Nabizadeh, Yunesian (bb0015) 2014; 488
Masiol, Harrison (bb0135) 2014; 95
Sabaliauskas, Jeong, Yao, Reali, Sun, Evans (bb0170) 2015; 110
Yi (bb0230) 2020; 2
Chen, Zhao, Zhang, Zhao (bb0045) 2017; 205
Baldauf, Devlin, Gehr, Giannelli, Hassett-Sipple, Jung, Martini, McDonald, Sacks, Walker (bb0020) 2016; 13
Farrell, Weichenthal, Goldberg, Valois, Shekarrizfard, Hatzopoulou (bb0065) 2016; 212
Karner, Eisinger, Niemeier (bb0105) 2010; 44
Minet, Liu, Valois, Xu, Weichenthal, Hatzopoulou (bb0140) 2018; 52
Eeftens, Meier, Schindler, Aguilera, Phuleria, Ineichen, Davey, Ducret-Stich, Keidel, Probst-Hensch (bb0060) 2016; 15
Hoek, Beelen, Kos, Dijkema, Zee, Fischer, Brunekreef (bb0095) 2011; 45
Yu, Venecek, Hu, Tanrikulu, Soon, Tran, Fairley, Kleeman (bb0235) 2018; 1
See, Balasubramanian (bb0180) 2006; 102
Eeftens, Beelen, de Hoogh, Bellander, Cesaroni, Cirach, Declercq, Dėdelė, Dons, de Nazelle (bb0055) 2012; 46
van Nunen, Vermeulen, Tsai, Probst-Hensch, Ineichen, Davey, Imboden, Ducret-Stich, Naccarati, Raffaele (bb0155) 2017; 51
Rivera, Basagaña, Aguilera, Agis, Bouso, Foraster, Medina-Ramón, Pey, Künzli, Hoek (bb0165) 2012; 54
Montagne, Hoek, Klompmaker, Wang, Meliefste, Brunekreef (bb0145) 2015; 49
Moore, Jerrett, Mack, Künzli (bb0150) 2007; 9
HEI (bb0080) 2013; 3
Wolf, Cyrys, Harciníková, Gu, Kusch, Hampel, Schneider, Peters (bb0220) 2017; 579
Ghassoun, Ruths, Löwner, Weber (bb0075) 2015; 536
Kerckhoffs, Hoek, Messier, Brunekreef, Meliefste, Klompmaker, Vermeulen (bb0110) 2016; 50
Cassee, Morawska, Peters, Wierzbicka, Buonanno, Cyrys, SchnelleKreis, Kowalski, Riediker, Birmili (bb0035) 2019
Wang, Chen, Huang, Fu (bb0200) 2008; 398
Heinzerling, Hsu, Yip (bb0085) 2016; 227
Lee, Brauer, Wong, Tang, Tsui, Choi, Cheng, Lai, Tian, Thach (bb0125) 2017; 592
WHO (bb0215) 2013
Yang, Freni-Sterrantino, Fuller, Gulliver (bb0225) 2020; 740
Henderson, Beckerman, Jerrett, Brauer (bb0090) 2007; 41
Liu, Zhang, Cheng, Xing, Zhang, Streets, Jang, Wang, Hao (bb0130) 2010; 44
Tang, Blangiardo, Gulliver (bb0190) 2013; 47
Jones, Hoek, Fisher, Hasheminassab, Wang, Ward, Sioutas, Vermeulen, Silverman (bb0100) 2020; 699
Weichenthal, Van Ryswyk, Goldstein, Bagg, Shekkarizfard, Hatzopoulou (bb0205) 2016; 146
Cai, Ge, Li, Yang, Liu, Meng, Wang, Niu, Kan, Schikowski (bb0030) 2020; 223
Ghadiri, Rashidi, Broomandi (bb0070) 2017; 3
Kerckhoffs, Hoek, Vlaanderen, van Nunen, Messier, Brunekreef, Gulliver, Vermeulen (bb0115) 2017; 159
Briggs, Collins, Elliott, Fischer, Kingham, Lebret, Pryl, Van Reeuwijk, Smallbone, Van Der Veen (bb0025) 1997; 11
Cattani, Gaeta, di Bucchianico, De Santis, Gaddi, Cusano, Ancona, Badaloni, Forastiere, Gariazzo (bb0040) 2017; 156
Wang, Ding (bb0195) 2006; 23
Sioutas (10.1016/j.scitotenv.2021.151633_bb0185) 2005; 113
Ghassoun (10.1016/j.scitotenv.2021.151633_bb0075) 2015; 536
Montagne (10.1016/j.scitotenv.2021.151633_bb0145) 2015; 49
Yi (10.1016/j.scitotenv.2021.151633_bb0230) 2020; 2
Lee (10.1016/j.scitotenv.2021.151633_bb0125) 2017; 592
Eeftens (10.1016/j.scitotenv.2021.151633_bb0060) 2016; 15
Hoek (10.1016/j.scitotenv.2021.151633_bb0095) 2011; 45
Liu (10.1016/j.scitotenv.2021.151633_bb0130) 2010; 44
Tang (10.1016/j.scitotenv.2021.151633_bb0190) 2013; 47
Weichenthal (10.1016/j.scitotenv.2021.151633_bb0205) 2016; 146
See (10.1016/j.scitotenv.2021.151633_bb0180) 2006; 102
Kumar (10.1016/j.scitotenv.2021.151633_bb0120) 2010; 44
Heinzerling (10.1016/j.scitotenv.2021.151633_bb0085) 2016; 227
Wang (10.1016/j.scitotenv.2021.151633_bb0195) 2006; 23
Wolf (10.1016/j.scitotenv.2021.151633_bb0220) 2017; 579
Pirhadi (10.1016/j.scitotenv.2021.151633_bb0160) 2020; 260
Jones (10.1016/j.scitotenv.2021.151633_bb0100) 2020; 699
Briggs (10.1016/j.scitotenv.2021.151633_bb0025) 1997; 11
Eeftens (10.1016/j.scitotenv.2021.151633_bb0055) 2012; 46
Kerckhoffs (10.1016/j.scitotenv.2021.151633_bb0110) 2016; 50
Abernethy (10.1016/j.scitotenv.2021.151633_bb0010) 2013; 47
Amini (10.1016/j.scitotenv.2021.151633_bb0015) 2014; 488
Cattani (10.1016/j.scitotenv.2021.151633_bb0040) 2017; 156
Yu (10.1016/j.scitotenv.2021.151633_bb0235) 2018; 1
Kerckhoffs (10.1016/j.scitotenv.2021.151633_bb0115) 2017; 159
Yang (10.1016/j.scitotenv.2021.151633_bb0225) 2020; 740
Moore (10.1016/j.scitotenv.2021.151633_bb0150) 2007; 9
van Nunen (10.1016/j.scitotenv.2021.151633_bb0155) 2017; 51
Sabaliauskas (10.1016/j.scitotenv.2021.151633_bb0170) 2015; 110
Cassee (10.1016/j.scitotenv.2021.151633_bb0035) 2019
Saha (10.1016/j.scitotenv.2021.151633_bb0175) 2019; 53
Weichenthal (10.1016/j.scitotenv.2021.151633_bb0210) 2016; 208
Abdullahi (10.1016/j.scitotenv.2021.151633_bb0005) 2013; 71
Ghadiri (10.1016/j.scitotenv.2021.151633_bb0070) 2017; 3
Cai (10.1016/j.scitotenv.2021.151633_bb0030) 2020; 223
Wang (10.1016/j.scitotenv.2021.151633_bb0200) 2008; 398
Baldauf (10.1016/j.scitotenv.2021.151633_bb0020) 2016; 13
Henderson (10.1016/j.scitotenv.2021.151633_bb0090) 2007; 41
Farrell (10.1016/j.scitotenv.2021.151633_bb0065) 2016; 212
Karner (10.1016/j.scitotenv.2021.151633_bb0105) 2010; 44
Masiol (10.1016/j.scitotenv.2021.151633_bb0135) 2014; 95
Minet (10.1016/j.scitotenv.2021.151633_bb0140) 2018; 52
Chen (10.1016/j.scitotenv.2021.151633_bb0045) 2017; 205
WHO (10.1016/j.scitotenv.2021.151633_bb0215) 2013
Rivera (10.1016/j.scitotenv.2021.151633_bb0165) 2012; 54
Davis (10.1016/j.scitotenv.2021.151633_bb0050) 2005; 1939
HEI (10.1016/j.scitotenv.2021.151633_bb0080) 2013; 3
Zhu (10.1016/j.scitotenv.2021.151633_bb0240) 2014; 5
References_xml – volume: 9
  start-page: 246
  year: 2007
  end-page: 252
  ident: bb0150
  article-title: A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA
  publication-title: J. Environ. Monit.
  contributor:
    fullname: Künzli
– volume: 223
  year: 2020
  ident: bb0030
  article-title: Application of land use regression to assess exposure and identify potential sources in PM2. 5, BC, NO2 concentrations
  publication-title: Atmos. Environ.
  contributor:
    fullname: Schikowski
– volume: 45
  start-page: 622
  year: 2011
  end-page: 628
  ident: bb0095
  article-title: Land use regression model for ultrafine particles in Amsterdam
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brunekreef
– volume: 113
  start-page: 947
  year: 2005
  end-page: 955
  ident: bb0185
  article-title: Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research
  publication-title: Environ. Health Perspect.
  contributor:
    fullname: Singh
– volume: 15
  start-page: 1
  year: 2016
  end-page: 14
  ident: bb0060
  article-title: Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the swiss SAPALDIA regions
  publication-title: Environ. Health
  contributor:
    fullname: Probst-Hensch
– volume: 592
  start-page: 306
  year: 2017
  end-page: 315
  ident: bb0125
  article-title: Land use regression modelling of air pollution in high density high rise cities: a case study in Hong Kong
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Thach
– volume: 3
  year: 2013
  ident: bb0080
  article-title: Understanding the Health Effects of Ambient Ultrafine Particles. HEI Perspectives
  contributor:
    fullname: HEI
– volume: 488
  start-page: 343
  year: 2014
  end-page: 353
  ident: bb0015
  article-title: Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Yunesian
– volume: 536
  start-page: 150
  year: 2015
  end-page: 160
  ident: bb0075
  article-title: Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Weber
– volume: 146
  start-page: 65
  year: 2016
  end-page: 72
  ident: bb0205
  article-title: A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach
  publication-title: Environ. Res.
  contributor:
    fullname: Hatzopoulou
– volume: 41
  start-page: 2422
  year: 2007
  end-page: 2428
  ident: bb0090
  article-title: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brauer
– volume: 44
  start-page: 5334
  year: 2010
  end-page: 5344
  ident: bb0105
  article-title: Near-roadway air quality: synthesizing the findings from real-world data
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Niemeier
– volume: 54
  start-page: 657
  year: 2012
  end-page: 666
  ident: bb0165
  article-title: Spatial distribution of ultrafine particles in urban settings: a land use regression model
  publication-title: Atmos. Environ.
  contributor:
    fullname: Hoek
– volume: 23
  start-page: 44
  year: 2006
  end-page: 47
  ident: bb0195
  article-title: Study on oil smoke pollution in the catering trade and treating situation (in Chinese)
  publication-title: J. Chongqing Technol. Bus. Univ.
  contributor:
    fullname: Ding
– volume: 95
  start-page: 409
  year: 2014
  end-page: 455
  ident: bb0135
  article-title: Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review
  publication-title: Atmos. Environ.
  contributor:
    fullname: Harrison
– volume: 44
  start-page: 2415
  year: 2010
  end-page: 2426
  ident: bb0130
  article-title: Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation
  publication-title: Atmos. Environ.
  contributor:
    fullname: Hao
– volume: 47
  start-page: 11643
  year: 2013
  end-page: 11650
  ident: bb0190
  article-title: Using building heights and street configuration to enhance intraurban PM10, NOx, and NO2 land use regression models
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Gulliver
– volume: 227
  start-page: 32
  year: 2016
  ident: bb0085
  article-title: Respiratory health effects of ultrafine particles in children: a literature review
  publication-title: Water Air Soil Pollut.
  contributor:
    fullname: Yip
– volume: 47
  start-page: 5217
  year: 2013
  end-page: 5225
  ident: bb0010
  article-title: A land use regression model for ultrafine particles in Vancouver, Canada
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brauer
– volume: 398
  start-page: 60
  year: 2008
  end-page: 67
  ident: bb0200
  article-title: On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Fu
– volume: 50
  start-page: 12894
  year: 2016
  end-page: 12902
  ident: bb0110
  article-title: Comparison of ultrafine particle and black carbon concentration predictions from a mobile and short-term stationary land-use regression model
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Vermeulen
– volume: 2
  start-page: 225
  year: 2020
  end-page: 234
  ident: bb0230
  article-title: Design and application of real-time vehicle emission measurement information system in Shanghai
  publication-title: Environ. Monit. China
  contributor:
    fullname: Yi
– volume: 159
  start-page: 500
  year: 2017
  end-page: 508
  ident: bb0115
  article-title: Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring
  publication-title: Environ. Res.
  contributor:
    fullname: Vermeulen
– volume: 52
  start-page: 3512
  year: 2018
  end-page: 3519
  ident: bb0140
  article-title: Development and comparison of air pollution exposure surfaces derived from on-road mobile monitoring and short-term stationary sidewalk measurements
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Hatzopoulou
– volume: 212
  start-page: 498
  year: 2016
  end-page: 507
  ident: bb0065
  article-title: Near roadway air pollution across a spatially extensive road and cycling network
  publication-title: Environ. Pollut.
  contributor:
    fullname: Hatzopoulou
– volume: 13
  start-page: 1054
  year: 2016
  ident: bb0020
  article-title: Ultrafine particle metrics and research considerations: review of the 2015 UFP workshop
  publication-title: Int. J. Environ. Res. Public Health
  contributor:
    fullname: Walker
– year: 2019
  ident: bb0035
  article-title: White Paper: Ambient Ultrafine Particles: Evidence for Policy Makers
  contributor:
    fullname: Birmili
– volume: 53
  start-page: 7326
  year: 2019
  end-page: 7336
  ident: bb0175
  article-title: Urban ultrafine particle exposure assessment with land-use regression: influence of sampling strategy
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Presto
– year: 2013
  ident: bb0215
  article-title: Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project: Technical Report [Internet]
  contributor:
    fullname: WHO
– volume: 205
  start-page: 2231
  year: 2017
  end-page: 2237
  ident: bb0045
  article-title: Source strength of ultrafine and fine particle due to chinese cooking
  publication-title: Procedia Eng.
  contributor:
    fullname: Zhao
– volume: 740
  year: 2020
  ident: bb0225
  article-title: Development and transferability of ultrafine particle land use regression models in London
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Gulliver
– volume: 102
  start-page: 197
  year: 2006
  end-page: 204
  ident: bb0180
  article-title: Risk assessment of exposure to indoor aerosols associated with chinese cooking
  publication-title: Environ. Res.
  contributor:
    fullname: Balasubramanian
– volume: 51
  start-page: 3336
  year: 2017
  end-page: 3345
  ident: bb0155
  article-title: Land use regression models for ultrafine particles in six european areas
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Raffaele
– volume: 5
  start-page: 57
  year: 2014
  end-page: 60
  ident: bb0240
  article-title: Analysis of characters of particulate emissions generated from urban cooking fume
  publication-title: Green Building
  contributor:
    fullname: Li
– volume: 11
  start-page: 699
  year: 1997
  end-page: 718
  ident: bb0025
  article-title: Mapping urban air pollution using GIS: a regression-based approach
  publication-title: Int. J. Geogr. Inf. Sci.
  contributor:
    fullname: Van Der Veen
– volume: 3
  start-page: 639
  year: 2017
  end-page: 653
  ident: bb0070
  article-title: Evaluation euro IV of effectiveness in transportation systems of Tehran on air quality: application of IVE model
  publication-title: Pollution
  contributor:
    fullname: Broomandi
– volume: 208
  start-page: 241
  year: 2016
  end-page: 248
  ident: bb0210
  article-title: Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: a land use regression model
  publication-title: Environ. Pollut.
  contributor:
    fullname: Hatzopoulou
– volume: 156
  start-page: 52
  year: 2017
  end-page: 60
  ident: bb0040
  article-title: Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy
  publication-title: Atmos. Environ.
  contributor:
    fullname: Gariazzo
– volume: 1
  year: 2018
  ident: bb0235
  article-title: Sources of airborne ultrafine particle number and mass concentrations in California
  publication-title: Atmos. Chem. Phys. Discuss
  contributor:
    fullname: Kleeman
– volume: 699
  year: 2020
  ident: bb0100
  article-title: Land use regression models for ultrafine particles, fine particles, and black carbon in Southern California
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Silverman
– volume: 1939
  start-page: 156
  year: 2005
  end-page: 165
  ident: bb0050
  article-title: Development and application of an international vehicle emissions model
  publication-title: Transp. Res. Rec.
  contributor:
    fullname: Barth
– volume: 49
  start-page: 8712
  year: 2015
  end-page: 8720
  ident: bb0145
  article-title: Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Brunekreef
– volume: 110
  start-page: 84
  year: 2015
  end-page: 92
  ident: bb0170
  article-title: Development of a land-use regression model for ultrafine particles in Toronto, Canada
  publication-title: Atmos. Environ.
  contributor:
    fullname: Evans
– volume: 44
  start-page: 5035
  year: 2010
  end-page: 5052
  ident: bb0120
  article-title: A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls
  publication-title: Atmos. Environ.
  contributor:
    fullname: Britter
– volume: 260
  year: 2020
  ident: bb0160
  article-title: Relative contributions of a major international airport activities and other urban sources to the particle number concentrations (PNCs) at a nearby monitoring site
  publication-title: Environ. Pollut.
  contributor:
    fullname: Sioutas
– volume: 46
  start-page: 11195
  year: 2012
  end-page: 11205
  ident: bb0055
  article-title: Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: de Nazelle
– volume: 579
  start-page: 1531
  year: 2017
  end-page: 1540
  ident: bb0220
  article-title: Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Peters
– volume: 71
  start-page: 260
  year: 2013
  end-page: 294
  ident: bb0005
  article-title: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review
  publication-title: Atmos. Environ.
  contributor:
    fullname: Harrison
– volume: 146
  start-page: 65
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0205
  article-title: A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.12.016
  contributor:
    fullname: Weichenthal
– volume: 212
  start-page: 498
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0065
  article-title: Near roadway air pollution across a spatially extensive road and cycling network
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.02.041
  contributor:
    fullname: Farrell
– volume: 49
  start-page: 8712
  issue: 14
  year: 2015
  ident: 10.1016/j.scitotenv.2021.151633_bb0145
  article-title: Land use regression models for ultrafine particles and black carbon based on short-term monitoring predict past spatial variation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505791g
  contributor:
    fullname: Montagne
– volume: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2021.151633_bb0235
  article-title: Sources of airborne ultrafine particle number and mass concentrations in California
  publication-title: Atmos. Chem. Phys. Discuss
  contributor:
    fullname: Yu
– volume: 44
  start-page: 5334
  issue: 14
  year: 2010
  ident: 10.1016/j.scitotenv.2021.151633_bb0105
  article-title: Near-roadway air quality: synthesizing the findings from real-world data
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100008x
  contributor:
    fullname: Karner
– volume: 159
  start-page: 500
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0115
  article-title: Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.08.040
  contributor:
    fullname: Kerckhoffs
– volume: 51
  start-page: 3336
  issue: 6
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0155
  article-title: Land use regression models for ultrafine particles in six european areas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05920
  contributor:
    fullname: van Nunen
– volume: 41
  start-page: 2422
  issue: 7
  year: 2007
  ident: 10.1016/j.scitotenv.2021.151633_bb0090
  article-title: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0606780
  contributor:
    fullname: Henderson
– volume: 52
  start-page: 3512
  issue: 6
  year: 2018
  ident: 10.1016/j.scitotenv.2021.151633_bb0140
  article-title: Development and comparison of air pollution exposure surfaces derived from on-road mobile monitoring and short-term stationary sidewalk measurements
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05059
  contributor:
    fullname: Minet
– volume: 102
  start-page: 197
  issue: 2
  year: 2006
  ident: 10.1016/j.scitotenv.2021.151633_bb0180
  article-title: Risk assessment of exposure to indoor aerosols associated with chinese cooking
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2005.12.013
  contributor:
    fullname: See
– volume: 156
  start-page: 52
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0040
  article-title: Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.02.028
  contributor:
    fullname: Cattani
– volume: 223
  year: 2020
  ident: 10.1016/j.scitotenv.2021.151633_bb0030
  article-title: Application of land use regression to assess exposure and identify potential sources in PM2. 5, BC, NO2 concentrations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117267
  contributor:
    fullname: Cai
– volume: 5
  start-page: 57
  year: 2014
  ident: 10.1016/j.scitotenv.2021.151633_bb0240
  article-title: Analysis of characters of particulate emissions generated from urban cooking fume
  publication-title: Green Building
  contributor:
    fullname: Zhu
– year: 2019
  ident: 10.1016/j.scitotenv.2021.151633_bb0035
  contributor:
    fullname: Cassee
– year: 2013
  ident: 10.1016/j.scitotenv.2021.151633_bb0215
  contributor:
    fullname: WHO
– volume: 579
  start-page: 1531
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0220
  article-title: Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.160
  contributor:
    fullname: Wolf
– volume: 1939
  start-page: 156
  issue: 1
  year: 2005
  ident: 10.1016/j.scitotenv.2021.151633_bb0050
  article-title: Development and application of an international vehicle emissions model
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198105193900118
  contributor:
    fullname: Davis
– volume: 227
  start-page: 32
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0085
  article-title: Respiratory health effects of ultrafine particles in children: a literature review
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-015-2726-6
  contributor:
    fullname: Heinzerling
– volume: 398
  start-page: 60
  issue: 1–3
  year: 2008
  ident: 10.1016/j.scitotenv.2021.151633_bb0200
  article-title: On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.01.038
  contributor:
    fullname: Wang
– volume: 9
  start-page: 246
  issue: 3
  year: 2007
  ident: 10.1016/j.scitotenv.2021.151633_bb0150
  article-title: A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA
  publication-title: J. Environ. Monit.
  doi: 10.1039/B615795E
  contributor:
    fullname: Moore
– volume: 13
  start-page: 1054
  issue: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0020
  article-title: Ultrafine particle metrics and research considerations: review of the 2015 UFP workshop
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph13111054
  contributor:
    fullname: Baldauf
– volume: 50
  start-page: 12894
  issue: 23
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0110
  article-title: Comparison of ultrafine particle and black carbon concentration predictions from a mobile and short-term stationary land-use regression model
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03476
  contributor:
    fullname: Kerckhoffs
– volume: 44
  start-page: 2415
  issue: 20
  year: 2010
  ident: 10.1016/j.scitotenv.2021.151633_bb0130
  article-title: Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.03.035
  contributor:
    fullname: Liu
– volume: 11
  start-page: 699
  issue: 7
  year: 1997
  ident: 10.1016/j.scitotenv.2021.151633_bb0025
  article-title: Mapping urban air pollution using GIS: a regression-based approach
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/136588197242158
  contributor:
    fullname: Briggs
– volume: 488
  start-page: 343
  year: 2014
  ident: 10.1016/j.scitotenv.2021.151633_bb0015
  article-title: Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.04.106
  contributor:
    fullname: Amini
– volume: 260
  year: 2020
  ident: 10.1016/j.scitotenv.2021.151633_bb0160
  article-title: Relative contributions of a major international airport activities and other urban sources to the particle number concentrations (PNCs) at a nearby monitoring site
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114027
  contributor:
    fullname: Pirhadi
– volume: 113
  start-page: 947
  issue: 8
  year: 2005
  ident: 10.1016/j.scitotenv.2021.151633_bb0185
  article-title: Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.7939
  contributor:
    fullname: Sioutas
– volume: 208
  start-page: 241
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0210
  article-title: Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: a land use regression model
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.04.011
  contributor:
    fullname: Weichenthal
– volume: 54
  start-page: 657
  year: 2012
  ident: 10.1016/j.scitotenv.2021.151633_bb0165
  article-title: Spatial distribution of ultrafine particles in urban settings: a land use regression model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.01.058
  contributor:
    fullname: Rivera
– volume: 3
  year: 2013
  ident: 10.1016/j.scitotenv.2021.151633_bb0080
  contributor:
    fullname: HEI
– volume: 3
  start-page: 639
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0070
  article-title: Evaluation euro IV of effectiveness in transportation systems of Tehran on air quality: application of IVE model
  publication-title: Pollution
  contributor:
    fullname: Ghadiri
– volume: 110
  start-page: 84
  year: 2015
  ident: 10.1016/j.scitotenv.2021.151633_bb0170
  article-title: Development of a land-use regression model for ultrafine particles in Toronto, Canada
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.018
  contributor:
    fullname: Sabaliauskas
– volume: 15
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2021.151633_bb0060
  article-title: Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the swiss SAPALDIA regions
  publication-title: Environ. Health
  doi: 10.1186/s12940-016-0137-9
  contributor:
    fullname: Eeftens
– volume: 23
  start-page: 44
  year: 2006
  ident: 10.1016/j.scitotenv.2021.151633_bb0195
  article-title: Study on oil smoke pollution in the catering trade and treating situation (in Chinese)
  publication-title: J. Chongqing Technol. Bus. Univ.
  contributor:
    fullname: Wang
– volume: 53
  start-page: 7326
  issue: 13
  year: 2019
  ident: 10.1016/j.scitotenv.2021.151633_bb0175
  article-title: Urban ultrafine particle exposure assessment with land-use regression: influence of sampling strategy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b02086
  contributor:
    fullname: Saha
– volume: 47
  start-page: 5217
  issue: 10
  year: 2013
  ident: 10.1016/j.scitotenv.2021.151633_bb0010
  article-title: A land use regression model for ultrafine particles in Vancouver, Canada
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304495s
  contributor:
    fullname: Abernethy
– volume: 740
  year: 2020
  ident: 10.1016/j.scitotenv.2021.151633_bb0225
  article-title: Development and transferability of ultrafine particle land use regression models in London
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140059
  contributor:
    fullname: Yang
– volume: 205
  start-page: 2231
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0045
  article-title: Source strength of ultrafine and fine particle due to chinese cooking
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.062
  contributor:
    fullname: Chen
– volume: 2
  start-page: 225
  issue: 36
  year: 2020
  ident: 10.1016/j.scitotenv.2021.151633_bb0230
  article-title: Design and application of real-time vehicle emission measurement information system in Shanghai
  publication-title: Environ. Monit. China
  contributor:
    fullname: Yi
– volume: 95
  start-page: 409
  year: 2014
  ident: 10.1016/j.scitotenv.2021.151633_bb0135
  article-title: Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.05.070
  contributor:
    fullname: Masiol
– volume: 699
  year: 2020
  ident: 10.1016/j.scitotenv.2021.151633_bb0100
  article-title: Land use regression models for ultrafine particles, fine particles, and black carbon in Southern California
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134234
  contributor:
    fullname: Jones
– volume: 44
  start-page: 5035
  issue: 39
  year: 2010
  ident: 10.1016/j.scitotenv.2021.151633_bb0120
  article-title: A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.08.016
  contributor:
    fullname: Kumar
– volume: 45
  start-page: 622
  issue: 2
  year: 2011
  ident: 10.1016/j.scitotenv.2021.151633_bb0095
  article-title: Land use regression model for ultrafine particles in Amsterdam
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1023042
  contributor:
    fullname: Hoek
– volume: 47
  start-page: 11643
  issue: 20
  year: 2013
  ident: 10.1016/j.scitotenv.2021.151633_bb0190
  article-title: Using building heights and street configuration to enhance intraurban PM10, NOx, and NO2 land use regression models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402156g
  contributor:
    fullname: Tang
– volume: 46
  start-page: 11195
  issue: 20
  year: 2012
  ident: 10.1016/j.scitotenv.2021.151633_bb0055
  article-title: Development of land use regression models for PM2. 5, PM2. 5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301948k
  contributor:
    fullname: Eeftens
– volume: 592
  start-page: 306
  year: 2017
  ident: 10.1016/j.scitotenv.2021.151633_bb0125
  article-title: Land use regression modelling of air pollution in high density high rise cities: a case study in Hong Kong
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.094
  contributor:
    fullname: Lee
– volume: 536
  start-page: 150
  year: 2015
  ident: 10.1016/j.scitotenv.2021.151633_bb0075
  article-title: Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.07.051
  contributor:
    fullname: Ghassoun
– volume: 71
  start-page: 260
  year: 2013
  ident: 10.1016/j.scitotenv.2021.151633_bb0005
  article-title: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.01.061
  contributor:
    fullname: Abdullahi
SSID ssj0000781
Score 2.503096
Snippet Little is currently known about long-term health effects of ambient ultrafine particles (UFPs) due to the lack of exposure assessment metrics suitable for use...
SourceID crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 151633
SubjectTerms Air Pollutants - analysis
Air Pollution - analysis
China
Environmental Monitoring
Exposure assessment
Land use regression model
Particle Size
Particulate Matter - analysis
Purpose-designed monitoring network
Spatial variation
Ultrafine particles
Title High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China
URI https://dx.doi.org/10.1016/j.scitotenv.2021.151633
https://www.ncbi.nlm.nih.gov/pubmed/34785221
Volume 816
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4h0EpICEF5v-TDHgkkjZ3Y3BACdbdaDgsIbpFfgSKUVm2C2Mv-dmbqtCwnDnuKZDlO5Bl7ZuzvmwH4LjiPjXQuUqXMIq58Gimf2YhMfSJ11xhLROFf11nvjv98EA8LcDHjwhCsst37w54-3a3bltN2Nk9HgwFxfLlUGWWfIa6JIkY5JdtCnT75-wHzoGQ24ZYZFzb2_oTxwnHrIfqmrxgodpMTtH5Zmn5hof4xP1drsNr6jew8_No6LPiqA99CJck_Hdi6_CCsYbd2xU46sBLO5VigG21AQ8AONiEcNfbDWLtVPUYIx6iZeGx7DNjYik3L5DB0a1kzNrpizUs91iX6pWzUzhHzb6MhHTIyPU_xyQYVu6Fz6Cc9OGbTAt2bcHd1eXvRi9rSC5FN86SOuhhFCPQkrOGeEsLbUubaWcu9yL1wmY6NMVrJ0tmSKxQpz61KLS-lFBojwHQLFqth5XeAOSeNQa9EOs85L0utROySTDsltPCZ24V4Nt3FKGTYKGbQs-diLqGCJFQECe3C2UwsxSdlKdAOfP3ydhDk_GspzyXqZrL3P8Puw3KXmBGUBjI-gMV63PhD9FdqczRVyCNYOv_R713Ts__7vv8OwlnvuA
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4tVAikqmqXZwvUB44Eko2d2L1VCLQtjwsgcYv8CmxVZVe7CYJLf3tn1tldOHHgak2cyDP2fON8MwNwIDiPjXQuUqXMIq58Gimf2YhcfSJ1zxhLicKXV1n_lv--E3cdOJnlwhCtsj37w5k-Pa3bkeN2NY9HgwHl-HKpMqo-Q7kmKl-CD5zqZ6FRH_1b8Dyomk34zYw7G8Vfkbxw4nqI4PQRI8VecoTuL0vTN1zUC_9z9hk-tcCR_Qzf9gU6vurCSmgl-dyFzdNFxhqKtVt20oWP4WKOhXyjdWiI2cEmRKRGOQy2W9tjRHGMmonHsftAjq3YtE8OQ1zLmrHRFWv-1mNdIjBlo3aRmH8aDemWkel5jU82qNg1XUQ_6MEhm3bo3oDbs9Obk37U9l6IbJonddTDMEIglLCGe6oIb0uZa2ct9yL3wmU6NsZoJUtnS65Qpzy3KrW8lFJoDAHTTViuhpXfBuacNAZhiXSec16WWonYJZl2SmjhM7cD8Wy5i1EosVHMuGd_irmGCtJQETS0Az9maileWUuBjuDth7eCIudvS3ku0TiTr--Z9jus9m8uL4qLX1fn32CtR2kSMdEFd2G5Hjd-D8FLbfanxvkf9rvvtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+spatial+resolution+land-use+regression+model+for+urban+ultrafine+particle+exposure+assessment+in+Shanghai%2C+China&rft.jtitle=The+Science+of+the+total+environment&rft.au=Ge%2C+Yihui&rft.au=Fu%2C+Qingyan&rft.au=Yi%2C+Min&rft.au=Chao%2C+Yuan&rft.date=2022-04-10&rft.issn=0048-9697&rft.volume=816&rft.spage=151633&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.151633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2021_151633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon