A Model Randomization Approach to Statistical Parameter Privacy

In this article, we study a privacy filter design problem for a sequence of sensor measurements whose joint probability density function (p.d.f.) depends on a private parameter. To ensure parameter privacy, we propose a filter design framework which consists of two components: a randomizer and a non...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 2; pp. 839 - 850
Main Authors Nekouei, Ehsan, Sandberg, Henrik, Skoglund, Mikael, Johansson, Karl Henrik
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we study a privacy filter design problem for a sequence of sensor measurements whose joint probability density function (p.d.f.) depends on a private parameter. To ensure parameter privacy, we propose a filter design framework which consists of two components: a randomizer and a nonlinear transformation. The randomizer takes the private parameter as input and randomly generates a pseudo parameter. The nonlinear mapping transforms the measurements such that the joint p.d.f. of the filter's output depends on the pseudo parameter rather than the private parameter. It also ensures that the joint p.d.f. of the filter's output belongs to the same family of distributions as that of the measurements. The design of the randomizer is formulated as an optimization problem subject to a privacy constraint, in terms of mutual information, and it is shown that the optimal randomizer is the solution of a convex optimization problem. Using information-theoretic inequalities, we show that the performance of any estimator of the private parameter, based on the output of the privacy filter, is limited by the privacy constraint. The structure of the nonlinear transformation is studied in the special cases of independent and identically distributed, Markovian, and Gauss-Markov measurements. Our results show that the privacy filter in the Gauss-Markov case can be implemented as two one-step ahead Kalman predictors and a set of minimum mean square error predictors. A numerical example on occupancy privacy in a building automation system illustrates the approach.
AbstractList In this article, we study a privacy filter design problem for a sequence of sensor measurements whose joint probability density function (p.d.f.) depends on a private parameter. To ensure parameter privacy, we propose a filter design framework which consists of two components: a randomizer and a nonlinear transformation. The randomizer takes the private parameter as input and randomly generates a pseudo parameter. The nonlinear mapping transforms the measurements such that the joint p.d.f. of the filter's output depends on the pseudo parameter rather than the private parameter. It also ensures that the joint p.d.f. of the filter's output belongs to the same family of distributions as that of the measurements. The design of the randomizer is formulated as an optimization problem subject to a privacy constraint, in terms of mutual information, and it is shown that the optimal randomizer is the solution of a convex optimization problem. Using information-theoretic inequalities, we show that the performance of any estimator of the private parameter, based on the output of the privacy filter, is limited by the privacy constraint. The structure of the nonlinear transformation is studied in the special cases of independent and identically distributed, Markovian, and Gauss-Markov measurements. Our results show that the privacy filter in the Gauss-Markov case can be implemented as two one-step ahead Kalman predictors and a set of minimum mean square error predictors. A numerical example on occupancy privacy in a building automation system illustrates the approach.
Author Skoglund, Mikael
Johansson, Karl Henrik
Nekouei, Ehsan
Sandberg, Henrik
Author_xml – sequence: 1
  givenname: Ehsan
  orcidid: 0000-0002-3750-0135
  surname: Nekouei
  fullname: Nekouei, Ehsan
  email: enekouei@cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Henrik
  orcidid: 0000-0003-1835-2963
  surname: Sandberg
  fullname: Sandberg, Henrik
  email: hsan@kth.se
  organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Mikael
  orcidid: 0000-0002-7926-5081
  surname: Skoglund
  fullname: Skoglund, Mikael
  email: skoglund@kth.se
  organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 4
  givenname: Karl Henrik
  orcidid: 0000-0001-9940-5929
  surname: Johansson
  fullname: Johansson, Karl Henrik
  email: kallej@kth.se
  organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-320338$$DView record from Swedish Publication Index
BookMark eNp9kEtPAjEUhRuDiYDuTdxM4nqwj2mnszITfCYYiaLbpnRaKQ5T7BQN_nqLoAsXbu4r59zc-_VAp3GNBuAYwQFCsDiblMMBhhgPCMooY9ke6CJKeYopJh3QhRDxtMCcHYBe285jy7IMdcF5mdy5StfJg2wqt7CfMljXJOVy6Z1UsyS45DHEWRusknUyll4udNA-GXv7LtX6EOwbWbf6aJf74OnqcjK8SUf317fDcpQqkqOQoipnJqPUcFMwkzPMIDacQV5BTDWXpMg5J9JQOJVGIcrxFBqlMqamjMWa9EG63dt-6OVqKpbeLqRfCyetuLDPpXD-RbyGmSAYEsKj_nSrj3-8rXQbxNytfBNPFDjPESUZjKEP2FalvGtbr41QNnwTCF7aWiAoNnBFhCs2cMUObjTCP8afg_6xnGwtVmv9Ky9YgTjB5AtPKYUk
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_trc_2024_104743
crossref_primary_10_1080_00207721_2024_2343734
crossref_primary_10_1109_TASE_2024_3440042
Cites_doi 10.1109/TAC.2016.2564339
10.1109/TIFS.2021.3130439
10.1109/Allerton.2013.6736549
10.1109/TASE.2015.2471305
10.1109/CDC.2015.7402921
10.1002/0471200611
10.1109/LSP.2018.2827878
10.1109/ITA.2016.7888175
10.1109/TAC.2013.2283096
10.1109/ICASSP.2016.7472883
10.1561/0400000042
10.1109/ALLERTON.2015.7447104
10.1016/j.automatica.2017.03.016
10.1109/ICASSP.2017.7953309
10.1007/978-981-15-0493-8_4
10.1109/ISIT.2018.8437690
10.1109/ALLERTON.2016.7852293
10.1109/Allerton.2012.6483382
10.23919/ACC45564.2020.9147690
10.1109/TSIPN.2016.2623092
10.1109/TCNS.2017.2658190
10.1016/j.arcontrol.2019.04.006
10.1109/JSTSP.2015.2429123
10.1109/ISIT.2017.8007053
10.1109/SAM.2016.7569676
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1109/TAC.2022.3145664
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 850
ExternalDocumentID oai_DiVA_org_kth_320338
10_1109_TAC_2022_3145664
9691832
Genre orig-research
GrantInformation_xml – fundername: Chow Sang Sang Group Research Fund
– fundername: Research Grants Council of Hong Kong
  grantid: CityU 9048210
– fundername: Swedish Foundation for Strategic Research
– fundername: Vetenskapsrådet; Swedish Research Council
  funderid: 10.13039/501100004359
– fundername: Chow Sang Sang Holdings International Ltd.
– fundername: Knut och Alice Wallenbergs Stiftelse; Knut and Alice Wallenberg Foundation
  funderid: 10.13039/501100004063
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c371t-1d76f455f8f96f762602f8608d025e8a397883af50bafc1582b0fcc46cb662b03
IEDL.DBID RIE
ISSN 0018-9286
1558-2523
IngestDate Thu Aug 21 07:01:07 EDT 2025
Mon Jun 30 10:15:27 EDT 2025
Tue Jul 01 03:36:40 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Wed Aug 27 02:18:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-1d76f455f8f96f762602f8608d025e8a397883af50bafc1582b0fcc46cb662b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9940-5929
0000-0003-1835-2963
0000-0002-3750-0135
0000-0002-7926-5081
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-320338
PQID 2771534015
PQPubID 85475
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TAC_2022_3145664
swepub_primary_oai_DiVA_org_kth_320338
proquest_journals_2771534015
crossref_primary_10_1109_TAC_2022_3145664
ieee_primary_9691832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
Tanaka (ref10) 2017
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/TAC.2016.2564339
– ident: ref6
  doi: 10.1109/TIFS.2021.3130439
– ident: ref11
  doi: 10.1109/Allerton.2013.6736549
– ident: ref1
  doi: 10.1109/TASE.2015.2471305
– ident: ref18
  doi: 10.1109/CDC.2015.7402921
– ident: ref26
  doi: 10.1002/0471200611
– ident: ref9
  doi: 10.1109/LSP.2018.2827878
– ident: ref13
  doi: 10.1109/ITA.2016.7888175
– ident: ref17
  doi: 10.1109/TAC.2013.2283096
– ident: ref3
  doi: 10.1109/ICASSP.2016.7472883
– ident: ref25
  doi: 10.1561/0400000042
– ident: ref15
  doi: 10.1109/ALLERTON.2015.7447104
– ident: ref19
  doi: 10.1016/j.automatica.2017.03.016
– ident: ref4
  doi: 10.1109/ICASSP.2017.7953309
– ident: ref24
  doi: 10.1007/978-981-15-0493-8_4
– ident: ref22
  doi: 10.1109/ISIT.2018.8437690
– ident: ref5
  doi: 10.1109/ALLERTON.2016.7852293
– year: 2017
  ident: ref10
  article-title: Directed information as privacy measure in cloud-based control
– ident: ref14
  doi: 10.1109/Allerton.2012.6483382
– ident: ref23
  doi: 10.23919/ACC45564.2020.9147690
– ident: ref8
  doi: 10.1109/TSIPN.2016.2623092
– ident: ref21
  doi: 10.1109/TCNS.2017.2658190
– ident: ref16
  doi: 10.1016/j.arcontrol.2019.04.006
– ident: ref7
  doi: 10.1109/JSTSP.2015.2429123
– ident: ref12
  doi: 10.1109/ISIT.2017.8007053
– ident: ref2
  doi: 10.1109/SAM.2016.7569676
SSID ssj0016441
Score 2.422872
Snippet In this article, we study a privacy filter design problem for a sequence of sensor measurements whose joint probability density function (p.d.f.) depends on a...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 839
SubjectTerms Bandpass filters
Building automation
Building management systems
Complexity theory
Convex optimization
Convexity
Data privacy
Filter design (mathematics)
Filter designs
Filter output
Information theory
Joint probability density function
Kalman filtering
Kalman filters
Kernel
Markov processes
Mathematical transformations
Mutual information
Mutual informations
Non-linear transformations
Numerical prediction
Optimization
Parameter estimation
Parameters
Privacy
privacy in networked control systems
Probability density function
Probability density functions
Randomisation
State estimation
Statistical analysis
Statistical parameters
Structural design
Testing
Transformations (mathematics)
Title A Model Randomization Approach to Statistical Parameter Privacy
URI https://ieeexplore.ieee.org/document/9691832
https://www.proquest.com/docview/2771534015
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-320338
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7mnvTB3-J0Sh9EEOzWpW2aPEmZjiFMRDbZW0jTBMW5yewE_eu9tF1REfEtD2lo75Lcd7277wBO0OpoYrjC8018N-CJje_qwEXL50mNEF_mVe-DG9ofBdfjcFyD86oWRmudJ5_plh3msfx0phb2V1mbU2534AqsoONW1GpVEQNr14tbFw8wYVVI0uPtYdxFR5AQ9E8RLtDgmwnKe6p8h5dfKUNzM9PbgMHyBYvskqfWIkta6uMHd-N_v2AT1ku86cTFBtmCmp5uw9oXFsIduIgd2xFt4tzJaTp7LgsznbhkG3eymWMhac7ojEvdSpvPhepwbuePb1K978KodzXs9t2yr4Kr_KiTuZ00oiYIQ8MMpyayLg0xjHosRQCkmUSIwpgvTegl0qhOyEjiGaUCqhJKcezvQX06m-p9cNKUaaakMZTygKtQoug7Ei8ujoYRLV8D2ktRC1WSjtveFxOROx8eF6gcYZUjSuU04Kx64qUg3Phj7o4VcTWvlG4DmkttivJEvgoSRXi5ozcZNuC00HD1nKXYvny8jwXqSjxlD8InHrruB78vfwirtud8kbrdhHo2X-gjRCZZcpxvyU9-mdz7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PagH3-L67EEEwe520zZNTlJ8sD5WRFbxFtI0wUXdlbUr6K930naLioi3HNLQziSZbzoz3wDsotXRxHCF55v4bsATG9_VgYuWz5MaIb7Mq947V7R9G5zfh_cTcFDVwmit8-Qz3bDDPJafDtTI_iprcsrtDpyEKbT7ISmqtaqYgbXsxb2LR5iwKijp8WY3PkJXkBD0UBEw0OCbEcq7qnwHmF9JQ3NDczoPnfErFvklj41RljTUxw_2xv9-wwLMlYjTiYstsggTur8Es194CJfhMHZsT7Qn50b208FzWZrpxCXfuJMNHAtKc05nXOpa2owuVIhzPey9SfW-ArenJ92jtlt2VnCVH7Uyt5VG1KAIDTOcmsg6NcQw6rEUIZBmEkEKY740oZdIo1ohI4lnlAqoSijFsb8Ktf6gr9fASVOmmZLGUMoDrkKJom9JvLo4mka0fXVojkUtVEk7brtfPInc_fC4QOUIqxxRKqcO-9UTLwXlxh9zl62Iq3mldOuwOdamKM_kqyBRhNc7-pNhHfYKDVfPWZLt495dLFBX4jF7ED7x0Hlf_335HZhudzuX4vLs6mIDZmwH-iKRexNq2XCktxCnZMl2vj0_ATJ64EU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model+Randomization+Approach+to+Statistical+Parameter+Privacy&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Nekouei%2C+Ehsan&rft.au=Sandberg%2C+Henrik&rft.au=Skoglund%2C+Mikael&rft.au=Johansson%2C+Karl+Henrik&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=68&rft.issue=2&rft.spage=839&rft.epage=850&rft_id=info:doi/10.1109%2FTAC.2022.3145664&rft.externalDocID=9691832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon