Minimax rates for heterogeneous causal effect estimation

Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimali...

Full description

Saved in:
Bibliographic Details
Published inThe Annals of statistics Vol. 52; no. 2; p. 793
Main Authors Kennedy, Edward H, Balakrishnan, Sivaraman, Robins, James M, Wasserman, Larry
Format Journal Article
LanguageEnglish
Published United States 01.04.2024
Subjects
Online AccessGet more information
ISSN0090-5364
DOI10.1214/24-aos2369

Cover

Loading…
Abstract Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.
AbstractList Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.
Author Robins, James M
Wasserman, Larry
Kennedy, Edward H
Balakrishnan, Sivaraman
Author_xml – sequence: 1
  givenname: Edward H
  surname: Kennedy
  fullname: Kennedy, Edward H
  organization: Department of Statistics & Data Science, Carnegie Mellon University
– sequence: 2
  givenname: Sivaraman
  surname: Balakrishnan
  fullname: Balakrishnan, Sivaraman
  organization: Machine Learning Department, Carnegie Mellon University
– sequence: 3
  givenname: James M
  surname: Robins
  fullname: Robins, James M
  organization: Departments of Biostatistics and Epidemiology, Harvard University
– sequence: 4
  givenname: Larry
  surname: Wasserman
  fullname: Wasserman, Larry
  organization: Machine Learning Department, Carnegie Mellon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40171204$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAQRb0oog_Y8AHIPxAYO5NJvEQVUKQiNu26spMxBLVxZTsS_D2RgNXdHB2duxSzIQwsxI2CO6UV3mssbEi6JDMTCwADRVUSzsUypU8AqAyWl2KOoGqlAReiee2H_mS_ZLSZk_Qhyg_OHMM7DxzGJFs7JnuU7D23WXLKE537MFyJC2-Pia__diX2T4-79abYvj2_rB-2RVvWKhfKEBBCpYi8szVZ7FznmsqQw0r5KcKg004z6dqxb5F00ykw1DTWcFnrlbj99Z5Hd-LucI5TQPw-_F_QP6tXRtQ
CitedBy_id crossref_primary_10_1093_jrsssa_qnae089
ContentType Journal Article
DBID NPM
DOI 10.1214/24-aos2369
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 40171204
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM013361
GroupedDBID -~X
123
23M
2AX
2FS
2WC
3R3
5RE
6J9
85S
AAFWJ
AAWIL
AAYJJ
ABAWQ
ABBHK
ABEFU
ABFAN
ABPFR
ABPQH
ABXSQ
ABYWD
ABZEH
ACGFO
ACHJO
ACIPV
ACIWK
ACMTB
ACNCT
ACTMH
ACUBG
ADLSF
ADNWM
ADODI
ADULT
AECCQ
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AFXHP
AGLNM
AI.
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CJ0
CS3
D0L
DQDLB
DSRWC
E3Z
EBS
ECEWR
EJD
F5P
FEDTE
FVMVE
GR0
HDK
HGD
HQ6
HVGLF
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
L7B
MVM
N9A
NHB
NPM
OFU
OK1
P2P
PQQKQ
PUASD
RBU
REI
RNS
RPE
SA0
SJN
TN5
TR2
UMC
UPT
UQL
VH1
VOH
WH7
WHG
WS9
XSW
YYP
ZCG
ZGI
ZY4
ID FETCH-LOGICAL-c371t-19606405166fba76a4dbdb8596b451f12094b2b2e627befc4628d109688a9e372
ISSN 0090-5364
IngestDate Sun May 11 01:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nonparametric regression
higher order influence functions
causal inference
functional estimation
optimal rates of convergence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-19606405166fba76a4dbdb8596b451f12094b2b2e627befc4628d109688a9e372
PMID 40171204
ParticipantIDs pubmed_primary_40171204
PublicationCentury 2000
PublicationDate 2024-Apr
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-Apr
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Annals of statistics
PublicationTitleAlternate Ann Stat
PublicationYear 2024
SSID ssj0005943
Score 2.4493487
Snippet Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference....
SourceID pubmed
SourceType Index Database
StartPage 793
Title Minimax rates for heterogeneous causal effect estimation
URI https://www.ncbi.nlm.nih.gov/pubmed/40171204
Volume 52
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eQOaD6Lzf6INvo5qm6e1RRRnCfNmGextJk8LUbmObIv56T5p0mXOK-lJKQ0ub7-shJ5zvOwid-Zj7kuPMxSzOXOqJyE1ExOHHE4HqvC1wYTzfuA_rbXrXCTq2VrVQl0z4efq-UFfyH1ThGuCqVLJ_QHb6ULgA54AvHAFhOP4K40av38vZW03ZPRS-CrDug3kawA1Slbam7GUMEOiajZry08gtEI-WJ9ZFWemLtHXzgkisGzxbOcMVe2ZPqkO96XHc7L2yEcvZnLhsWoxrd14fmKoCKHUPbGRqkc3uA5ktWjERNcFu4Gsn8jKiBmSGOWQmPEa6G-KXsE08qpQp1GWDMfF175YZ_IZ5ASBV3j5Edyv-eXTOQrscWkbLkEyo7qhqS6esAypLK82HGA9beKUL-0IVtFY-ZC7_KNYhrU20YRII51KzYQstyX4VrTem7rvjKqo0pyhuo9iQxClI4gBJnE8kcTRJHE0Sx5JkB7Vvb1rXdde0y3BTP_ImrqeSUVh_e2GYcRaFjAoueBwkIaeBlymRNOWEExmSiMssVapk4UEKG8cskX5EdtFKf9CX-8jhQZBikohYcExFxBIRYspwJjGHhEDQA7Sn56A71J4o3XJ2Dr8dOUIVS6BjtJoBseUJrOgm_LRA5ANVzEoq
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimax+rates+for+heterogeneous+causal+effect+estimation&rft.jtitle=The+Annals+of+statistics&rft.au=Kennedy%2C+Edward+H&rft.au=Balakrishnan%2C+Sivaraman&rft.au=Robins%2C+James+M&rft.au=Wasserman%2C+Larry&rft.date=2024-04-01&rft.issn=0090-5364&rft.volume=52&rft.issue=2&rft.spage=793&rft_id=info:doi/10.1214%2F24-aos2369&rft_id=info%3Apmid%2F40171204&rft_id=info%3Apmid%2F40171204&rft.externalDocID=40171204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-5364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-5364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-5364&client=summon