Minimax rates for heterogeneous causal effect estimation
Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimali...
Saved in:
Published in | The Annals of statistics Vol. 52; no. 2; p. 793 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2024
|
Subjects | |
Online Access | Get more information |
ISSN | 0090-5364 |
DOI | 10.1214/24-aos2369 |
Cover
Loading…
Abstract | Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. |
---|---|
AbstractList | Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. |
Author | Robins, James M Wasserman, Larry Kennedy, Edward H Balakrishnan, Sivaraman |
Author_xml | – sequence: 1 givenname: Edward H surname: Kennedy fullname: Kennedy, Edward H organization: Department of Statistics & Data Science, Carnegie Mellon University – sequence: 2 givenname: Sivaraman surname: Balakrishnan fullname: Balakrishnan, Sivaraman organization: Machine Learning Department, Carnegie Mellon University – sequence: 3 givenname: James M surname: Robins fullname: Robins, James M organization: Departments of Biostatistics and Epidemiology, Harvard University – sequence: 4 givenname: Larry surname: Wasserman fullname: Wasserman, Larry organization: Machine Learning Department, Carnegie Mellon University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40171204$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAQRb0oog_Y8AHIPxAYO5NJvEQVUKQiNu26spMxBLVxZTsS_D2RgNXdHB2duxSzIQwsxI2CO6UV3mssbEi6JDMTCwADRVUSzsUypU8AqAyWl2KOoGqlAReiee2H_mS_ZLSZk_Qhyg_OHMM7DxzGJFs7JnuU7D23WXLKE537MFyJC2-Pia__diX2T4-79abYvj2_rB-2RVvWKhfKEBBCpYi8szVZ7FznmsqQw0r5KcKg004z6dqxb5F00ykw1DTWcFnrlbj99Z5Hd-LucI5TQPw-_F_QP6tXRtQ |
CitedBy_id | crossref_primary_10_1093_jrsssa_qnae089 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/24-aos2369 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Mathematics |
ExternalDocumentID | 40171204 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM013361 |
GroupedDBID | -~X 123 23M 2AX 2FS 2WC 3R3 5RE 6J9 85S AAFWJ AAWIL AAYJJ ABAWQ ABBHK ABEFU ABFAN ABPFR ABPQH ABXSQ ABYWD ABZEH ACGFO ACHJO ACIPV ACIWK ACMTB ACNCT ACTMH ACUBG ADLSF ADNWM ADODI ADULT AECCQ AENEX AETVE AEUPB AFFOW AFVYC AFXHP AGLNM AI. AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CJ0 CS3 D0L DQDLB DSRWC E3Z EBS ECEWR EJD F5P FEDTE FVMVE GR0 HDK HGD HQ6 HVGLF IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST L7B MVM N9A NHB NPM OFU OK1 P2P PQQKQ PUASD RBU REI RNS RPE SA0 SJN TN5 TR2 UMC UPT UQL VH1 VOH WH7 WHG WS9 XSW YYP ZCG ZGI ZY4 |
ID | FETCH-LOGICAL-c371t-19606405166fba76a4dbdb8596b451f12094b2b2e627befc4628d109688a9e372 |
ISSN | 0090-5364 |
IngestDate | Sun May 11 01:40:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nonparametric regression higher order influence functions causal inference functional estimation optimal rates of convergence |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-19606405166fba76a4dbdb8596b451f12094b2b2e627befc4628d109688a9e372 |
PMID | 40171204 |
ParticipantIDs | pubmed_primary_40171204 |
PublicationCentury | 2000 |
PublicationDate | 2024-Apr |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-Apr |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Annals of statistics |
PublicationTitleAlternate | Ann Stat |
PublicationYear | 2024 |
SSID | ssj0005943 |
Score | 2.4493487 |
Snippet | Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference.... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 793 |
Title | Minimax rates for heterogeneous causal effect estimation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40171204 |
Volume | 52 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5eQOaD6Lzf6INvo5qm6e1RRRnCfNmGextJk8LUbmObIv56T5p0mXOK-lJKQ0ub7-shJ5zvOwid-Zj7kuPMxSzOXOqJyE1ExOHHE4HqvC1wYTzfuA_rbXrXCTq2VrVQl0z4efq-UFfyH1ThGuCqVLJ_QHb6ULgA54AvHAFhOP4K40av38vZW03ZPRS-CrDug3kawA1Slbam7GUMEOiajZry08gtEI-WJ9ZFWemLtHXzgkisGzxbOcMVe2ZPqkO96XHc7L2yEcvZnLhsWoxrd14fmKoCKHUPbGRqkc3uA5ktWjERNcFu4Gsn8jKiBmSGOWQmPEa6G-KXsE08qpQp1GWDMfF175YZ_IZ5ASBV3j5Edyv-eXTOQrscWkbLkEyo7qhqS6esAypLK82HGA9beKUL-0IVtFY-ZC7_KNYhrU20YRII51KzYQstyX4VrTem7rvjKqo0pyhuo9iQxClI4gBJnE8kcTRJHE0Sx5JkB7Vvb1rXdde0y3BTP_ImrqeSUVh_e2GYcRaFjAoueBwkIaeBlymRNOWEExmSiMssVapk4UEKG8cskX5EdtFKf9CX-8jhQZBikohYcExFxBIRYspwJjGHhEDQA7Sn56A71J4o3XJ2Dr8dOUIVS6BjtJoBseUJrOgm_LRA5ANVzEoq |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimax+rates+for+heterogeneous+causal+effect+estimation&rft.jtitle=The+Annals+of+statistics&rft.au=Kennedy%2C+Edward+H&rft.au=Balakrishnan%2C+Sivaraman&rft.au=Robins%2C+James+M&rft.au=Wasserman%2C+Larry&rft.date=2024-04-01&rft.issn=0090-5364&rft.volume=52&rft.issue=2&rft.spage=793&rft_id=info:doi/10.1214%2F24-aos2369&rft_id=info%3Apmid%2F40171204&rft_id=info%3Apmid%2F40171204&rft.externalDocID=40171204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-5364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-5364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-5364&client=summon |