Quiver algebras and their representations for arbitrary quivers

A bstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) in...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 12; pp. 89 - 118
Main Author Li, Wei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 11.12.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies.
AbstractList Abstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N $$ \mathcal{N} $$ = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies.
A bstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies.
The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D $$ \mathcal{N} $$ N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies.
The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies.
ArticleNumber 89
Author Li, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-0852-7993
  surname: Li
  fullname: Li, Wei
  email: weili@mail.itp.ac.cn
  organization: Institute of Theoretical Physics, Chinese Academy of Sciences
BookMark eNp1kM1LxDAQxYMouLt69lrwoofVmTRtkpOI-MmCCnoOaTpdu6zNbtIV_O-NVtSLpxmG9948fmO23fmOGDtAOEEAeXp3c_mA_IgDF8eg9BYbIXA9VULq7T_7LhvHuADAAjWM2Nnjpn2jkNnlnKpgY2a7OutfqA1ZoFWgSF1v-9Z3MWt8koWq7YMN79n6yxf32E5jl5H2v-eEPV9dPl3cTGf317cX57OpyyX2U9RYISdoGq4c1GXNZVmUtpLYaCmcohwL1QhBGqUC0JwaSbpWpAvHy1zlE3Y75NbeLswqtK-phPG2NV8HH-bGhr51SzISnBAFyFwCiFJilWhwdEDCaqucTlmHQ9Yq-PWGYm8WfhO6VN_kKHJRal6USXU6qFzwMQZqfr4imE_iZiBuPomb9CM5YHDEpOzmFH5z_7N8AAqqgmg
Cites_doi 10.1007/s002200100374
10.1007/JHEP10(2016)077
10.1016/S0550-3213(00)00118-8
10.1088/1126-6708/1998/02/013
10.1088/1126-6708/2006/01/096
10.1007/JHEP08(2011)135
10.1016/S0550-3213(00)00699-4
10.1088/1126-6708/2005/09/057
10.1007/s11005-009-0357-9
10.1016/j.aim.2016.08.041
10.1007/JHEP10(2012)190
10.1112/jlms.12433
10.1016/j.geomphys.2023.104991
10.1007/JHEP11(2017)119
10.1007/s00220-019-03575-5
10.1088/1126-6708/2004/08/064
10.1103/PhysRevD.104.086017
10.1112/plms/pdn051
10.1016/S0550-3213(97)00282-4
10.1007/s10468-020-09959-9
10.1063/1.3192773
10.1088/1126-6708/2009/10/069
10.1007/JHEP02(2021)119
10.1090/gsm/174
10.1007/JHEP11(2011)129
10.1088/1126-6708/2005/09/006
10.4310/CNTP.2011.v5.n2.a1
10.1007/JHEP04(2017)152
10.1090/S0273-0979-1985-15361-3
10.1063/5.0076638
10.1007/s00220-013-1789-8
10.1007/JHEP01(2020)042
10.1088/1126-6708/2006/07/001
10.1007/JHEP02(2019)147
10.4310/CNTP.2023.v17.n4.a2
10.1007/s11005-010-0369-5
10.1007/JHEP05(2017)099
10.1007/JHEP02(2020)018
10.1007/JHEP05(2018)200
10.1007/JHEP02(2022)024
10.1016/j.jpaa.2007.03.009
10.1103/PhysRevD.98.026022
10.1007/BF01217730
10.1088/1126-6708/2002/10/023
10.1007/s00220-009-0836-y
10.1112/S0010437X22007801
10.1007/s11005-023-01733-4
10.1016/S0550-3213(97)00283-6
10.2140/gt.2008.12.1171
10.1007/s00220-020-03840-y
10.1007/s00220-013-1863-2
10.1007/JHEP12(2013)035
10.1023/A:1007341410987
10.1215/21562261-1214375
10.1007/JHEP01(2019)124
10.1016/j.nuclphysbps.2009.07.047
10.1007/JHEP05(2022)011
10.1088/1126-6708/2000/10/001
10.1090/pspum/037
10.1007/s11005-022-01579-2
10.1016/j.jalgebra.2021.12.032
10.1007/JHEP11(2018)192
10.1016/j.aim.2012.09.027
10.1016/j.nuclphysb.2012.10.005
10.1007/JHEP11(2020)035
10.1088/1751-8121/acd037
10.1143/PTPS.177.105
10.4171/prims/139
10.1007/s00220-023-04753-2
10.1103/PhysRevD.96.121902
10.4310/ATMP.2019.v23.n7.a4
10.1088/1126-6708/2009/11/002
10.1007/JHEP09(2016)138
10.1007/s002200050461
10.1093/imrn/rny289
10.4310/MRL.1995.v2.n2.a4
10.1007/s00220-010-1071-2
10.21468/SciPostPhys.13.1.005
10.1007/JHEP08(2013)017
10.1007/s11005-011-0531-8
10.1007/JHEP11(2022)119
10.21468/SciPostPhys.10.2.051
10.1007/JHEP09(2020)075
10.21468/SciPostPhys.14.3.034
10.1007/JHEP08(2021)146
10.1016/j.geomphys.2022.104520
10.1112/S0010437X12000152
10.1103/PhysRevD.100.086008
10.1063/1.2823979
10.1007/s00220-022-04490-y
10.1007/s00220-006-1527-6
10.1112/jlms.12653
10.1088/1126-6708/2004/04/069
10.1016/j.aim.2016.03.019
10.2140/ant.2018.12.1001
10.1007/s11005-017-0986-3
10.4310/ATMP.2014.v18.n1.a2
10.1007/JHEP12(2019)175
10.1088/1126-6708/2006/01/128
10.1090/S0894-0347-01-00368-X
10.1142/9789814304634_0015
10.1007/JHEP08(2012)034
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP12(2024)089
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 118
ExternalDocumentID oai_doaj_org_article_70c4450737004671b08921c0e4a9a8c9
10_1007_JHEP12_2024_089
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c371t-191b12e0ff28c0d6d27656ab71f974c8e3158f44e91780092ef7e9d8e95c26383
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 00:50:48 EDT 2025
Fri Jul 25 23:08:27 EDT 2025
Sun Jul 06 05:05:55 EDT 2025
Fri Feb 21 02:36:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords D-Branes
Supersymmetric Gauge Theory
Conformal and W Symmetry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-191b12e0ff28c0d6d27656ab71f974c8e3158f44e91780092ef7e9d8e95c26383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0852-7993
OpenAccessLink https://doaj.org/article/70c4450737004671b08921c0e4a9a8c9
PQID 3143469256
PQPubID 2034718
PageCount 118
ParticipantIDs doaj_primary_oai_doaj_org_article_70c4450737004671b08921c0e4a9a8c9
proquest_journals_3143469256
crossref_primary_10_1007_JHEP12_2024_089
springer_journals_10_1007_JHEP12_2024_089
PublicationCentury 2000
PublicationDate 2024-12-11
PublicationDateYYYYMMDD 2024-12-11
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-11
  day: 11
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Z Duan (25098_CR87) 2021; 02
M Kontsevich (25098_CR75) 2011; 5
25098_CR89
JH Przytycki (25098_CR93) 1988; 4
G Noshita (25098_CR78) 2022; 05
25098_CR90
25098_CR91
H Fuji (25098_CR116) 2013; 867
P Kucharski (25098_CR16) 2019; 23
H Ooguri (25098_CR14) 2009; 292
J Jankowski (25098_CR96) 2023; 402
D Gaiotto (25098_CR71) 2010; 299
C Cordova (25098_CR77) 2017; 11
S Mozgovoy (25098_CR119) 2022; 596
T Ekholm (25098_CR39) 2020; 379
25098_CR76
P Descombes (25098_CR73) 2022; 106
T Ekholm (25098_CR108) 2023; 113
T Dimofte (25098_CR111) 2011; 98
25098_CR80
25098_CR81
25098_CR84
T Dimofte (25098_CR113) 2014; 325
D-E Diaconescu (25098_CR54) 2000; 10
S Datta (25098_CR82) 2016; 09
T Kimura (25098_CR105) 2021; 10
25098_CR68
M Rapcak (25098_CR48) 2023; 17
H Argüz (25098_CR120) 2022; 158
B Feng (25098_CR123) 2001; 595
25098_CR118
25098_CR70
25098_CR117
25098_CR112
MR Gaberdiel (25098_CR121) 2018; 05
B Szendroi (25098_CR41) 2008; 12
T Creutzig (25098_CR20) 2019; 02
D-E Diaconescu (25098_CR53) 1998; 02
SH Katz (25098_CR67) 1997; 497
D Gaiotto (25098_CR64) 2012; 08
S Lee (25098_CR115) 2013; 12
E Witten (25098_CR109) 1989; 121
25098_CR100
25098_CR57
25098_CR107
M Panfil (25098_CR104) 2019; 01
25098_CR106
25098_CR103
SH Katz (25098_CR66) 1997; 497
M Cirafici (25098_CR74) 2022; 112
25098_CR101
D Galakhov (25098_CR2) 2021; 08
S-J Lee (25098_CR86) 2016; 06
25098_CR42
25098_CR43
MR Douglas (25098_CR56) 2005; 09
25098_CR45
25098_CR46
25098_CR49
M Rapcak (25098_CR47) 2019; 376
MR Gaberdiel (25098_CR83) 2017; 04
25098_CR52
N Wyllard (25098_CR4) 2009; 11
NA Nekrasov (25098_CR5) 2009; 192-193
CP Herzog (25098_CR60) 2004; 04
D Labardini-Fragoso (25098_CR35) 2008; 98
V Ginzburg (25098_CR24) 1995; 2
LF Alday (25098_CR3) 2010; 91
25098_CR122
25098_CR34
25098_CR36
25098_CR37
P Freyd (25098_CR92) 1985; 12
MR Douglas (25098_CR55) 2005; 09
25098_CR40
CP Herzog (25098_CR61) 2004; 08
25098_CR7
S Franco (25098_CR59) 2006; 01
25098_CR9
PS Aspinwall (25098_CR62) 2006; 264
AI Efimov (25098_CR99) 2012; 148
25098_CR29
L Eberhardt (25098_CR21) 2019; 12
D Galakhov (25098_CR13) 2020; 10
A Iqbal (25098_CR79) 2009; 10
NA Nekrasov (25098_CR6) 2009; 177
Y Saito (25098_CR31) 2014; 50
A Hanany (25098_CR63) 2006; 07
25098_CR22
25098_CR23
S Cecotti (25098_CR65) 2012; 10
25098_CR25
J Yagi (25098_CR114) 2013; 08
25098_CR26
25098_CR27
JA Harvey (25098_CR1) 1998; 197
JMF Labastida (25098_CR95) 2001; 217
S Franco (25098_CR58) 2006; 01
F Denef (25098_CR69) 2011; 11
M Stosic (25098_CR102) 2021; 104
25098_CR30
B Young (25098_CR85) 2010; 152
H Ooguri (25098_CR94) 2000; 577
F Denef (25098_CR51) 2002; 10
25098_CR17
25098_CR19
D Galakhov (25098_CR33) 2022; 02
W Li (25098_CR12) 2020; 11
T Dimofte (25098_CR72) 2010; 91
25098_CR97
25098_CR10
25098_CR98
25098_CR11
25098_CR15
M Alim (25098_CR18) 2013; 323
E Witten (25098_CR110) 1995; 133
T Bridgeland (25098_CR88) 2001; 14
R Bocklandt (25098_CR44) 2008; 212
F Nieri (25098_CR32) 2017; 107
D Galakhov (25098_CR38) 2022; 396
D Galakhov (25098_CR8) 2022; 11
D Gaiotto (25098_CR50) 2013; 234
B Feigin (25098_CR28) 2016; 300
References_xml – ident: 25098_CR49
– volume: 217
  start-page: 423
  year: 2001
  ident: 25098_CR95
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100374
– ident: 25098_CR81
  doi: 10.1007/JHEP10(2016)077
– volume: 577
  start-page: 419
  year: 2000
  ident: 25098_CR94
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00118-8
– volume: 02
  start-page: 013
  year: 1998
  ident: 25098_CR53
  publication-title: JHEP
  doi: 10.1088/1126-6708/1998/02/013
– volume: 01
  start-page: 096
  year: 2006
  ident: 25098_CR58
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/01/096
– ident: 25098_CR112
  doi: 10.1007/JHEP08(2011)135
– volume: 595
  start-page: 165
  year: 2001
  ident: 25098_CR123
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00699-4
– ident: 25098_CR84
– volume: 09
  start-page: 057
  year: 2005
  ident: 25098_CR56
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/09/057
– volume: 91
  start-page: 1
  year: 2010
  ident: 25098_CR72
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-009-0357-9
– ident: 25098_CR80
  doi: 10.1016/j.aim.2016.08.041
– volume: 10
  start-page: 190
  year: 2012
  ident: 25098_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)190
– ident: 25098_CR70
– volume: 104
  start-page: 1
  year: 2021
  ident: 25098_CR102
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms.12433
– ident: 25098_CR9
  doi: 10.1016/j.geomphys.2023.104991
– ident: 25098_CR17
– volume: 11
  start-page: 119
  year: 2017
  ident: 25098_CR77
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)119
– volume: 10
  start-page: 076
  year: 2020
  ident: 25098_CR13
  publication-title: JHEP
– volume: 376
  start-page: 1803
  year: 2019
  ident: 25098_CR47
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-019-03575-5
– volume: 08
  start-page: 064
  year: 2004
  ident: 25098_CR61
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/08/064
– ident: 25098_CR100
  doi: 10.1103/PhysRevD.104.086017
– volume: 98
  start-page: 797
  year: 2008
  ident: 25098_CR35
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdn051
– ident: 25098_CR52
– ident: 25098_CR76
– volume: 497
  start-page: 173
  year: 1997
  ident: 25098_CR66
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00282-4
– ident: 25098_CR30
  doi: 10.1007/s10468-020-09959-9
– ident: 25098_CR29
  doi: 10.1063/1.3192773
– volume: 10
  start-page: 069
  year: 2009
  ident: 25098_CR79
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/069
– volume: 02
  start-page: 119
  year: 2021
  ident: 25098_CR87
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)119
– ident: 25098_CR43
– ident: 25098_CR45
  doi: 10.1090/gsm/174
– volume: 11
  start-page: 129
  year: 2011
  ident: 25098_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP11(2011)129
– ident: 25098_CR57
– volume: 09
  start-page: 006
  year: 2005
  ident: 25098_CR55
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/09/006
– volume: 5
  start-page: 231
  year: 2011
  ident: 25098_CR75
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2011.v5.n2.a1
– ident: 25098_CR34
– volume: 04
  start-page: 152
  year: 2017
  ident: 25098_CR83
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)152
– ident: 25098_CR122
– volume: 12
  start-page: 239
  year: 1985
  ident: 25098_CR92
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-1985-15361-3
– ident: 25098_CR90
  doi: 10.1063/5.0076638
– volume: 323
  start-page: 1185
  year: 2013
  ident: 25098_CR18
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1789-8
– ident: 25098_CR23
  doi: 10.1007/JHEP01(2020)042
– volume: 07
  start-page: 001
  year: 2006
  ident: 25098_CR63
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/07/001
– volume: 02
  start-page: 147
  year: 2019
  ident: 25098_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)147
– volume: 17
  start-page: 847
  year: 2023
  ident: 25098_CR48
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2023.v17.n4.a2
– ident: 25098_CR37
– volume: 91
  start-page: 167
  year: 2010
  ident: 25098_CR3
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-010-0369-5
– ident: 25098_CR117
  doi: 10.1007/JHEP05(2017)099
– ident: 25098_CR40
  doi: 10.1007/JHEP02(2020)018
– volume: 05
  start-page: 200
  year: 2018
  ident: 25098_CR121
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)200
– volume: 02
  start-page: 024
  year: 2022
  ident: 25098_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)024
– volume: 212
  start-page: 14
  year: 2008
  ident: 25098_CR44
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2007.03.009
– ident: 25098_CR103
  doi: 10.1103/PhysRevD.98.026022
– volume: 121
  start-page: 351
  year: 1989
  ident: 25098_CR109
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01217730
– volume: 10
  start-page: 023
  year: 2002
  ident: 25098_CR51
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/10/023
– volume: 292
  start-page: 179
  year: 2009
  ident: 25098_CR14
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0836-y
– volume: 158
  start-page: 2206
  year: 2022
  ident: 25098_CR120
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X22007801
– volume: 113
  start-page: 117
  year: 2023
  ident: 25098_CR108
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-023-01733-4
– volume: 497
  start-page: 196
  year: 1997
  ident: 25098_CR67
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00283-6
– ident: 25098_CR97
– volume: 12
  start-page: 1171
  year: 2008
  ident: 25098_CR41
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2008.12.1171
– ident: 25098_CR68
– volume: 379
  start-page: 361
  year: 2020
  ident: 25098_CR39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-020-03840-y
– volume: 325
  start-page: 367
  year: 2014
  ident: 25098_CR113
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1863-2
– volume: 12
  start-page: 035
  year: 2013
  ident: 25098_CR115
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)035
– ident: 25098_CR25
  doi: 10.1023/A:1007341410987
– ident: 25098_CR27
  doi: 10.1215/21562261-1214375
– volume: 01
  start-page: 124
  year: 2019
  ident: 25098_CR104
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)124
– volume: 192-193
  start-page: 91
  year: 2009
  ident: 25098_CR5
  publication-title: Nucl. Phys. B Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2009.07.047
– volume: 4
  start-page: 115
  year: 1988
  ident: 25098_CR93
  publication-title: Kobe J. Math.
– volume: 05
  start-page: 011
  year: 2022
  ident: 25098_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP05(2022)011
– ident: 25098_CR36
– volume: 10
  start-page: 001
  year: 2000
  ident: 25098_CR54
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/10/001
– ident: 25098_CR89
  doi: 10.1090/pspum/037
– volume: 112
  start-page: 88
  year: 2022
  ident: 25098_CR74
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-022-01579-2
– volume: 596
  start-page: 53
  year: 2022
  ident: 25098_CR119
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2021.12.032
– volume: 06
  start-page: 089
  year: 2016
  ident: 25098_CR86
  publication-title: JHEP
– ident: 25098_CR42
– ident: 25098_CR46
  doi: 10.1007/JHEP11(2018)192
– volume: 234
  start-page: 239
  year: 2013
  ident: 25098_CR50
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2012.09.027
– volume: 867
  start-page: 506
  year: 2013
  ident: 25098_CR116
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.10.005
– volume: 11
  start-page: 035
  year: 2020
  ident: 25098_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)035
– ident: 25098_CR91
  doi: 10.1088/1751-8121/acd037
– volume: 177
  start-page: 105
  year: 2009
  ident: 25098_CR6
  publication-title: Prog. Theor. Phys. Suppl.
  doi: 10.1143/PTPS.177.105
– volume: 50
  start-page: 411
  year: 2014
  ident: 25098_CR31
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.4171/prims/139
– volume: 402
  start-page: 1551
  year: 2023
  ident: 25098_CR96
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-023-04753-2
– ident: 25098_CR15
  doi: 10.1103/PhysRevD.96.121902
– volume: 23
  start-page: 1849
  year: 2019
  ident: 25098_CR16
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2019.v23.n7.a4
– volume: 11
  start-page: 002
  year: 2009
  ident: 25098_CR4
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/11/002
– volume: 09
  start-page: 138
  year: 2016
  ident: 25098_CR82
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)138
– volume: 133
  start-page: 637
  year: 1995
  ident: 25098_CR110
  publication-title: Prog. Math.
– volume: 197
  start-page: 489
  year: 1998
  ident: 25098_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050461
– ident: 25098_CR101
  doi: 10.1093/imrn/rny289
– volume: 2
  start-page: 147
  year: 1995
  ident: 25098_CR24
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.1995.v2.n2.a4
– volume: 299
  start-page: 163
  year: 2010
  ident: 25098_CR71
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-010-1071-2
– ident: 25098_CR10
  doi: 10.21468/SciPostPhys.13.1.005
– volume: 08
  start-page: 017
  year: 2013
  ident: 25098_CR114
  publication-title: JHEP
  doi: 10.1007/JHEP08(2013)017
– volume: 98
  start-page: 225
  year: 2011
  ident: 25098_CR111
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-011-0531-8
– volume: 152
  start-page: 115
  year: 2010
  ident: 25098_CR85
  publication-title: Duke Math. J.
– volume: 11
  start-page: 119
  year: 2022
  ident: 25098_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP11(2022)119
– volume: 10
  start-page: 051
  year: 2021
  ident: 25098_CR105
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.10.2.051
– ident: 25098_CR106
  doi: 10.1007/JHEP09(2020)075
– ident: 25098_CR11
  doi: 10.21468/SciPostPhys.14.3.034
– volume: 08
  start-page: 146
  year: 2021
  ident: 25098_CR2
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)146
– ident: 25098_CR107
  doi: 10.1016/j.geomphys.2022.104520
– volume: 148
  start-page: 1133
  year: 2012
  ident: 25098_CR99
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X12000152
– ident: 25098_CR118
– ident: 25098_CR22
  doi: 10.1103/PhysRevD.100.086008
– ident: 25098_CR26
  doi: 10.1063/1.2823979
– volume: 396
  start-page: 713
  year: 2022
  ident: 25098_CR38
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-022-04490-y
– volume: 264
  start-page: 227
  year: 2006
  ident: 25098_CR62
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-006-1527-6
– volume: 106
  start-page: 2959
  year: 2022
  ident: 25098_CR73
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms.12653
– volume: 04
  start-page: 069
  year: 2004
  ident: 25098_CR60
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/04/069
– volume: 300
  start-page: 229
  year: 2016
  ident: 25098_CR28
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.03.019
– ident: 25098_CR98
  doi: 10.2140/ant.2018.12.1001
– volume: 107
  start-page: 2147
  year: 2017
  ident: 25098_CR32
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-017-0986-3
– ident: 25098_CR19
  doi: 10.4310/ATMP.2014.v18.n1.a2
– volume: 12
  start-page: 175
  year: 2019
  ident: 25098_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)175
– volume: 01
  start-page: 128
  year: 2006
  ident: 25098_CR59
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/01/128
– volume: 14
  start-page: 535
  year: 2001
  ident: 25098_CR88
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-01-00368-X
– ident: 25098_CR7
  doi: 10.1142/9789814304634_0015
– volume: 08
  start-page: 034
  year: 2012
  ident: 25098_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP08(2012)034
SSID ssj0015190
Score 2.4850538
Snippet A bstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as...
The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS...
Abstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 89
SubjectTerms Algebra
Classical and Quantum Gravitation
Conformal and W Symmetry
Construction
Crystals
D-Branes
Elementary Particles
Invariants
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Supersymmetric Gauge Theory
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aEbyIT6xWycGDHpYmm-wmexIrLUVQVCz0FrJ5iJdt7db_7yTd9QV63TxYZpLMN5PJNwidF1Y7YrlNqGdZAvY6TzSXLnE5KJxpzXIX4pB39_l4wm-n2bQJuNVNWmV7JsaD2s5MiJH3GRh2cOXAQl_N35JQNSrcrjYlNNbRBhzBUnbQxmB4__D0eY8A-IS0hD5E9G_HwweaXoDDzy9JqOz-zRZFyv4fOPPX1Wi0OKMdtN1ARXy90u0uWnPVHtqMKZum3kdXj-8hpwKHQh3g8tZYVxbHuD-OTJXtq6KqxgBMsV6Ur_GJPX6L4-oDNBkNn2_GSVMOITFM0GUCnlVJU0e8T6UhNrepADCmS0E9OAVGOkYz6Tl34IHJwKXkvHCFla7ITArbjB2iTjWr3BHCJXeWGm8K4Sj3jGiRaW856MV6wAO-iy5awaj5ivVCtfzGKxmqIEMFMuyiQRDcZ7dAVx0_zBYvqln9ShDDOSBPFsj0c0FLGJhSQxzXhZYGJum1YlfNHqrVl8a76LJVxVfzH_9z_P9UJ2gr9AwJKZT2UGe5eHenACuW5Vmzdj4AFf7KXg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aEbyIT6xWycFDe1hMNtlN9iRaWkpBUbDQW8jmAV6qdtv_7yTdrbTiwduSzSzLNwnzTR7fIHRbWO2I5TahnmUJxOs80Vy6xOXgcKY1y11Yh3x6zkcTPp5m01okKdyF2dq_vxuPBi807UKKzntEFrtoL6NMhBoN_by_3i4AGkIa3Z7fRhshJyrzb9DJrR3QGFiGR-iwZoT4YeXCY7TjZidoP57MNNUpun9dhqMTONTjgMy2wpD647i8j6MgZXN5aFZh4J9Yz8v3eJMef0W76gxNhoO3_iipqx4khgm6SCCBKmnqiPepNMTmNhXAuXQpqAfub6RjNJOecweJlgySSc4LV1jpisykMJvYOWrNPmbuAuGSO0uNN4VwlHtGtMi0txzgtx7Cvm-jbgOM-lyJW6hGxniFoQoYKsCwjR4DcOtuQZU6NoCzVD3IlSCGcyCYLGjm54KWYJhSQxzXhZYGPtJpYFf1VKkUA8YGOTpQrzbqNa74ef3H_1z-o-8VOgiP4RAKpR3UWsyX7hqoxKK8icPoG1yJwIg
  priority: 102
  providerName: Springer Nature
Title Quiver algebras and their representations for arbitrary quivers
URI https://link.springer.com/article/10.1007/JHEP12(2024)089
https://www.proquest.com/docview/3143469256
https://doaj.org/article/70c4450737004671b08921c0e4a9a8c9
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFD74QHBz8Ynj1SELF7ooJk3apKuLDjMOgqLigLuS5gFuqk7H_-9J2l4fIG7cBNq0JZzTcL4vOfkOwFFhtaNW2IR5niUYr_NEC-USl6PDudY8d2Ed8uo6n87E5UP28KHUV8gJa-WBW8OdSmqEQNDCgw57LllFVZEyQ53QhVYmHt3DmNeTqW7_AHEJ7YV8qDy9nI5vWHqMRF-c0FDR_UMMilL9n_Dlly3RGGkmG_Cng4jkrB3aJiy5egvWYqqmabbh3-1ryKUgoUAHUt2G6NqSuN5PokJlf5qobggCUqLn1WM8Wk9e4nvNDswm4_vRNOnKICSGS7ZIkFFVLHXU-1QZanObSgRhupLMIxkwynGWKS-EQ-algoaS89IVVrkiMylOL74LK_VT7faAVMJZZrwppGPCc6plpr0V6A_rEQf4ARz3himfW7WLstc1bm1YBhuWaMMBnAfD_X8syFTHG-i8snNe-ZPzBnDQm73s5k5TcoRwSNoRiw3gpHfFe_c349n_jfH8hfXwvZCuwtgBrCzmr-4QQceiGsKymlwMYfV8fH1zh1ejVIQ2Hw3jn4ftLD17Axv-1LA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD5BiNGNER_xAkoXmsBiQl8znVkYosLl8owmkLCrnT6Mm7lw5xLjn_I3etp7C0oCO7Yz02by9bTnOz0vgPeNM5466QoWRFmgvq4KI2tf-AoXXBgjKh_vIY9PqtGZPDgvzxfgT86FiWGV-UxMB7Ub23hHviVQsaMphxp6--KyiF2jonc1t9CYicWh__0LTbb-4_4Oru8Hzoe7p19GxbyrQGGFYtMCDZSWcU9D4LWlrnJcIacxrWIBubWtvWBlHaT0aMjUsSSRD8o3rvZNaTlKq8B5H8GSFKjJY2b6cO_aa4FsiObyQVRtHYx2vzK-wVENbtLYR_4fzZcaBPzHam85YpN-Gz6HZ3NiSj7NJGkZFnz3Ah6nAFHbv4Ttb1cxgoPEtiBoYPfEdI4kLwNJdTFzDlPXE6TBxEzanymhn1ymcf0rOHsQmF7DYjfu_BsgrfSO2WAb5ZkMghpVmuAkSoELyD7CADYyMPpiVmND52rKMwx1xFAjhgP4HIG7_iwWx04PxpMfer7XtKJWSuS5IpburxRrcSBnlnppGlNbnGQtw67nO7bXN_I1gM28FDev7_iflfunWocno9PjI320f3K4Ck_jqBgKw9gaLE4nV_4tEppp-y5JEYHvDy22fwHTYQR3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp7q0gI-gNQeoo0fiZMDqijd1baF1YKo1Jtx_EBcsu1mK8Rf49cx9sYtIMGt1yS2opnPnm884xmAV7XVLrfCZtTzIkN7XWZaVC5zJSqca81LF84hP8zK6Zk4OS_ON-BnugsT0irTnhg3arsw4Yx8xNGwoyuHFnrk-7SI-dHk4OIyCx2kQqQ1tdNYQ-TU_fiO7lv35vgIdf2ascn487tp1ncYyAyXdJWhs9JQ5nLvWWVyW1omkd_oRlKPPNtUjtOi8kI4dGqqUJ7IeelqW7m6MAyRy3HeO7Apg1c0gM3D8Wz-6TqGgdwoT8WEcjk6mY7nlO0xNIr7eegq_5sdjO0C_uC4f4Vlo7WbPICtnqaSt2tcPYQN1z6CuzFd1HSP4eDjVcjnIKFJCLrbHdGtJTHmQGKVzHSjqe0IkmKil823eL2fXMZx3RM4uxVBPYVBu2jdNpBGOEuNN7V0VHiea1lobwViwnrkIn4Ie0kw6mJdcUOl2sprGaogQ4UyHMJhENz1Z6FUdnywWH5V_cpTMjdCIOvloZB_KWmDAxk1uRO61pXBSXaT2FW_fjt1g7Yh7CdV3Lz-x_88-_9UL-EeQla9P56d7sD9MCjkxVC6C4PV8so9R3azal70MCLw5baR-wtdKAoJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quiver+algebras+and+their+representations+for+arbitrary+quivers&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Wei+Li&rft.date=2024-12-11&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2024&rft.issue=12&rft.spage=1&rft.epage=118&rft_id=info:doi/10.1007%2FJHEP12%282024%29089&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70c4450737004671b08921c0e4a9a8c9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon