Quiver algebras and their representations for arbitrary quivers
A bstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) in...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 12; pp. 89 - 118 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
11.12.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D
N
= 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies. |
---|---|
AbstractList | Abstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N $$ \mathcal{N} $$ = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies. A bstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies. The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D $$ \mathcal{N} $$ N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies. The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS algebras of these systems. Their characters reproduce the unrefined BPS indices, which are related to classical Donaldson-Thomas (DT) invariants. We generalize this construction in two directions. First, we show that this definition extends to arbitrary quivers with potentials. Second, we explore how one can refine the characters of the quiver Yangian to incorporate the refined BPS indices, which are related to motivic DT invariants. We focus on two main classes of quivers: the BPS quivers of 4D N = 2 theories and the quivers from the knot-quiver correspondence. The entire construction allows for straightforward generalizations to trigonometric, elliptic, and generalized cohomologies. |
ArticleNumber | 89 |
Author | Li, Wei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-0852-7993 surname: Li fullname: Li, Wei email: weili@mail.itp.ac.cn organization: Institute of Theoretical Physics, Chinese Academy of Sciences |
BookMark | eNp1kM1LxDAQxYMouLt69lrwoofVmTRtkpOI-MmCCnoOaTpdu6zNbtIV_O-NVtSLpxmG9948fmO23fmOGDtAOEEAeXp3c_mA_IgDF8eg9BYbIXA9VULq7T_7LhvHuADAAjWM2Nnjpn2jkNnlnKpgY2a7OutfqA1ZoFWgSF1v-9Z3MWt8koWq7YMN79n6yxf32E5jl5H2v-eEPV9dPl3cTGf317cX57OpyyX2U9RYISdoGq4c1GXNZVmUtpLYaCmcohwL1QhBGqUC0JwaSbpWpAvHy1zlE3Y75NbeLswqtK-phPG2NV8HH-bGhr51SzISnBAFyFwCiFJilWhwdEDCaqucTlmHQ9Yq-PWGYm8WfhO6VN_kKHJRal6USXU6qFzwMQZqfr4imE_iZiBuPomb9CM5YHDEpOzmFH5z_7N8AAqqgmg |
Cites_doi | 10.1007/s002200100374 10.1007/JHEP10(2016)077 10.1016/S0550-3213(00)00118-8 10.1088/1126-6708/1998/02/013 10.1088/1126-6708/2006/01/096 10.1007/JHEP08(2011)135 10.1016/S0550-3213(00)00699-4 10.1088/1126-6708/2005/09/057 10.1007/s11005-009-0357-9 10.1016/j.aim.2016.08.041 10.1007/JHEP10(2012)190 10.1112/jlms.12433 10.1016/j.geomphys.2023.104991 10.1007/JHEP11(2017)119 10.1007/s00220-019-03575-5 10.1088/1126-6708/2004/08/064 10.1103/PhysRevD.104.086017 10.1112/plms/pdn051 10.1016/S0550-3213(97)00282-4 10.1007/s10468-020-09959-9 10.1063/1.3192773 10.1088/1126-6708/2009/10/069 10.1007/JHEP02(2021)119 10.1090/gsm/174 10.1007/JHEP11(2011)129 10.1088/1126-6708/2005/09/006 10.4310/CNTP.2011.v5.n2.a1 10.1007/JHEP04(2017)152 10.1090/S0273-0979-1985-15361-3 10.1063/5.0076638 10.1007/s00220-013-1789-8 10.1007/JHEP01(2020)042 10.1088/1126-6708/2006/07/001 10.1007/JHEP02(2019)147 10.4310/CNTP.2023.v17.n4.a2 10.1007/s11005-010-0369-5 10.1007/JHEP05(2017)099 10.1007/JHEP02(2020)018 10.1007/JHEP05(2018)200 10.1007/JHEP02(2022)024 10.1016/j.jpaa.2007.03.009 10.1103/PhysRevD.98.026022 10.1007/BF01217730 10.1088/1126-6708/2002/10/023 10.1007/s00220-009-0836-y 10.1112/S0010437X22007801 10.1007/s11005-023-01733-4 10.1016/S0550-3213(97)00283-6 10.2140/gt.2008.12.1171 10.1007/s00220-020-03840-y 10.1007/s00220-013-1863-2 10.1007/JHEP12(2013)035 10.1023/A:1007341410987 10.1215/21562261-1214375 10.1007/JHEP01(2019)124 10.1016/j.nuclphysbps.2009.07.047 10.1007/JHEP05(2022)011 10.1088/1126-6708/2000/10/001 10.1090/pspum/037 10.1007/s11005-022-01579-2 10.1016/j.jalgebra.2021.12.032 10.1007/JHEP11(2018)192 10.1016/j.aim.2012.09.027 10.1016/j.nuclphysb.2012.10.005 10.1007/JHEP11(2020)035 10.1088/1751-8121/acd037 10.1143/PTPS.177.105 10.4171/prims/139 10.1007/s00220-023-04753-2 10.1103/PhysRevD.96.121902 10.4310/ATMP.2019.v23.n7.a4 10.1088/1126-6708/2009/11/002 10.1007/JHEP09(2016)138 10.1007/s002200050461 10.1093/imrn/rny289 10.4310/MRL.1995.v2.n2.a4 10.1007/s00220-010-1071-2 10.21468/SciPostPhys.13.1.005 10.1007/JHEP08(2013)017 10.1007/s11005-011-0531-8 10.1007/JHEP11(2022)119 10.21468/SciPostPhys.10.2.051 10.1007/JHEP09(2020)075 10.21468/SciPostPhys.14.3.034 10.1007/JHEP08(2021)146 10.1016/j.geomphys.2022.104520 10.1112/S0010437X12000152 10.1103/PhysRevD.100.086008 10.1063/1.2823979 10.1007/s00220-022-04490-y 10.1007/s00220-006-1527-6 10.1112/jlms.12653 10.1088/1126-6708/2004/04/069 10.1016/j.aim.2016.03.019 10.2140/ant.2018.12.1001 10.1007/s11005-017-0986-3 10.4310/ATMP.2014.v18.n1.a2 10.1007/JHEP12(2019)175 10.1088/1126-6708/2006/01/128 10.1090/S0894-0347-01-00368-X 10.1142/9789814304634_0015 10.1007/JHEP08(2012)034 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP12(2024)089 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Proquest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 118 |
ExternalDocumentID | oai_doaj_org_article_70c4450737004671b08921c0e4a9a8c9 10_1007_JHEP12_2024_089 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c371t-191b12e0ff28c0d6d27656ab71f974c8e3158f44e91780092ef7e9d8e95c26383 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 00:50:48 EDT 2025 Fri Jul 25 23:08:27 EDT 2025 Sun Jul 06 05:05:55 EDT 2025 Fri Feb 21 02:36:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | D-Branes Supersymmetric Gauge Theory Conformal and W Symmetry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-191b12e0ff28c0d6d27656ab71f974c8e3158f44e91780092ef7e9d8e95c26383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0852-7993 |
OpenAccessLink | https://doaj.org/article/70c4450737004671b08921c0e4a9a8c9 |
PQID | 3143469256 |
PQPubID | 2034718 |
PageCount | 118 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_70c4450737004671b08921c0e4a9a8c9 proquest_journals_3143469256 crossref_primary_10_1007_JHEP12_2024_089 springer_journals_10_1007_JHEP12_2024_089 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-11 |
PublicationDateYYYYMMDD | 2024-12-11 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Z Duan (25098_CR87) 2021; 02 M Kontsevich (25098_CR75) 2011; 5 25098_CR89 JH Przytycki (25098_CR93) 1988; 4 G Noshita (25098_CR78) 2022; 05 25098_CR90 25098_CR91 H Fuji (25098_CR116) 2013; 867 P Kucharski (25098_CR16) 2019; 23 H Ooguri (25098_CR14) 2009; 292 J Jankowski (25098_CR96) 2023; 402 D Gaiotto (25098_CR71) 2010; 299 C Cordova (25098_CR77) 2017; 11 S Mozgovoy (25098_CR119) 2022; 596 T Ekholm (25098_CR39) 2020; 379 25098_CR76 P Descombes (25098_CR73) 2022; 106 T Ekholm (25098_CR108) 2023; 113 T Dimofte (25098_CR111) 2011; 98 25098_CR80 25098_CR81 25098_CR84 T Dimofte (25098_CR113) 2014; 325 D-E Diaconescu (25098_CR54) 2000; 10 S Datta (25098_CR82) 2016; 09 T Kimura (25098_CR105) 2021; 10 25098_CR68 M Rapcak (25098_CR48) 2023; 17 H Argüz (25098_CR120) 2022; 158 B Feng (25098_CR123) 2001; 595 25098_CR118 25098_CR70 25098_CR117 25098_CR112 MR Gaberdiel (25098_CR121) 2018; 05 B Szendroi (25098_CR41) 2008; 12 T Creutzig (25098_CR20) 2019; 02 D-E Diaconescu (25098_CR53) 1998; 02 SH Katz (25098_CR67) 1997; 497 D Gaiotto (25098_CR64) 2012; 08 S Lee (25098_CR115) 2013; 12 E Witten (25098_CR109) 1989; 121 25098_CR100 25098_CR57 25098_CR107 M Panfil (25098_CR104) 2019; 01 25098_CR106 25098_CR103 SH Katz (25098_CR66) 1997; 497 M Cirafici (25098_CR74) 2022; 112 25098_CR101 D Galakhov (25098_CR2) 2021; 08 S-J Lee (25098_CR86) 2016; 06 25098_CR42 25098_CR43 MR Douglas (25098_CR56) 2005; 09 25098_CR45 25098_CR46 25098_CR49 M Rapcak (25098_CR47) 2019; 376 MR Gaberdiel (25098_CR83) 2017; 04 25098_CR52 N Wyllard (25098_CR4) 2009; 11 NA Nekrasov (25098_CR5) 2009; 192-193 CP Herzog (25098_CR60) 2004; 04 D Labardini-Fragoso (25098_CR35) 2008; 98 V Ginzburg (25098_CR24) 1995; 2 LF Alday (25098_CR3) 2010; 91 25098_CR122 25098_CR34 25098_CR36 25098_CR37 P Freyd (25098_CR92) 1985; 12 MR Douglas (25098_CR55) 2005; 09 25098_CR40 CP Herzog (25098_CR61) 2004; 08 25098_CR7 S Franco (25098_CR59) 2006; 01 25098_CR9 PS Aspinwall (25098_CR62) 2006; 264 AI Efimov (25098_CR99) 2012; 148 25098_CR29 L Eberhardt (25098_CR21) 2019; 12 D Galakhov (25098_CR13) 2020; 10 A Iqbal (25098_CR79) 2009; 10 NA Nekrasov (25098_CR6) 2009; 177 Y Saito (25098_CR31) 2014; 50 A Hanany (25098_CR63) 2006; 07 25098_CR22 25098_CR23 S Cecotti (25098_CR65) 2012; 10 25098_CR25 J Yagi (25098_CR114) 2013; 08 25098_CR26 25098_CR27 JA Harvey (25098_CR1) 1998; 197 JMF Labastida (25098_CR95) 2001; 217 S Franco (25098_CR58) 2006; 01 F Denef (25098_CR69) 2011; 11 M Stosic (25098_CR102) 2021; 104 25098_CR30 B Young (25098_CR85) 2010; 152 H Ooguri (25098_CR94) 2000; 577 F Denef (25098_CR51) 2002; 10 25098_CR17 25098_CR19 D Galakhov (25098_CR33) 2022; 02 W Li (25098_CR12) 2020; 11 T Dimofte (25098_CR72) 2010; 91 25098_CR97 25098_CR10 25098_CR98 25098_CR11 25098_CR15 M Alim (25098_CR18) 2013; 323 E Witten (25098_CR110) 1995; 133 T Bridgeland (25098_CR88) 2001; 14 R Bocklandt (25098_CR44) 2008; 212 F Nieri (25098_CR32) 2017; 107 D Galakhov (25098_CR38) 2022; 396 D Galakhov (25098_CR8) 2022; 11 D Gaiotto (25098_CR50) 2013; 234 B Feigin (25098_CR28) 2016; 300 |
References_xml | – ident: 25098_CR49 – volume: 217 start-page: 423 year: 2001 ident: 25098_CR95 publication-title: Commun. Math. Phys. doi: 10.1007/s002200100374 – ident: 25098_CR81 doi: 10.1007/JHEP10(2016)077 – volume: 577 start-page: 419 year: 2000 ident: 25098_CR94 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00118-8 – volume: 02 start-page: 013 year: 1998 ident: 25098_CR53 publication-title: JHEP doi: 10.1088/1126-6708/1998/02/013 – volume: 01 start-page: 096 year: 2006 ident: 25098_CR58 publication-title: JHEP doi: 10.1088/1126-6708/2006/01/096 – ident: 25098_CR112 doi: 10.1007/JHEP08(2011)135 – volume: 595 start-page: 165 year: 2001 ident: 25098_CR123 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00699-4 – ident: 25098_CR84 – volume: 09 start-page: 057 year: 2005 ident: 25098_CR56 publication-title: JHEP doi: 10.1088/1126-6708/2005/09/057 – volume: 91 start-page: 1 year: 2010 ident: 25098_CR72 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-009-0357-9 – ident: 25098_CR80 doi: 10.1016/j.aim.2016.08.041 – volume: 10 start-page: 190 year: 2012 ident: 25098_CR65 publication-title: JHEP doi: 10.1007/JHEP10(2012)190 – ident: 25098_CR70 – volume: 104 start-page: 1 year: 2021 ident: 25098_CR102 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms.12433 – ident: 25098_CR9 doi: 10.1016/j.geomphys.2023.104991 – ident: 25098_CR17 – volume: 11 start-page: 119 year: 2017 ident: 25098_CR77 publication-title: JHEP doi: 10.1007/JHEP11(2017)119 – volume: 10 start-page: 076 year: 2020 ident: 25098_CR13 publication-title: JHEP – volume: 376 start-page: 1803 year: 2019 ident: 25098_CR47 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03575-5 – volume: 08 start-page: 064 year: 2004 ident: 25098_CR61 publication-title: JHEP doi: 10.1088/1126-6708/2004/08/064 – ident: 25098_CR100 doi: 10.1103/PhysRevD.104.086017 – volume: 98 start-page: 797 year: 2008 ident: 25098_CR35 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdn051 – ident: 25098_CR52 – ident: 25098_CR76 – volume: 497 start-page: 173 year: 1997 ident: 25098_CR66 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00282-4 – ident: 25098_CR30 doi: 10.1007/s10468-020-09959-9 – ident: 25098_CR29 doi: 10.1063/1.3192773 – volume: 10 start-page: 069 year: 2009 ident: 25098_CR79 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/069 – volume: 02 start-page: 119 year: 2021 ident: 25098_CR87 publication-title: JHEP doi: 10.1007/JHEP02(2021)119 – ident: 25098_CR43 – ident: 25098_CR45 doi: 10.1090/gsm/174 – volume: 11 start-page: 129 year: 2011 ident: 25098_CR69 publication-title: JHEP doi: 10.1007/JHEP11(2011)129 – ident: 25098_CR57 – volume: 09 start-page: 006 year: 2005 ident: 25098_CR55 publication-title: JHEP doi: 10.1088/1126-6708/2005/09/006 – volume: 5 start-page: 231 year: 2011 ident: 25098_CR75 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2011.v5.n2.a1 – ident: 25098_CR34 – volume: 04 start-page: 152 year: 2017 ident: 25098_CR83 publication-title: JHEP doi: 10.1007/JHEP04(2017)152 – ident: 25098_CR122 – volume: 12 start-page: 239 year: 1985 ident: 25098_CR92 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-1985-15361-3 – ident: 25098_CR90 doi: 10.1063/5.0076638 – volume: 323 start-page: 1185 year: 2013 ident: 25098_CR18 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1789-8 – ident: 25098_CR23 doi: 10.1007/JHEP01(2020)042 – volume: 07 start-page: 001 year: 2006 ident: 25098_CR63 publication-title: JHEP doi: 10.1088/1126-6708/2006/07/001 – volume: 02 start-page: 147 year: 2019 ident: 25098_CR20 publication-title: JHEP doi: 10.1007/JHEP02(2019)147 – volume: 17 start-page: 847 year: 2023 ident: 25098_CR48 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2023.v17.n4.a2 – ident: 25098_CR37 – volume: 91 start-page: 167 year: 2010 ident: 25098_CR3 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-010-0369-5 – ident: 25098_CR117 doi: 10.1007/JHEP05(2017)099 – ident: 25098_CR40 doi: 10.1007/JHEP02(2020)018 – volume: 05 start-page: 200 year: 2018 ident: 25098_CR121 publication-title: JHEP doi: 10.1007/JHEP05(2018)200 – volume: 02 start-page: 024 year: 2022 ident: 25098_CR33 publication-title: JHEP doi: 10.1007/JHEP02(2022)024 – volume: 212 start-page: 14 year: 2008 ident: 25098_CR44 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2007.03.009 – ident: 25098_CR103 doi: 10.1103/PhysRevD.98.026022 – volume: 121 start-page: 351 year: 1989 ident: 25098_CR109 publication-title: Commun. Math. Phys. doi: 10.1007/BF01217730 – volume: 10 start-page: 023 year: 2002 ident: 25098_CR51 publication-title: JHEP doi: 10.1088/1126-6708/2002/10/023 – volume: 292 start-page: 179 year: 2009 ident: 25098_CR14 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-009-0836-y – volume: 158 start-page: 2206 year: 2022 ident: 25098_CR120 publication-title: Compos. Math. doi: 10.1112/S0010437X22007801 – volume: 113 start-page: 117 year: 2023 ident: 25098_CR108 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-023-01733-4 – volume: 497 start-page: 196 year: 1997 ident: 25098_CR67 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00283-6 – ident: 25098_CR97 – volume: 12 start-page: 1171 year: 2008 ident: 25098_CR41 publication-title: Geom. Topol. doi: 10.2140/gt.2008.12.1171 – ident: 25098_CR68 – volume: 379 start-page: 361 year: 2020 ident: 25098_CR39 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-020-03840-y – volume: 325 start-page: 367 year: 2014 ident: 25098_CR113 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1863-2 – volume: 12 start-page: 035 year: 2013 ident: 25098_CR115 publication-title: JHEP doi: 10.1007/JHEP12(2013)035 – ident: 25098_CR25 doi: 10.1023/A:1007341410987 – ident: 25098_CR27 doi: 10.1215/21562261-1214375 – volume: 01 start-page: 124 year: 2019 ident: 25098_CR104 publication-title: JHEP doi: 10.1007/JHEP01(2019)124 – volume: 192-193 start-page: 91 year: 2009 ident: 25098_CR5 publication-title: Nucl. Phys. B Proc. Suppl. doi: 10.1016/j.nuclphysbps.2009.07.047 – volume: 4 start-page: 115 year: 1988 ident: 25098_CR93 publication-title: Kobe J. Math. – volume: 05 start-page: 011 year: 2022 ident: 25098_CR78 publication-title: JHEP doi: 10.1007/JHEP05(2022)011 – ident: 25098_CR36 – volume: 10 start-page: 001 year: 2000 ident: 25098_CR54 publication-title: JHEP doi: 10.1088/1126-6708/2000/10/001 – ident: 25098_CR89 doi: 10.1090/pspum/037 – volume: 112 start-page: 88 year: 2022 ident: 25098_CR74 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-022-01579-2 – volume: 596 start-page: 53 year: 2022 ident: 25098_CR119 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2021.12.032 – volume: 06 start-page: 089 year: 2016 ident: 25098_CR86 publication-title: JHEP – ident: 25098_CR42 – ident: 25098_CR46 doi: 10.1007/JHEP11(2018)192 – volume: 234 start-page: 239 year: 2013 ident: 25098_CR50 publication-title: Adv. Math. doi: 10.1016/j.aim.2012.09.027 – volume: 867 start-page: 506 year: 2013 ident: 25098_CR116 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.10.005 – volume: 11 start-page: 035 year: 2020 ident: 25098_CR12 publication-title: JHEP doi: 10.1007/JHEP11(2020)035 – ident: 25098_CR91 doi: 10.1088/1751-8121/acd037 – volume: 177 start-page: 105 year: 2009 ident: 25098_CR6 publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/PTPS.177.105 – volume: 50 start-page: 411 year: 2014 ident: 25098_CR31 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.4171/prims/139 – volume: 402 start-page: 1551 year: 2023 ident: 25098_CR96 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-023-04753-2 – ident: 25098_CR15 doi: 10.1103/PhysRevD.96.121902 – volume: 23 start-page: 1849 year: 2019 ident: 25098_CR16 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2019.v23.n7.a4 – volume: 11 start-page: 002 year: 2009 ident: 25098_CR4 publication-title: JHEP doi: 10.1088/1126-6708/2009/11/002 – volume: 09 start-page: 138 year: 2016 ident: 25098_CR82 publication-title: JHEP doi: 10.1007/JHEP09(2016)138 – volume: 133 start-page: 637 year: 1995 ident: 25098_CR110 publication-title: Prog. Math. – volume: 197 start-page: 489 year: 1998 ident: 25098_CR1 publication-title: Commun. Math. Phys. doi: 10.1007/s002200050461 – ident: 25098_CR101 doi: 10.1093/imrn/rny289 – volume: 2 start-page: 147 year: 1995 ident: 25098_CR24 publication-title: Math. Res. Lett. doi: 10.4310/MRL.1995.v2.n2.a4 – volume: 299 start-page: 163 year: 2010 ident: 25098_CR71 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-010-1071-2 – ident: 25098_CR10 doi: 10.21468/SciPostPhys.13.1.005 – volume: 08 start-page: 017 year: 2013 ident: 25098_CR114 publication-title: JHEP doi: 10.1007/JHEP08(2013)017 – volume: 98 start-page: 225 year: 2011 ident: 25098_CR111 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-011-0531-8 – volume: 152 start-page: 115 year: 2010 ident: 25098_CR85 publication-title: Duke Math. J. – volume: 11 start-page: 119 year: 2022 ident: 25098_CR8 publication-title: JHEP doi: 10.1007/JHEP11(2022)119 – volume: 10 start-page: 051 year: 2021 ident: 25098_CR105 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.10.2.051 – ident: 25098_CR106 doi: 10.1007/JHEP09(2020)075 – ident: 25098_CR11 doi: 10.21468/SciPostPhys.14.3.034 – volume: 08 start-page: 146 year: 2021 ident: 25098_CR2 publication-title: JHEP doi: 10.1007/JHEP08(2021)146 – ident: 25098_CR107 doi: 10.1016/j.geomphys.2022.104520 – volume: 148 start-page: 1133 year: 2012 ident: 25098_CR99 publication-title: Compos. Math. doi: 10.1112/S0010437X12000152 – ident: 25098_CR118 – ident: 25098_CR22 doi: 10.1103/PhysRevD.100.086008 – ident: 25098_CR26 doi: 10.1063/1.2823979 – volume: 396 start-page: 713 year: 2022 ident: 25098_CR38 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-022-04490-y – volume: 264 start-page: 227 year: 2006 ident: 25098_CR62 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-006-1527-6 – volume: 106 start-page: 2959 year: 2022 ident: 25098_CR73 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms.12653 – volume: 04 start-page: 069 year: 2004 ident: 25098_CR60 publication-title: JHEP doi: 10.1088/1126-6708/2004/04/069 – volume: 300 start-page: 229 year: 2016 ident: 25098_CR28 publication-title: Adv. Math. doi: 10.1016/j.aim.2016.03.019 – ident: 25098_CR98 doi: 10.2140/ant.2018.12.1001 – volume: 107 start-page: 2147 year: 2017 ident: 25098_CR32 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-017-0986-3 – ident: 25098_CR19 doi: 10.4310/ATMP.2014.v18.n1.a2 – volume: 12 start-page: 175 year: 2019 ident: 25098_CR21 publication-title: JHEP doi: 10.1007/JHEP12(2019)175 – volume: 01 start-page: 128 year: 2006 ident: 25098_CR59 publication-title: JHEP doi: 10.1088/1126-6708/2006/01/128 – volume: 14 start-page: 535 year: 2001 ident: 25098_CR88 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-01-00368-X – ident: 25098_CR7 doi: 10.1142/9789814304634_0015 – volume: 08 start-page: 034 year: 2012 ident: 25098_CR64 publication-title: JHEP doi: 10.1007/JHEP08(2012)034 |
SSID | ssj0015190 |
Score | 2.4850538 |
Snippet | A
bstract
The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as... The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as BPS... Abstract The quiver Yangians were originally defined for the quiver and superpotential from string theory on general toric Calabi-Yau threefolds, and serve as... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 89 |
SubjectTerms | Algebra Classical and Quantum Gravitation Conformal and W Symmetry Construction Crystals D-Branes Elementary Particles Invariants Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Supersymmetric Gauge Theory |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aEbyIT6xWycGDHpYmm-wmexIrLUVQVCz0FrJ5iJdt7db_7yTd9QV63TxYZpLMN5PJNwidF1Y7YrlNqGdZAvY6TzSXLnE5KJxpzXIX4pB39_l4wm-n2bQJuNVNWmV7JsaD2s5MiJH3GRh2cOXAQl_N35JQNSrcrjYlNNbRBhzBUnbQxmB4__D0eY8A-IS0hD5E9G_HwweaXoDDzy9JqOz-zRZFyv4fOPPX1Wi0OKMdtN1ARXy90u0uWnPVHtqMKZum3kdXj-8hpwKHQh3g8tZYVxbHuD-OTJXtq6KqxgBMsV6Ur_GJPX6L4-oDNBkNn2_GSVMOITFM0GUCnlVJU0e8T6UhNrepADCmS0E9OAVGOkYz6Tl34IHJwKXkvHCFla7ITArbjB2iTjWr3BHCJXeWGm8K4Sj3jGiRaW856MV6wAO-iy5awaj5ivVCtfzGKxmqIEMFMuyiQRDcZ7dAVx0_zBYvqln9ShDDOSBPFsj0c0FLGJhSQxzXhZYGJum1YlfNHqrVl8a76LJVxVfzH_9z_P9UJ2gr9AwJKZT2UGe5eHenACuW5Vmzdj4AFf7KXg priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aEbyIT6xWycFDe1hMNtlN9iRaWkpBUbDQW8jmAV6qdtv_7yTdrbTiwduSzSzLNwnzTR7fIHRbWO2I5TahnmUJxOs80Vy6xOXgcKY1y11Yh3x6zkcTPp5m01okKdyF2dq_vxuPBi807UKKzntEFrtoL6NMhBoN_by_3i4AGkIa3Z7fRhshJyrzb9DJrR3QGFiGR-iwZoT4YeXCY7TjZidoP57MNNUpun9dhqMTONTjgMy2wpD647i8j6MgZXN5aFZh4J9Yz8v3eJMef0W76gxNhoO3_iipqx4khgm6SCCBKmnqiPepNMTmNhXAuXQpqAfub6RjNJOecweJlgySSc4LV1jpisykMJvYOWrNPmbuAuGSO0uNN4VwlHtGtMi0txzgtx7Cvm-jbgOM-lyJW6hGxniFoQoYKsCwjR4DcOtuQZU6NoCzVD3IlSCGcyCYLGjm54KWYJhSQxzXhZYGPtJpYFf1VKkUA8YGOTpQrzbqNa74ef3H_1z-o-8VOgiP4RAKpR3UWsyX7hqoxKK8icPoG1yJwIg priority: 102 providerName: Springer Nature |
Title | Quiver algebras and their representations for arbitrary quivers |
URI | https://link.springer.com/article/10.1007/JHEP12(2024)089 https://www.proquest.com/docview/3143469256 https://doaj.org/article/70c4450737004671b08921c0e4a9a8c9 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFD74QHBz8Ynj1SELF7ooJk3apKuLDjMOgqLigLuS5gFuqk7H_-9J2l4fIG7cBNq0JZzTcL4vOfkOwFFhtaNW2IR5niUYr_NEC-USl6PDudY8d2Ed8uo6n87E5UP28KHUV8gJa-WBW8OdSmqEQNDCgw57LllFVZEyQ53QhVYmHt3DmNeTqW7_AHEJ7YV8qDy9nI5vWHqMRF-c0FDR_UMMilL9n_Dlly3RGGkmG_Cng4jkrB3aJiy5egvWYqqmabbh3-1ryKUgoUAHUt2G6NqSuN5PokJlf5qobggCUqLn1WM8Wk9e4nvNDswm4_vRNOnKICSGS7ZIkFFVLHXU-1QZanObSgRhupLMIxkwynGWKS-EQ-algoaS89IVVrkiMylOL74LK_VT7faAVMJZZrwppGPCc6plpr0V6A_rEQf4ARz3himfW7WLstc1bm1YBhuWaMMBnAfD_X8syFTHG-i8snNe-ZPzBnDQm73s5k5TcoRwSNoRiw3gpHfFe_c349n_jfH8hfXwvZCuwtgBrCzmr-4QQceiGsKymlwMYfV8fH1zh1ejVIQ2Hw3jn4ftLD17Axv-1LA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxUxFD5BiNGNER_xAkoXmsBiQl8znVkYosLl8owmkLCrnT6Mm7lw5xLjn_I3etp7C0oCO7Yz02by9bTnOz0vgPeNM5466QoWRFmgvq4KI2tf-AoXXBgjKh_vIY9PqtGZPDgvzxfgT86FiWGV-UxMB7Ub23hHviVQsaMphxp6--KyiF2jonc1t9CYicWh__0LTbb-4_4Oru8Hzoe7p19GxbyrQGGFYtMCDZSWcU9D4LWlrnJcIacxrWIBubWtvWBlHaT0aMjUsSSRD8o3rvZNaTlKq8B5H8GSFKjJY2b6cO_aa4FsiObyQVRtHYx2vzK-wVENbtLYR_4fzZcaBPzHam85YpN-Gz6HZ3NiSj7NJGkZFnz3Ah6nAFHbv4Ttb1cxgoPEtiBoYPfEdI4kLwNJdTFzDlPXE6TBxEzanymhn1ymcf0rOHsQmF7DYjfu_BsgrfSO2WAb5ZkMghpVmuAkSoELyD7CADYyMPpiVmND52rKMwx1xFAjhgP4HIG7_iwWx04PxpMfer7XtKJWSuS5IpburxRrcSBnlnppGlNbnGQtw67nO7bXN_I1gM28FDev7_iflfunWocno9PjI320f3K4Ck_jqBgKw9gaLE4nV_4tEppp-y5JEYHvDy22fwHTYQR3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp7q0gI-gNQeoo0fiZMDqijd1baF1YKo1Jtx_EBcsu1mK8Rf49cx9sYtIMGt1yS2opnPnm884xmAV7XVLrfCZtTzIkN7XWZaVC5zJSqca81LF84hP8zK6Zk4OS_ON-BnugsT0irTnhg3arsw4Yx8xNGwoyuHFnrk-7SI-dHk4OIyCx2kQqQ1tdNYQ-TU_fiO7lv35vgIdf2ascn487tp1ncYyAyXdJWhs9JQ5nLvWWVyW1omkd_oRlKPPNtUjtOi8kI4dGqqUJ7IeelqW7m6MAyRy3HeO7Apg1c0gM3D8Wz-6TqGgdwoT8WEcjk6mY7nlO0xNIr7eegq_5sdjO0C_uC4f4Vlo7WbPICtnqaSt2tcPYQN1z6CuzFd1HSP4eDjVcjnIKFJCLrbHdGtJTHmQGKVzHSjqe0IkmKil823eL2fXMZx3RM4uxVBPYVBu2jdNpBGOEuNN7V0VHiea1lobwViwnrkIn4Ie0kw6mJdcUOl2sprGaogQ4UyHMJhENz1Z6FUdnywWH5V_cpTMjdCIOvloZB_KWmDAxk1uRO61pXBSXaT2FW_fjt1g7Yh7CdV3Lz-x_88-_9UL-EeQla9P56d7sD9MCjkxVC6C4PV8so9R3azal70MCLw5baR-wtdKAoJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quiver+algebras+and+their+representations+for+arbitrary+quivers&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Wei+Li&rft.date=2024-12-11&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2024&rft.issue=12&rft.spage=1&rft.epage=118&rft_id=info:doi/10.1007%2FJHEP12%282024%29089&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_70c4450737004671b08921c0e4a9a8c9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |