Turning cotton into tough energy textile via metal oxide assisted carbonization

Cotton is established as an innovative foundation for smart wearable energy storage devices with appealing properties. The challenge is that the current approaches using either additional coating or direct carbonization mostly lead to mechanically fragile or electrochemically poor textile. We demons...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 153; pp. 257 - 264
Main Authors Lam, Do Van, Won, Sejeong, Shim, Hyung Cheoul, Kim, Jae-Hyun, Lee, Seung-Mo
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cotton is established as an innovative foundation for smart wearable energy storage devices with appealing properties. The challenge is that the current approaches using either additional coating or direct carbonization mostly lead to mechanically fragile or electrochemically poor textile. We demonstrate that the coating of metal oxide on the cotton and subsequent pyrolysis readily turn cotton into conductive textile with high porosity and excellent toughness. The resulting textile has the energy density of 2.24 mWh/cm3 (nearly 3 times higher than other commercial supercapacitors) and the power density of 585 mW/cm3 (over 2-orders-of-magnitude higher than that of the lithium battery). We show that the metal oxide assisted carbonization allows metal atoms to migrate into the graphite-like layers of the carbonized cotton. It appears that the migrated metal atoms and the phase transformation of the coated metal oxides play a critical role in considerable changes in the microstructure and porosity of the carbonized cotton. Metal oxide assisted carbonization enables cotton to be turned into tough energy textile with high energy storage performance. [Display omitted]
AbstractList Cotton is established as an innovative foundation for smart wearable energy storage devices with appealing properties. The challenge is that the current approaches using either additional coating or direct carbonization mostly lead to mechanically fragile or electrochemically poor textile. We demonstrate that the coating of metal oxide on the cotton and subsequent pyrolysis readily turn cotton into conductive textile with high porosity and excellent toughness. The resulting textile has the energy density of 2.24 mWh/cm3 (nearly 3 times higher than other commercial supercapacitors) and the power density of 585 mW/cm3 (over 2-orders-of-magnitude higher than that of the lithium battery). We show that the metal oxide assisted carbonization allows metal atoms to migrate into the graphite-like layers of the carbonized cotton. It appears that the migrated metal atoms and the phase transformation of the coated metal oxides play a critical role in considerable changes in the microstructure and porosity of the carbonized cotton.
Cotton is established as an innovative foundation for smart wearable energy storage devices with appealing properties. The challenge is that the current approaches using either additional coating or direct carbonization mostly lead to mechanically fragile or electrochemically poor textile. We demonstrate that the coating of metal oxide on the cotton and subsequent pyrolysis readily turn cotton into conductive textile with high porosity and excellent toughness. The resulting textile has the energy density of 2.24 mWh/cm3 (nearly 3 times higher than other commercial supercapacitors) and the power density of 585 mW/cm3 (over 2-orders-of-magnitude higher than that of the lithium battery). We show that the metal oxide assisted carbonization allows metal atoms to migrate into the graphite-like layers of the carbonized cotton. It appears that the migrated metal atoms and the phase transformation of the coated metal oxides play a critical role in considerable changes in the microstructure and porosity of the carbonized cotton. Metal oxide assisted carbonization enables cotton to be turned into tough energy textile with high energy storage performance. [Display omitted]
Author Kim, Jae-Hyun
Lee, Seung-Mo
Won, Sejeong
Shim, Hyung Cheoul
Lam, Do Van
Author_xml – sequence: 1
  givenname: Do Van
  orcidid: 0000-0001-5067-1783
  surname: Lam
  fullname: Lam, Do Van
  organization: Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, South Korea
– sequence: 2
  givenname: Sejeong
  surname: Won
  fullname: Won, Sejeong
  organization: Center for Advanced Meta-Materials (CAMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, South Korea
– sequence: 3
  givenname: Hyung Cheoul
  surname: Shim
  fullname: Shim, Hyung Cheoul
  organization: Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, South Korea
– sequence: 4
  givenname: Jae-Hyun
  orcidid: 0000-0002-4327-2992
  surname: Kim
  fullname: Kim, Jae-Hyun
  organization: Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, South Korea
– sequence: 5
  givenname: Seung-Mo
  surname: Lee
  fullname: Lee, Seung-Mo
  email: sm.lee@kimm.re.kr
  organization: Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, South Korea
BookMark eNp9UE1LAzEQDVLBtvoPPAQ87zqz2W7SiyDFLyj0oueQZmdrSk00SUvrr3dlPXsaHryPeW_CRj54YuwaoUTA5nZbWhPXwZcV4LwEWQLCGRujkqIQao4jNgYAVTRVJS7YJKVtD2uF9ZitXvfRO7_hNuQcPHc-B57DfvPOyVPcnHimY3Y74gdn-Adls-Ph6FriJiWXMrV8yHbfJrvgL9l5Z3aJrv7ulL09Prwunovl6ullcb8srJCYC1QorFjbWtYz00gxnzV2bpSQtTGdUKpbg1GykShm0LQIClqQEjo0tkJSMzFlN4PvZwxfe0pZb0PfpI_UlYAaEXthz6oHlo0hpUid_ozuw8STRtC_0-mtHt7Xv9NpkLqfrpfdDTLqGxwcRZ2sI2-pdZFs1m1w_xv8AEZfenU
CitedBy_id crossref_primary_10_1002_admi_202101599
crossref_primary_10_1002_advs_202203856
crossref_primary_10_1016_j_carbon_2020_05_029
crossref_primary_10_1016_j_renene_2021_02_033
crossref_primary_10_1002_sstr_202300330
crossref_primary_10_1177_1528083720944252
crossref_primary_10_3390_met11010080
crossref_primary_10_1021_acsami_0c10235
crossref_primary_10_1039_D2TA03389E
crossref_primary_10_1007_s10570_022_04538_1
Cites_doi 10.1021/acsnano.6b06608
10.1002/advs.201800340
10.1038/ncomms8260
10.1002/anie.201507333
10.1126/science.1216744
10.1098/rspa.1951.0197
10.1126/science.1219134
10.1016/j.jascer.2013.07.003
10.1007/BF01174692
10.1021/nn2041279
10.1016/j.jpowsour.2016.08.039
10.1002/smll.201701827
10.1002/smll.201702702
10.1103/PhysRevLett.61.2693
10.1002/adma.201602987
10.1039/C5RA11179J
10.1039/c3ee40515j
10.1002/aenm.201600783
10.1021/ma00103a018
10.3390/ma2042369
10.1039/C5TA03899E
10.1021/nl903949m
10.1016/0008-6223(75)90228-6
10.1016/0008-6223(64)90035-1
10.1007/s12274-019-2360-5
10.1038/nmat2297
10.1038/ncomms12647
10.1177/004051757604600412
10.1038/nnano.2008.233
10.1002/adfm.201604795
10.1038/ncomms11586
10.1107/S0365110X51000842
10.1016/j.carbon.2016.04.031
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.carbon.2019.07.010
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 264
ExternalDocumentID 10_1016_j_carbon_2019_07_010
S0008622319306979
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c371t-1813c3bc4745a673956c9a8374aaf388fb0a876713506d1080d0770f1ac21e853
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Sep 13 01:30:39 EDT 2024
Thu Sep 26 17:11:59 EDT 2024
Fri Feb 23 02:44:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbonization
Supercapacitor
Textile energy storage
Cotton
Metal impregnation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-1813c3bc4745a673956c9a8374aaf388fb0a876713506d1080d0770f1ac21e853
ORCID 0000-0001-5067-1783
0000-0002-4327-2992
PQID 2304111506
PQPubID 2045273
PageCount 8
ParticipantIDs proquest_journals_2304111506
crossref_primary_10_1016_j_carbon_2019_07_010
elsevier_sciencedirect_doi_10_1016_j_carbon_2019_07_010
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yuan, Lu, Xiao, Zhai, Dai, Zhang (bib34) 2012; 6
Franklin (bib22) 1951; 4
Miller (bib2) 2012; 335
Xue, Sun, Huang, Zhu, Pei, Li (bib7) 2017; 13
Weisweiler, Nageshwar (bib30) 1975; 13
Wang, Zhang, Jiao, Yuan (bib8) 2019; 12
Rousselle, Nelson, Hassenboehler, Legendre (bib5) 1976; 46
Sun, Xie, Li, Jiang, Sun, Wang (bib12) 2016; 28
Weng, Chen, He, Sun, Peng (bib6) 2016; 55
Huang (bib25) 2009; 2
Gao, Bumgardner, Song, Zhang, Li, Li (bib11) 2015; 7
Tang, Bacon (bib24) 1964; 2
Jost, Stenger, Perez, McDonough, Lian, Gogotsi (bib33) 2013; 6
Ma, Guo, Sun, Peng, Yang, Zhou (bib16) 2015; 5
Hwang, Wang, Zheng (bib4) 2016; 6
Lukatskaya, Dunn, Gogotsi (bib3) 2016; 7
Zhang, Wang, Wang, Jian, Hao, Zhang (bib10) 2017; 27
Hu, Pasta, Mantia, Cui, Jeong, Deshazer (bib32) 2010; 10
Termonia (bib27) 1994; 27
Kaxiras, Pandey (bib29) 1988; 61
Lam, Jo, Kim, Kim, Lee, Lee (bib15) 2016; 10
Holleman, Wiberg, Wiberg (bib28) 2007
El-Kady, Strong, Dubin, Kaner (bib31) 2012; 335
Li, Zhong, Kim, Ruan, Yang, Gao (bib14) 2016; 105
Song, Song, Fan (bib17) 2015; 3
Simon, Gogotsi (bib20) 2008; 7
Eom, Kim, Raju (bib21) 2013; 1
Liu, Yu, Yan, Li, Zheng (bib13) 2015; 6
Varma, Kumar, Seal, Rajaraman, Thomas (bib9) 2018; 5
Yan, Li, Guo, Pang, Xue (bib19) 2016; 329
Avila, Hinestroza (bib1) 2008; 3
Lam, Shim, Kim, Lee, Lee (bib18) 2017; 13
Endo (bib26) 1988; 23
Franklin (bib23) 1951; 209
Ma (10.1016/j.carbon.2019.07.010_bib16) 2015; 5
Termonia (10.1016/j.carbon.2019.07.010_bib27) 1994; 27
Xue (10.1016/j.carbon.2019.07.010_bib7) 2017; 13
Hu (10.1016/j.carbon.2019.07.010_bib32) 2010; 10
Yuan (10.1016/j.carbon.2019.07.010_bib34) 2012; 6
Wang (10.1016/j.carbon.2019.07.010_bib8) 2019; 12
Endo (10.1016/j.carbon.2019.07.010_bib26) 1988; 23
Zhang (10.1016/j.carbon.2019.07.010_bib10) 2017; 27
Eom (10.1016/j.carbon.2019.07.010_bib21) 2013; 1
Song (10.1016/j.carbon.2019.07.010_bib17) 2015; 3
Hwang (10.1016/j.carbon.2019.07.010_bib4) 2016; 6
Lukatskaya (10.1016/j.carbon.2019.07.010_bib3) 2016; 7
Huang (10.1016/j.carbon.2019.07.010_bib25) 2009; 2
Weisweiler (10.1016/j.carbon.2019.07.010_bib30) 1975; 13
Varma (10.1016/j.carbon.2019.07.010_bib9) 2018; 5
Tang (10.1016/j.carbon.2019.07.010_bib24) 1964; 2
Liu (10.1016/j.carbon.2019.07.010_bib13) 2015; 6
Kaxiras (10.1016/j.carbon.2019.07.010_bib29) 1988; 61
Franklin (10.1016/j.carbon.2019.07.010_bib22) 1951; 4
Sun (10.1016/j.carbon.2019.07.010_bib12) 2016; 28
Holleman (10.1016/j.carbon.2019.07.010_bib28) 2007
Li (10.1016/j.carbon.2019.07.010_bib14) 2016; 105
Yan (10.1016/j.carbon.2019.07.010_bib19) 2016; 329
Rousselle (10.1016/j.carbon.2019.07.010_bib5) 1976; 46
El-Kady (10.1016/j.carbon.2019.07.010_bib31) 2012; 335
Gao (10.1016/j.carbon.2019.07.010_bib11) 2015; 7
Franklin (10.1016/j.carbon.2019.07.010_bib23) 1951; 209
Weng (10.1016/j.carbon.2019.07.010_bib6) 2016; 55
Lam (10.1016/j.carbon.2019.07.010_bib18) 2017; 13
Miller (10.1016/j.carbon.2019.07.010_bib2) 2012; 335
Lam (10.1016/j.carbon.2019.07.010_bib15) 2016; 10
Avila (10.1016/j.carbon.2019.07.010_bib1) 2008; 3
Jost (10.1016/j.carbon.2019.07.010_bib33) 2013; 6
Simon (10.1016/j.carbon.2019.07.010_bib20) 2008; 7
References_xml – volume: 13
  start-page: 175
  year: 1975
  end-page: 180
  ident: bib30
  article-title: Pseudo diffusion of nonvolatile metals in electro graphite
  publication-title: Carbon
  contributor:
    fullname: Nageshwar
– volume: 105
  start-page: 260
  year: 2016
  end-page: 267
  ident: bib14
  article-title: Nitrogen-doped carbonized cotton for highly flexible supercapacitors
  publication-title: Carbon
  contributor:
    fullname: Gao
– volume: 5
  start-page: 64704
  year: 2015
  end-page: 64710
  ident: bib16
  article-title: Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors
  publication-title: RSC Adv.
  contributor:
    fullname: Zhou
– volume: 335
  start-page: 1312
  year: 2012
  end-page: 1313
  ident: bib2
  article-title: Valuing reversible energy storage
  publication-title: Science
  contributor:
    fullname: Miller
– volume: 209
  start-page: 196
  year: 1951
  end-page: 218
  ident: bib23
  article-title: Crystallite growth in graphitizing and non-graphitizing carbons
  publication-title: Proc. Roy. Soc. Lond. A
  contributor:
    fullname: Franklin
– volume: 10
  start-page: 11351
  year: 2016
  end-page: 11359
  ident: bib15
  article-title: Activated Carbon textile via chemistry of metal extraction for supercapacitors
  publication-title: ACS Nano
  contributor:
    fullname: Lee
– start-page: 1491
  year: 2007
  ident: bib28
  article-title: Lehrbuch der Anorganischen Chemie
  contributor:
    fullname: Wiberg
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: bib20
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
  contributor:
    fullname: Gogotsi
– volume: 6
  start-page: 2698
  year: 2013
  end-page: 2705
  ident: bib33
  article-title: Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Gogotsi
– volume: 28
  start-page: 8431
  year: 2016
  ident: bib12
  article-title: Large-area supercapacitor textiles with novel hierarchical conducting structures
  publication-title: Adv. Mater.
  contributor:
    fullname: Wang
– volume: 4
  start-page: 253
  year: 1951
  end-page: 261
  ident: bib22
  article-title: The structure of graphitic carbons
  publication-title: Acta Crystallogr.
  contributor:
    fullname: Franklin
– volume: 27
  start-page: 7378
  year: 1994
  end-page: 7381
  ident: bib27
  article-title: Molecular modeling of spider silk elasticity
  publication-title: Macromolecules
  contributor:
    fullname: Termonia
– volume: 5
  start-page: 1800340
  year: 2018
  ident: bib9
  article-title: Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications
  publication-title: Adv. Sci.
  contributor:
    fullname: Thomas
– volume: 12
  start-page: 1129
  year: 2019
  end-page: 1137
  ident: bib8
  article-title: Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors
  publication-title: Nano Res.
  contributor:
    fullname: Yuan
– volume: 2
  start-page: 2369
  year: 2009
  end-page: 2403
  ident: bib25
  article-title: Fabrication and properties of carbon fibers
  publication-title: Materials
  contributor:
    fullname: Huang
– volume: 27
  start-page: 1604795
  year: 2017
  ident: bib10
  article-title: Carbonized cotton fabric for high-performance wearable strain sensors
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Zhang
– volume: 3
  start-page: 16104
  year: 2015
  end-page: 16111
  ident: bib17
  article-title: Scalable fabrication of exceptional 3D carbon networks for supercapacitors
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Fan
– volume: 10
  start-page: 708
  year: 2010
  end-page: 714
  ident: bib32
  article-title: Stretchable, porous, and conductive energy textiles
  publication-title: Nano Lett.
  contributor:
    fullname: Deshazer
– volume: 6
  start-page: 7260
  year: 2015
  ident: bib13
  article-title: Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes
  publication-title: Nat. Commun.
  contributor:
    fullname: Zheng
– volume: 7
  start-page: 12647
  year: 2016
  ident: bib3
  article-title: Multidimensional materials and device architectures for future hybrid energy storage
  publication-title: Nat. Commun.
  contributor:
    fullname: Gogotsi
– volume: 3
  start-page: 458
  year: 2008
  end-page: 459
  ident: bib1
  article-title: Smart textiles: tough cotton
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Hinestroza
– volume: 329
  start-page: 148
  year: 2016
  end-page: 169
  ident: bib19
  article-title: Vanadium based materials as electrode materials for high performance supercapacitors
  publication-title: J. Power Sources
  contributor:
    fullname: Xue
– volume: 61
  start-page: 2693
  year: 1988
  end-page: 2696
  ident: bib29
  article-title: Energetics of defects and diffusion mechanisms in graphite
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Pandey
– volume: 55
  start-page: 6140
  year: 2016
  end-page: 6169
  ident: bib6
  article-title: Smart electronic textiles
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Peng
– volume: 1
  start-page: 220
  year: 2013
  end-page: 242
  ident: bib21
  article-title: Processing and properties of macroporous silicon carbide ceramics: a review
  publication-title: J. Asian Ceram. Soc.
  contributor:
    fullname: Raju
– volume: 6
  start-page: 656
  year: 2012
  end-page: 661
  ident: bib34
  article-title: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO
  publication-title: ACS Nano
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 1702702
  year: 2017
  ident: bib18
  article-title: Carbon textile decorated with pseudocapacitive VC/V
  publication-title: Small
  contributor:
    fullname: Lee
– volume: 6
  start-page: 1600783
  year: 2016
  ident: bib4
  article-title: Textile-based electrochemical energy storage devices
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zheng
– volume: 23
  start-page: 598
  year: 1988
  end-page: 605
  ident: bib26
  article-title: Structure of mesophase pitch-based carbon fibres
  publication-title: J. Mater. Sci.
  contributor:
    fullname: Endo
– volume: 46
  start-page: 304
  year: 1976
  end-page: 310
  ident: bib5
  article-title: Liquid-ammonia and caustic mercerization of cotton fibers: changes in fine structure and mechanical properties
  publication-title: Text. Res. J.
  contributor:
    fullname: Legendre
– volume: 7
  start-page: 11586
  year: 2015
  ident: bib11
  article-title: Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
  publication-title: Nat. Commun.
  contributor:
    fullname: Li
– volume: 335
  start-page: 1326
  year: 2012
  end-page: 1330
  ident: bib31
  article-title: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
  publication-title: Science
  contributor:
    fullname: Kaner
– volume: 13
  start-page: 1701827
  year: 2017
  ident: bib7
  article-title: Recent progress on flexible and wearable supercapacitors
  publication-title: Small
  contributor:
    fullname: Li
– volume: 2
  start-page: 211
  year: 1964
  end-page: 220
  ident: bib24
  article-title: Carbonization of cellulose fibers - low temperature pyrolysis
  publication-title: Carbon
  contributor:
    fullname: Bacon
– volume: 10
  start-page: 11351
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib15
  article-title: Activated Carbon textile via chemistry of metal extraction for supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06608
  contributor:
    fullname: Lam
– volume: 5
  start-page: 1800340
  year: 2018
  ident: 10.1016/j.carbon.2019.07.010_bib9
  article-title: Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800340
  contributor:
    fullname: Varma
– volume: 6
  start-page: 7260
  year: 2015
  ident: 10.1016/j.carbon.2019.07.010_bib13
  article-title: Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8260
  contributor:
    fullname: Liu
– volume: 55
  start-page: 6140
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib6
  article-title: Smart electronic textiles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507333
  contributor:
    fullname: Weng
– volume: 335
  start-page: 1326
  year: 2012
  ident: 10.1016/j.carbon.2019.07.010_bib31
  article-title: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
  publication-title: Science
  doi: 10.1126/science.1216744
  contributor:
    fullname: El-Kady
– volume: 209
  start-page: 196
  year: 1951
  ident: 10.1016/j.carbon.2019.07.010_bib23
  article-title: Crystallite growth in graphitizing and non-graphitizing carbons
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1951.0197
  contributor:
    fullname: Franklin
– volume: 335
  start-page: 1312
  year: 2012
  ident: 10.1016/j.carbon.2019.07.010_bib2
  article-title: Valuing reversible energy storage
  publication-title: Science
  doi: 10.1126/science.1219134
  contributor:
    fullname: Miller
– volume: 1
  start-page: 220
  year: 2013
  ident: 10.1016/j.carbon.2019.07.010_bib21
  article-title: Processing and properties of macroporous silicon carbide ceramics: a review
  publication-title: J. Asian Ceram. Soc.
  doi: 10.1016/j.jascer.2013.07.003
  contributor:
    fullname: Eom
– volume: 23
  start-page: 598
  year: 1988
  ident: 10.1016/j.carbon.2019.07.010_bib26
  article-title: Structure of mesophase pitch-based carbon fibres
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01174692
  contributor:
    fullname: Endo
– volume: 6
  start-page: 656
  year: 2012
  ident: 10.1016/j.carbon.2019.07.010_bib34
  article-title: Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure
  publication-title: ACS Nano
  doi: 10.1021/nn2041279
  contributor:
    fullname: Yuan
– volume: 329
  start-page: 148
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib19
  article-title: Vanadium based materials as electrode materials for high performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.039
  contributor:
    fullname: Yan
– volume: 13
  start-page: 1701827
  year: 2017
  ident: 10.1016/j.carbon.2019.07.010_bib7
  article-title: Recent progress on flexible and wearable supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201701827
  contributor:
    fullname: Xue
– volume: 13
  start-page: 1702702
  year: 2017
  ident: 10.1016/j.carbon.2019.07.010_bib18
  article-title: Carbon textile decorated with pseudocapacitive VC/VxOy for high-performance flexible supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201702702
  contributor:
    fullname: Lam
– volume: 61
  start-page: 2693
  year: 1988
  ident: 10.1016/j.carbon.2019.07.010_bib29
  article-title: Energetics of defects and diffusion mechanisms in graphite
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2693
  contributor:
    fullname: Kaxiras
– volume: 28
  start-page: 8431
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib12
  article-title: Large-area supercapacitor textiles with novel hierarchical conducting structures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602987
  contributor:
    fullname: Sun
– volume: 5
  start-page: 64704
  year: 2015
  ident: 10.1016/j.carbon.2019.07.010_bib16
  article-title: Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors
  publication-title: RSC Adv.
  doi: 10.1039/C5RA11179J
  contributor:
    fullname: Ma
– volume: 6
  start-page: 2698
  year: 2013
  ident: 10.1016/j.carbon.2019.07.010_bib33
  article-title: Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40515j
  contributor:
    fullname: Jost
– volume: 6
  start-page: 1600783
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib4
  article-title: Textile-based electrochemical energy storage devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600783
  contributor:
    fullname: Hwang
– volume: 27
  start-page: 7378
  year: 1994
  ident: 10.1016/j.carbon.2019.07.010_bib27
  article-title: Molecular modeling of spider silk elasticity
  publication-title: Macromolecules
  doi: 10.1021/ma00103a018
  contributor:
    fullname: Termonia
– volume: 2
  start-page: 2369
  year: 2009
  ident: 10.1016/j.carbon.2019.07.010_bib25
  article-title: Fabrication and properties of carbon fibers
  publication-title: Materials
  doi: 10.3390/ma2042369
  contributor:
    fullname: Huang
– volume: 3
  start-page: 16104
  year: 2015
  ident: 10.1016/j.carbon.2019.07.010_bib17
  article-title: Scalable fabrication of exceptional 3D carbon networks for supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03899E
  contributor:
    fullname: Song
– volume: 10
  start-page: 708
  year: 2010
  ident: 10.1016/j.carbon.2019.07.010_bib32
  article-title: Stretchable, porous, and conductive energy textiles
  publication-title: Nano Lett.
  doi: 10.1021/nl903949m
  contributor:
    fullname: Hu
– volume: 13
  start-page: 175
  year: 1975
  ident: 10.1016/j.carbon.2019.07.010_bib30
  article-title: Pseudo diffusion of nonvolatile metals in electro graphite
  publication-title: Carbon
  doi: 10.1016/0008-6223(75)90228-6
  contributor:
    fullname: Weisweiler
– volume: 2
  start-page: 211
  year: 1964
  ident: 10.1016/j.carbon.2019.07.010_bib24
  article-title: Carbonization of cellulose fibers - low temperature pyrolysis
  publication-title: Carbon
  doi: 10.1016/0008-6223(64)90035-1
  contributor:
    fullname: Tang
– volume: 12
  start-page: 1129
  year: 2019
  ident: 10.1016/j.carbon.2019.07.010_bib8
  article-title: Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2360-5
  contributor:
    fullname: Wang
– volume: 7
  start-page: 845
  year: 2008
  ident: 10.1016/j.carbon.2019.07.010_bib20
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
  contributor:
    fullname: Simon
– volume: 7
  start-page: 12647
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib3
  article-title: Multidimensional materials and device architectures for future hybrid energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12647
  contributor:
    fullname: Lukatskaya
– volume: 46
  start-page: 304
  year: 1976
  ident: 10.1016/j.carbon.2019.07.010_bib5
  article-title: Liquid-ammonia and caustic mercerization of cotton fibers: changes in fine structure and mechanical properties
  publication-title: Text. Res. J.
  doi: 10.1177/004051757604600412
  contributor:
    fullname: Rousselle
– volume: 3
  start-page: 458
  year: 2008
  ident: 10.1016/j.carbon.2019.07.010_bib1
  article-title: Smart textiles: tough cotton
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.233
  contributor:
    fullname: Avila
– volume: 27
  start-page: 1604795
  year: 2017
  ident: 10.1016/j.carbon.2019.07.010_bib10
  article-title: Carbonized cotton fabric for high-performance wearable strain sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604795
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 11586
  year: 2015
  ident: 10.1016/j.carbon.2019.07.010_bib11
  article-title: Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11586
  contributor:
    fullname: Gao
– volume: 4
  start-page: 253
  year: 1951
  ident: 10.1016/j.carbon.2019.07.010_bib22
  article-title: The structure of graphitic carbons
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X51000842
  contributor:
    fullname: Franklin
– start-page: 1491
  year: 2007
  ident: 10.1016/j.carbon.2019.07.010_bib28
  contributor:
    fullname: Holleman
– volume: 105
  start-page: 260
  year: 2016
  ident: 10.1016/j.carbon.2019.07.010_bib14
  article-title: Nitrogen-doped carbonized cotton for highly flexible supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.031
  contributor:
    fullname: Li
SSID ssj0004814
Score 2.4410205
Snippet Cotton is established as an innovative foundation for smart wearable energy storage devices with appealing properties. The challenge is that the current...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 257
SubjectTerms Carbonization
Cotton
Cotton fabrics
Energy storage
Flux density
Lithium batteries
Metal impregnation
Metal oxides
Microstructure
Phase transitions
Porosity
Pyrolysis
Supercapacitor
Textile energy storage
Textiles
Wearable computers
Title Turning cotton into tough energy textile via metal oxide assisted carbonization
URI https://dx.doi.org/10.1016/j.carbon.2019.07.010
https://www.proquest.com/docview/2304111506/abstract/
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KPehF_MSPWvbgNXbTbneTYymWqlgvFnpbdjcbiGBSahRP_nZn8oEoguAxIQnL282bl-y8GYDLCEVD7LxC5aZ8INwwCYywPkjHGL3DoUnTqpjO_ULOl-J2NV51YNp6YSitsuH-mtMrtm7ODBo0B-ssI48vyXHUJzHK3liRiU9gMMI1ffXxleYhorq-N23z09Wtfa7K8XJmYwuqghrGVQlP8tH-Hp5-EHUVfWZ7sNvIRjapR7YPHZ8fwPa07dZ2CA_Ush7DEKNaC0XOsrwsWEkteJiv7H2MUjyQAthbZtizR83Nivcs8QzVM011wuphNr7MI1jOrh-n86BplhC4kQrLACP1yI2sE0qMjaTtN-lig5-fwhjEO0otN8h81JGPy4QyCxOuFE9D44ahx6B9DN28yP0JMJqfSAppUF6IWISWR6mRjnM75HFi1SkELUZ6XdfE0G2y2JOuB6sJU82VRkxPQbVA6m9zq5G2_7iz1-Kum3frRdNv7JCErDz794PPYYeOalNhD7rl5tVfoLoobb9aPn3YmtzczRefS7rN_A
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe6gX8ROrVffgNXTTbrPJsRRLaz-8tNDbstlsIIJJqVH8-c7kA1EEwWvChuXt5s1Ldt4MwL2PoiEwVqJyk9YRph85WoTWiYcYvd2-juOimM5y5U034nE73DZgXHthKK2y4v6S0wu2rq70KjR7uyQhjy_JcdQnAcreQAYH0BJD6YomtEaz-XT1ZY_0yxLfdNJPA2oHXZHmZfQ-zKgQqhsUVTzJSvt7hPrB1UUAmhzDUaUc2aic3Ak0bHoK7XHdsO0MnqhrPUYiRuUWspQlaZ6xnLrwMFs4_BhleSALsPdEsxeLsptlH0lkGQpoWu2IldOsrJnnsJk8rMdTp-qX4JiBdHMHg_XADEIjpBhqj07gPBNo_AIVWiPkfhxyjeRHTfm4F1FyYcSl5LGrTd-1GLcvoJlmqb0ERkvke8LTqDBEINyQ-7H2DOdhnwdRKDvg1BipXVkWQ9X5Ys-qnKwiTBWXCjHtgKyBVN-WVyFz_zGyW-OuqtfrVdGfbJe0rHf17wffQXu6Xi7UYraaX8Mh3Sk9hl1o5vs3e4NiIw9vq830CXp30LI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turning+cotton+into+tough+energy+textile+via+metal+oxide+assisted+carbonization&rft.jtitle=Carbon+%28New+York%29&rft.au=Van+Lam%2C+Do&rft.au=Won%2C+Sejeong&rft.au=Shim%2C+Hyung+Cheoul&rft.au=Kim%2C+Jae-Hyun&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=153&rft.spage=257&rft_id=info:doi/10.1016%2Fj.carbon.2019.07.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon