Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming
Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and a...
Saved in:
Published in | Science robotics Vol. 6; no. 61; p. eabi4523 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2021
|
Online Access | Get more information |
Cover
Loading…
Abstract | Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe
O
/Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by water and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines. |
---|---|
AbstractList | Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe
O
/Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by water and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines. |
Author | Li, Zhiwei Myung, Nosang Vincent Yin, Yadong |
Author_xml | – sequence: 1 givenname: Zhiwei orcidid: 0000-0002-1489-4506 surname: Li fullname: Li, Zhiwei organization: Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA – sequence: 2 givenname: Nosang Vincent orcidid: 0000-0002-5801-2034 surname: Myung fullname: Myung, Nosang Vincent organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA – sequence: 3 givenname: Yadong orcidid: 0000-0003-0218-3042 surname: Yin fullname: Yin, Yadong organization: Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34851711$$D View this record in MEDLINE/PubMed |
BookMark | eNo1z81KxDAYheEgijOOcwWC5AY69kvTpl3K4B8U3KjbIT9faqRJShMdvHsL6urs3odzQU5DDEjIFZQ7ANbcJO3mqGJ2Ou2kcrxm1QlZMy7KouOiWZFtSh9lWYJoqoazc7KqeFuDAFiTt94N77mY4hFnNDRFm2nKKD3FMLiAido404SjLaSRU3ZfSOMCjqPMLgYqg6HKRe88Lj5NR-e9C8MlObNyTLj92w15vb972T8W_fPD0_62L3QlIBfArYbK1ky1vMNK4GLYFoErgbYziELyjhslNDAUTOpWmg5raUQtNEdgG3L9250-lUdzmGbn5fx9-D_IfgBdsFkg |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2023_108780 crossref_primary_10_1016_j_ijsolstr_2023_112509 crossref_primary_10_1039_D3SM01503C crossref_primary_10_1109_LRA_2022_3214082 crossref_primary_10_3390_polym16223119 crossref_primary_10_1002_smll_202403216 crossref_primary_10_1016_j_heliyon_2024_e27748 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125580 crossref_primary_10_3390_polym15163397 crossref_primary_10_1007_s12274_022_4827_z crossref_primary_10_1021_acsnano_2c04590 crossref_primary_10_3390_polym16223192 crossref_primary_10_1038_s41467_023_40827_4 crossref_primary_10_1039_D3TA00294B crossref_primary_10_1021_acs_langmuir_4c00706 crossref_primary_10_1002_adfm_202304634 crossref_primary_10_3390_polym16121696 crossref_primary_10_1002_admt_202300469 crossref_primary_10_3390_polym14142770 crossref_primary_10_1109_TRO_2025_3532503 crossref_primary_10_1002_adma_202209683 crossref_primary_10_1038_s44287_024_00081_2 crossref_primary_10_1002_adma_202417416 crossref_primary_10_1016_j_nantod_2022_101419 crossref_primary_10_1016_j_ijsolstr_2024_112998 crossref_primary_10_3390_mi14101824 crossref_primary_10_1039_D2TA07339K crossref_primary_10_1002_advs_202309807 crossref_primary_10_1016_j_cnsns_2025_108706 crossref_primary_10_1016_j_ijmecsci_2023_108423 crossref_primary_10_1016_j_chaos_2024_115901 crossref_primary_10_1002_advs_202300673 crossref_primary_10_1002_advs_202300935 crossref_primary_10_1016_j_ijmecsci_2025_110046 crossref_primary_10_1007_s10483_024_3080_5 crossref_primary_10_1002_smll_202309130 crossref_primary_10_1021_jacs_4c05566 crossref_primary_10_1109_TRO_2025_3543273 crossref_primary_10_1002_adma_202301916 crossref_primary_10_1021_prechem_3c00012 crossref_primary_10_1016_j_chaos_2025_116265 crossref_primary_10_1021_acs_nanolett_2c01375 crossref_primary_10_1016_j_nantod_2023_101764 crossref_primary_10_1016_j_ijmecsci_2022_107985 crossref_primary_10_1002_aisy_202400496 crossref_primary_10_3390_polym15153294 crossref_primary_10_1007_s11431_023_2527_3 crossref_primary_10_1016_j_mtbio_2024_101216 crossref_primary_10_1016_j_ijmecsci_2023_108794 crossref_primary_10_1007_s00419_024_02714_2 crossref_primary_10_1002_adma_202307210 crossref_primary_10_1016_j_eurpolymj_2024_112973 crossref_primary_10_1002_adma_202414648 crossref_primary_10_1016_j_ijmecsci_2024_109665 crossref_primary_10_1021_acsami_2c01131 crossref_primary_10_1002_smtd_202401946 crossref_primary_10_1016_j_cnsns_2024_107942 crossref_primary_10_1002_adfm_202403606 crossref_primary_10_1103_PhysRevE_111_015422 crossref_primary_10_1002_adfm_202414338 crossref_primary_10_1038_s41563_024_02026_4 crossref_primary_10_3390_math12091322 crossref_primary_10_1002_adfm_202312068 crossref_primary_10_1016_j_chaos_2024_115327 crossref_primary_10_1002_aisy_202400004 crossref_primary_10_1039_D2RA05722K crossref_primary_10_1021_acsami_2c13108 crossref_primary_10_1103_PhysRevE_109_024701 crossref_primary_10_1002_adma_202413648 crossref_primary_10_1002_adma_202302987 crossref_primary_10_3390_polym17050617 crossref_primary_10_1088_2631_7990_ad9fbb crossref_primary_10_1126_sciadv_adi3254 crossref_primary_10_1016_j_device_2025_100717 crossref_primary_10_1063_5_0155355 crossref_primary_10_1016_j_snb_2023_133509 crossref_primary_10_1002_adma_202205732 crossref_primary_10_3390_polym15020344 crossref_primary_10_1002_adma_202210409 crossref_primary_10_1016_j_chaos_2025_116128 crossref_primary_10_1016_j_chaos_2024_114587 crossref_primary_10_1016_j_ijmecsci_2022_107646 crossref_primary_10_3390_polym14153185 crossref_primary_10_1017_S0263574724001504 crossref_primary_10_1021_acsami_4c03059 crossref_primary_10_1126_sciadv_ads3058 crossref_primary_10_1002_anie_202418570 crossref_primary_10_1016_j_mattod_2022_01_014 crossref_primary_10_1002_aisy_202300060 crossref_primary_10_1016_j_rinp_2024_107332 crossref_primary_10_1016_j_tws_2024_112071 crossref_primary_10_1002_advs_202203054 crossref_primary_10_1002_admt_202400952 crossref_primary_10_3390_polym15163483 crossref_primary_10_1073_pnas_2305704120 crossref_primary_10_1089_soro_2023_0048 crossref_primary_10_1109_TMECH_2024_3379979 crossref_primary_10_3390_polym14153058 crossref_primary_10_1016_j_chaos_2025_116259 crossref_primary_10_1016_j_cnsns_2024_108296 crossref_primary_10_1016_j_chaos_2024_115027 crossref_primary_10_1002_adfm_202203323 crossref_primary_10_1002_aisy_202300054 crossref_primary_10_3390_polym14081525 crossref_primary_10_34133_research_0449 crossref_primary_10_1016_j_ijmecsci_2022_107391 crossref_primary_10_1016_j_matlet_2024_136645 crossref_primary_10_3390_math12071019 crossref_primary_10_1002_adem_202402178 crossref_primary_10_1007_s12274_023_6184_y crossref_primary_10_1016_j_ijmecsci_2022_107824 crossref_primary_10_1021_acsami_5c01140 crossref_primary_10_1021_acsnano_2c09066 crossref_primary_10_1007_s10483_025_3221_8 crossref_primary_10_1016_j_chaos_2024_115653 crossref_primary_10_3390_bios12121129 crossref_primary_10_1016_j_chaos_2024_115898 crossref_primary_10_1016_j_ijmecsci_2024_109584 crossref_primary_10_1039_D3RA03213B crossref_primary_10_1002_adem_202201323 crossref_primary_10_1016_j_carbon_2024_119878 crossref_primary_10_1016_j_matt_2023_08_011 crossref_primary_10_1126_sciadv_add3788 crossref_primary_10_3390_polym15244651 crossref_primary_10_3390_polym15163349 crossref_primary_10_1021_acs_chemmater_2c01960 crossref_primary_10_1103_PhysRevE_109_034701 crossref_primary_10_1002_smll_202302656 crossref_primary_10_1002_advs_202500640 crossref_primary_10_1038_s41467_022_33374_x crossref_primary_10_1016_j_ijmecsci_2023_108922 crossref_primary_10_1021_acsanm_2c01493 crossref_primary_10_3390_polym15214221 crossref_primary_10_1002_ange_202418570 crossref_primary_10_1016_j_chaos_2024_114957 crossref_primary_10_1016_j_esci_2024_100250 crossref_primary_10_1557_s43580_024_00861_w crossref_primary_10_1002_aisy_202400206 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1126/scirobotics.abi4523 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2470-9476 |
ExternalDocumentID | 34851711 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | 0R~ ABJNI ACGFS AJGZS ALMA_UNASSIGNED_HOLDINGS ARCSS BKF EBS EJD NPM O9- SJN |
ID | FETCH-LOGICAL-c371t-14fc13f52b849e37eadaf8e14b7ef9dee7a494db7c12e72ac8ad9e5ad757c4e12 |
IngestDate | Wed Feb 19 02:27:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 61 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-14fc13f52b849e37eadaf8e14b7ef9dee7a494db7c12e72ac8ad9e5ad757c4e12 |
ORCID | 0000-0002-1489-4506 0000-0003-0218-3042 0000-0002-5801-2034 |
PMID | 34851711 |
ParticipantIDs | pubmed_primary_34851711 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science robotics |
PublicationTitleAlternate | Sci Robot |
PublicationYear | 2021 |
SSID | ssj0001763642 |
Score | 2.5430417 |
Snippet | Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | eabi4523 |
Title | Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34851711 |
Volume | 6 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokVB7QDxLeckHbpGrxnHi5FhVoAqVntqKcqn8mECkJlmxkary6xm_2nQpCLhEqzib3fj7MplxZr4h5J0uK8OFlazarRsm2oozdEMM41pYa0yFX3KB4qej6uBEfPxczl60--qSSe-YH3fWlfwPqrgPcXVVsv-A7PVJcQd-Rnxxiwjj9q8wPvQqIAvX6Azc8nc7ZQ60PgOvMuilFrIlXLRMWbXwSUJOu_Ii5L_59wau_L7rXSVjtrzs-j49yaK_mm7976Mep1li_KFPAvjyrbuE7hqzq2g4jsalGr5mp91gZmk1Z0Gt4EzZMf5GXGzg-SxxA7xR4kLuskaEni3JglYzogRp9WgOQelOlKGg-FdbnbpLpkvYueNonPBF7-ErBDqHMljmP4-uCGinoTWyhqGE640aF3T8MhzaVwzBoh5VLKda_UMb5EE6yUr04b2Q40fkYQwf6F7gwmNyD4YnZHMmKvmUnN5iBXWsoJ4VNLKCIivoLVbQGSsosoLesIImVjwjJx_eH-8fsNg9g5lC5hPLRWvyoi25rkUDhUSTodoacqEltI0FkEo0wmppcg6SK1Mr20CprCylEZDz52R9GAd4QajmRuQC0NVUtUCXW1eqwFCzURW3Uhu1TbbCpJwvgkTKeZqul78deUU2bgj2mtxv8Z6EN-jgTfqth-gnA6BXYQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-powered+soft+steam+engines+for+self-adaptive+oscillation+and+biomimetic+swimming&rft.jtitle=Science+robotics&rft.au=Li%2C+Zhiwei&rft.au=Myung%2C+Nosang+Vincent&rft.au=Yin%2C+Yadong&rft.date=2021-12-01&rft.eissn=2470-9476&rft.volume=6&rft.issue=61&rft.spage=eabi4523&rft_id=info:doi/10.1126%2Fscirobotics.abi4523&rft_id=info%3Apmid%2F34851711&rft_id=info%3Apmid%2F34851711&rft.externalDocID=34851711 |