Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming

Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and a...

Full description

Saved in:
Bibliographic Details
Published inScience robotics Vol. 6; no. 61; p. eabi4523
Main Authors Li, Zhiwei, Myung, Nosang Vincent, Yin, Yadong
Format Journal Article
LanguageEnglish
Published United States 01.12.2021
Online AccessGet more information

Cover

Loading…
Abstract Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe O /Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by water and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines.
AbstractList Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe O /Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by water and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines.
Author Li, Zhiwei
Myung, Nosang Vincent
Yin, Yadong
Author_xml – sequence: 1
  givenname: Zhiwei
  orcidid: 0000-0002-1489-4506
  surname: Li
  fullname: Li, Zhiwei
  organization: Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
– sequence: 2
  givenname: Nosang Vincent
  orcidid: 0000-0002-5801-2034
  surname: Myung
  fullname: Myung, Nosang Vincent
  organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
– sequence: 3
  givenname: Yadong
  orcidid: 0000-0003-0218-3042
  surname: Yin
  fullname: Yin, Yadong
  organization: Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34851711$$D View this record in MEDLINE/PubMed
BookMark eNo1z81KxDAYheEgijOOcwWC5AY69kvTpl3K4B8U3KjbIT9faqRJShMdvHsL6urs3odzQU5DDEjIFZQ7ANbcJO3mqGJ2Ou2kcrxm1QlZMy7KouOiWZFtSh9lWYJoqoazc7KqeFuDAFiTt94N77mY4hFnNDRFm2nKKD3FMLiAido404SjLaSRU3ZfSOMCjqPMLgYqg6HKRe88Lj5NR-e9C8MlObNyTLj92w15vb972T8W_fPD0_62L3QlIBfArYbK1ky1vMNK4GLYFoErgbYziELyjhslNDAUTOpWmg5raUQtNEdgG3L9250-lUdzmGbn5fx9-D_IfgBdsFkg
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2023_108780
crossref_primary_10_1016_j_ijsolstr_2023_112509
crossref_primary_10_1039_D3SM01503C
crossref_primary_10_1109_LRA_2022_3214082
crossref_primary_10_3390_polym16223119
crossref_primary_10_1002_smll_202403216
crossref_primary_10_1016_j_heliyon_2024_e27748
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125580
crossref_primary_10_3390_polym15163397
crossref_primary_10_1007_s12274_022_4827_z
crossref_primary_10_1021_acsnano_2c04590
crossref_primary_10_3390_polym16223192
crossref_primary_10_1038_s41467_023_40827_4
crossref_primary_10_1039_D3TA00294B
crossref_primary_10_1021_acs_langmuir_4c00706
crossref_primary_10_1002_adfm_202304634
crossref_primary_10_3390_polym16121696
crossref_primary_10_1002_admt_202300469
crossref_primary_10_3390_polym14142770
crossref_primary_10_1109_TRO_2025_3532503
crossref_primary_10_1002_adma_202209683
crossref_primary_10_1038_s44287_024_00081_2
crossref_primary_10_1002_adma_202417416
crossref_primary_10_1016_j_nantod_2022_101419
crossref_primary_10_1016_j_ijsolstr_2024_112998
crossref_primary_10_3390_mi14101824
crossref_primary_10_1039_D2TA07339K
crossref_primary_10_1002_advs_202309807
crossref_primary_10_1016_j_cnsns_2025_108706
crossref_primary_10_1016_j_ijmecsci_2023_108423
crossref_primary_10_1016_j_chaos_2024_115901
crossref_primary_10_1002_advs_202300673
crossref_primary_10_1002_advs_202300935
crossref_primary_10_1016_j_ijmecsci_2025_110046
crossref_primary_10_1007_s10483_024_3080_5
crossref_primary_10_1002_smll_202309130
crossref_primary_10_1021_jacs_4c05566
crossref_primary_10_1109_TRO_2025_3543273
crossref_primary_10_1002_adma_202301916
crossref_primary_10_1021_prechem_3c00012
crossref_primary_10_1016_j_chaos_2025_116265
crossref_primary_10_1021_acs_nanolett_2c01375
crossref_primary_10_1016_j_nantod_2023_101764
crossref_primary_10_1016_j_ijmecsci_2022_107985
crossref_primary_10_1002_aisy_202400496
crossref_primary_10_3390_polym15153294
crossref_primary_10_1007_s11431_023_2527_3
crossref_primary_10_1016_j_mtbio_2024_101216
crossref_primary_10_1016_j_ijmecsci_2023_108794
crossref_primary_10_1007_s00419_024_02714_2
crossref_primary_10_1002_adma_202307210
crossref_primary_10_1016_j_eurpolymj_2024_112973
crossref_primary_10_1002_adma_202414648
crossref_primary_10_1016_j_ijmecsci_2024_109665
crossref_primary_10_1021_acsami_2c01131
crossref_primary_10_1002_smtd_202401946
crossref_primary_10_1016_j_cnsns_2024_107942
crossref_primary_10_1002_adfm_202403606
crossref_primary_10_1103_PhysRevE_111_015422
crossref_primary_10_1002_adfm_202414338
crossref_primary_10_1038_s41563_024_02026_4
crossref_primary_10_3390_math12091322
crossref_primary_10_1002_adfm_202312068
crossref_primary_10_1016_j_chaos_2024_115327
crossref_primary_10_1002_aisy_202400004
crossref_primary_10_1039_D2RA05722K
crossref_primary_10_1021_acsami_2c13108
crossref_primary_10_1103_PhysRevE_109_024701
crossref_primary_10_1002_adma_202413648
crossref_primary_10_1002_adma_202302987
crossref_primary_10_3390_polym17050617
crossref_primary_10_1088_2631_7990_ad9fbb
crossref_primary_10_1126_sciadv_adi3254
crossref_primary_10_1016_j_device_2025_100717
crossref_primary_10_1063_5_0155355
crossref_primary_10_1016_j_snb_2023_133509
crossref_primary_10_1002_adma_202205732
crossref_primary_10_3390_polym15020344
crossref_primary_10_1002_adma_202210409
crossref_primary_10_1016_j_chaos_2025_116128
crossref_primary_10_1016_j_chaos_2024_114587
crossref_primary_10_1016_j_ijmecsci_2022_107646
crossref_primary_10_3390_polym14153185
crossref_primary_10_1017_S0263574724001504
crossref_primary_10_1021_acsami_4c03059
crossref_primary_10_1126_sciadv_ads3058
crossref_primary_10_1002_anie_202418570
crossref_primary_10_1016_j_mattod_2022_01_014
crossref_primary_10_1002_aisy_202300060
crossref_primary_10_1016_j_rinp_2024_107332
crossref_primary_10_1016_j_tws_2024_112071
crossref_primary_10_1002_advs_202203054
crossref_primary_10_1002_admt_202400952
crossref_primary_10_3390_polym15163483
crossref_primary_10_1073_pnas_2305704120
crossref_primary_10_1089_soro_2023_0048
crossref_primary_10_1109_TMECH_2024_3379979
crossref_primary_10_3390_polym14153058
crossref_primary_10_1016_j_chaos_2025_116259
crossref_primary_10_1016_j_cnsns_2024_108296
crossref_primary_10_1016_j_chaos_2024_115027
crossref_primary_10_1002_adfm_202203323
crossref_primary_10_1002_aisy_202300054
crossref_primary_10_3390_polym14081525
crossref_primary_10_34133_research_0449
crossref_primary_10_1016_j_ijmecsci_2022_107391
crossref_primary_10_1016_j_matlet_2024_136645
crossref_primary_10_3390_math12071019
crossref_primary_10_1002_adem_202402178
crossref_primary_10_1007_s12274_023_6184_y
crossref_primary_10_1016_j_ijmecsci_2022_107824
crossref_primary_10_1021_acsami_5c01140
crossref_primary_10_1021_acsnano_2c09066
crossref_primary_10_1007_s10483_025_3221_8
crossref_primary_10_1016_j_chaos_2024_115653
crossref_primary_10_3390_bios12121129
crossref_primary_10_1016_j_chaos_2024_115898
crossref_primary_10_1016_j_ijmecsci_2024_109584
crossref_primary_10_1039_D3RA03213B
crossref_primary_10_1002_adem_202201323
crossref_primary_10_1016_j_carbon_2024_119878
crossref_primary_10_1016_j_matt_2023_08_011
crossref_primary_10_1126_sciadv_add3788
crossref_primary_10_3390_polym15244651
crossref_primary_10_3390_polym15163349
crossref_primary_10_1021_acs_chemmater_2c01960
crossref_primary_10_1103_PhysRevE_109_034701
crossref_primary_10_1002_smll_202302656
crossref_primary_10_1002_advs_202500640
crossref_primary_10_1038_s41467_022_33374_x
crossref_primary_10_1016_j_ijmecsci_2023_108922
crossref_primary_10_1021_acsanm_2c01493
crossref_primary_10_3390_polym15214221
crossref_primary_10_1002_ange_202418570
crossref_primary_10_1016_j_chaos_2024_114957
crossref_primary_10_1016_j_esci_2024_100250
crossref_primary_10_1557_s43580_024_00861_w
crossref_primary_10_1002_aisy_202400206
ContentType Journal Article
DBID NPM
DOI 10.1126/scirobotics.abi4523
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2470-9476
ExternalDocumentID 34851711
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID 0R~
ABJNI
ACGFS
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BKF
EBS
EJD
NPM
O9-
SJN
ID FETCH-LOGICAL-c371t-14fc13f52b849e37eadaf8e14b7ef9dee7a494db7c12e72ac8ad9e5ad757c4e12
IngestDate Wed Feb 19 02:27:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 61
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-14fc13f52b849e37eadaf8e14b7ef9dee7a494db7c12e72ac8ad9e5ad757c4e12
ORCID 0000-0002-1489-4506
0000-0003-0218-3042
0000-0002-5801-2034
PMID 34851711
ParticipantIDs pubmed_primary_34851711
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science robotics
PublicationTitleAlternate Sci Robot
PublicationYear 2021
SSID ssj0001763642
Score 2.5430417
Snippet Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches...
SourceID pubmed
SourceType Index Database
StartPage eabi4523
Title Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming
URI https://www.ncbi.nlm.nih.gov/pubmed/34851711
Volume 6
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokVB7QDxLeckHbpGrxnHi5FhVoAqVntqKcqn8mECkJlmxkary6xm_2nQpCLhEqzib3fj7MplxZr4h5J0uK8OFlazarRsm2oozdEMM41pYa0yFX3KB4qej6uBEfPxczl60--qSSe-YH3fWlfwPqrgPcXVVsv-A7PVJcQd-Rnxxiwjj9q8wPvQqIAvX6Azc8nc7ZQ60PgOvMuilFrIlXLRMWbXwSUJOu_Ii5L_59wau_L7rXSVjtrzs-j49yaK_mm7976Mep1li_KFPAvjyrbuE7hqzq2g4jsalGr5mp91gZmk1Z0Gt4EzZMf5GXGzg-SxxA7xR4kLuskaEni3JglYzogRp9WgOQelOlKGg-FdbnbpLpkvYueNonPBF7-ErBDqHMljmP4-uCGinoTWyhqGE640aF3T8MhzaVwzBoh5VLKda_UMb5EE6yUr04b2Q40fkYQwf6F7gwmNyD4YnZHMmKvmUnN5iBXWsoJ4VNLKCIivoLVbQGSsosoLesIImVjwjJx_eH-8fsNg9g5lC5hPLRWvyoi25rkUDhUSTodoacqEltI0FkEo0wmppcg6SK1Mr20CprCylEZDz52R9GAd4QajmRuQC0NVUtUCXW1eqwFCzURW3Uhu1TbbCpJwvgkTKeZqul78deUU2bgj2mtxv8Z6EN-jgTfqth-gnA6BXYQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-powered+soft+steam+engines+for+self-adaptive+oscillation+and+biomimetic+swimming&rft.jtitle=Science+robotics&rft.au=Li%2C+Zhiwei&rft.au=Myung%2C+Nosang+Vincent&rft.au=Yin%2C+Yadong&rft.date=2021-12-01&rft.eissn=2470-9476&rft.volume=6&rft.issue=61&rft.spage=eabi4523&rft_id=info:doi/10.1126%2Fscirobotics.abi4523&rft_id=info%3Apmid%2F34851711&rft_id=info%3Apmid%2F34851711&rft.externalDocID=34851711