Microstructure, mechanical properties and wear behavior of metallic, nonmetallic and deep cryogenically chilled ASTM A216 WCB steel
▶ Microstructure of the chilled steels is finer than that of the un-chilled steel with random orientation of carbide particles in pearlite matrix. ▶ Strength, hardness and wear resistance of the chilled steels are superior to those of the un-chilled steel. It was found that these properties increase...
Saved in:
Published in | Journal of alloys and compounds Vol. 506; no. 2; pp. 645 - 652 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
17.09.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ▶ Microstructure of the chilled steels is finer than that of the un-chilled steel with random orientation of carbide particles in pearlite matrix. ▶ Strength, hardness and wear resistance of the chilled steels are superior to those of the un-chilled steel. It was found that these properties increase with an increase in carbide particles in fine pearlite matrix. ▶ At lower load, chilled steels exhibited mild wear regime with high coefficient of friction and at higher loads they exhibited severe wear with better wear resistance than the un-chilled steel. ▶ Size of the wear debris decreases because of rapid crack propagation of a brittle body under compression where as the size of the carbide fragmentation remain approximately the same. ▶ Rate of chilling is identified as an important parameter that affects microstructure and mechanical behavior of WCB steel.
This paper deals with the production of Deep Cryogenically Chilled (DCC) ASTM A216 WCB steel (plane carbon group) having 0.5% chromium, subject to different chilling rates to study the effect of chilling on microstructure and mechanical properties. In this investigation, metallic, nonmetallic and subzero chills (one each) were used. The specimens taken from casting were tested for their strength, hardness and wear behavior. Results of the investigation reveal that chilling rate and addition of chromium (0.5%) has improved both mechanical properties (strength and hardness) and wear resistance of the steel developed. Out of all the chills, subzero chill is found to be good in improving mechanical properties because of its high volumetric heat capacity (VHC). It is concluded from the above investigation that type of chill and chilling rate has an effect on mechanical properties. |
---|---|
AbstractList | ▶ Microstructure of the chilled steels is finer than that of the un-chilled steel with random orientation of carbide particles in pearlite matrix. ▶ Strength, hardness and wear resistance of the chilled steels are superior to those of the un-chilled steel. It was found that these properties increase with an increase in carbide particles in fine pearlite matrix. ▶ At lower load, chilled steels exhibited mild wear regime with high coefficient of friction and at higher loads they exhibited severe wear with better wear resistance than the un-chilled steel. ▶ Size of the wear debris decreases because of rapid crack propagation of a brittle body under compression where as the size of the carbide fragmentation remain approximately the same. ▶ Rate of chilling is identified as an important parameter that affects microstructure and mechanical behavior of WCB steel.
This paper deals with the production of Deep Cryogenically Chilled (DCC) ASTM A216 WCB steel (plane carbon group) having 0.5% chromium, subject to different chilling rates to study the effect of chilling on microstructure and mechanical properties. In this investigation, metallic, nonmetallic and subzero chills (one each) were used. The specimens taken from casting were tested for their strength, hardness and wear behavior. Results of the investigation reveal that chilling rate and addition of chromium (0.5%) has improved both mechanical properties (strength and hardness) and wear resistance of the steel developed. Out of all the chills, subzero chill is found to be good in improving mechanical properties because of its high volumetric heat capacity (VHC). It is concluded from the above investigation that type of chill and chilling rate has an effect on mechanical properties. This paper deals with the production of Deep Cryogenically Chilled (DCC) ASTM A216 WCB steel (plane carbon group) having 0.5% chromium, subject to different chilling rates to study the effect of chilling on microstructure and mechanical properties. In this investigation, metallic, nonmetallic and subzero chills (one each) were used. The specimens taken from casting were tested for their strength, hardness and wear behavior. Results of the investigation reveal that chilling rate and addition of chromium (0.5%) has improved both mechanical properties (strength and hardness) and wear resistance of the steel developed. Out of all the chills, subzero chill is found to be good in improving mechanical properties because of its high volumetric heat capacity (VHC). It is concluded from the above investigation that type of chill and chilling rate has an effect on mechanical properties. |
Author | Hemanth, Joel |
Author_xml | – sequence: 1 givenname: Joel surname: Hemanth fullname: Hemanth, Joel email: joelhemanth@hotmail.com organization: Akshaya Institute of Technology (A.I.T.), Lingapura, Obalapura Post, Tumkur-Koratagere Road, Tumkur 572106, Karnataka, India |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23272595$$DView record in Pascal Francis |
BookMark | eNqFkU9vEzEQxS1UJNLCR0DyBXHppv6z690VB5RGQJFacaCIo-UdzxJHzjrYTlHOfHGcJr1w6Wnk0e-9Gc87J2dTmJCQt5zNOePqaj1fG-8hbOaClR5r50yqF2TGu1ZWtVL9GZmxXjRVJ7vuFTlPac0Y473kM_L3zkEMKccd5F3ES7pBWJnJgfF0G8MWY3aYqJks_YMm0gFX5sGFSMNY0FzmOrikZaGnxyNqEbcU4j78wkcrv6ewct6jpYvv93d0IbiiP5fXNGVE_5q8HI1P-OZUL8iPz5_ulzfV7bcvX5eL2wpky3PFOdoOpRhxBGhVPwxD19rG1kaJgcmaGdkNVhkLUKveMDaoQaHApu5bxa2RF-T90bd87PcOU9YblwC9NxOGXdKdqmvGG9YU8t2JNKmsP0YzgUt6G93GxL0WUrSi6Q_chyN3uGGKOGpw2WQXphyN85ozfUhIr_UpIX1ISLNWl4SKuvlP_TTgOd3How7LsR4cRp3A4QRoXUTI2gb3jMM_IqCyAw |
CitedBy_id | crossref_primary_10_4236_mnsms_2017_71001 crossref_primary_10_4236_msce_2015_33001 crossref_primary_10_1016_j_matpr_2021_05_379 crossref_primary_10_4236_msce_2018_67015 crossref_primary_10_4236_mnsms_2019_93004 crossref_primary_10_1016_j_compositesb_2011_06_022 |
Cites_doi | 10.1016/S1359-835X(96)00115-7 10.1016/S0921-5093(02)00165-X 10.1016/j.cryogenics.2005.10.004 10.1179/mst.1989.5.1.71 10.1016/j.wear.2004.12.037 10.1016/0043-1648(91)90073-4 10.1016/0043-1648(95)06781-7 10.1016/0301-679X(94)90039-6 10.1023/A:1004321007806 10.1016/S0043-1648(98)00278-6 10.1016/1359-6454(95)00217-0 10.1016/j.jmatprotec.2006.08.009 10.1016/0956-716X(94)90493-6 10.1016/S0261-3069(02)00086-9 10.1016/j.wear.2006.05.019 10.1016/0043-1648(95)90175-2 10.1007/BF02659813 10.1016/0921-5093(93)90522-G |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2010.07.036 |
DatabaseName | CrossRef Pascal-Francis METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
EndPage | 652 |
ExternalDocumentID | 23272595 10_1016_j_jallcom_2010_07_036 S0925838810017366 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SPD SSM SSZ T5K T9H TWZ WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c371t-11ed8e32fefcc769bbb87d5d4a62b0340a38bd6adcc469a00b6b6e2e549761da3 |
IEDL.DBID | AIKHN |
ISSN | 0925-8388 |
IngestDate | Fri Jul 11 02:27:36 EDT 2025 Mon Jul 21 09:13:18 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Tue Jul 01 03:02:14 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Mechanical properties Heat capacity Metallography Microstructure Metallic conduction Mechanical strength Carbon steels Chromium additions Hardness Specific heat Casting Wear Chromium Wear resistance Tribology |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-11ed8e32fefcc769bbb87d5d4a62b0340a38bd6adcc469a00b6b6e2e549761da3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 864401505 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_864401505 pascalfrancis_primary_23272595 crossref_citationtrail_10_1016_j_jallcom_2010_07_036 crossref_primary_10_1016_j_jallcom_2010_07_036 elsevier_sciencedirect_doi_10_1016_j_jallcom_2010_07_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-17 |
PublicationDateYYYYMMDD | 2010-09-17 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2010 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Raza Batne, Szpuran, Wang, Li (bib7) 2006; 260 Moore, Douthwaite (bib17) 1976; 7A Iwai, Honda (bib12) 1995; 181 Hemanth (bib10) 1996; 192 Wang, Hutchings (bib14) 1989; 5 Prasad, Das, Jha (bib20) 1997; 28A Wang, Rack (bib16) 1991; 146 Prasad, Modi, Jha (bib18) 1994; 27 Ahmed, Haseeb, Kurny (bib9) 2007; 182 Zhenhua, Jie, Gang, Hongge (bib8) 2007; 262 Mondal, Das, Jha (bib13) 1998; 223 Meng, Tagashira (bib5) 1994; 7 Bensely, Prabhakaran, Mohan Lal, Nagarajan (bib6) 2006; 45 Barron (bib4) 1973 Zhang, Alpas (bib21) 1993; 161 Huang, Liao (bib2) 2003; A339 Hemanth (bib1) 2003; 24 Collins, Dormer (bib3) 1997; 23 Venkataraman, Sundarajan (bib19) 1996; 44 Hemanth (bib11) 1998; 33 Moustafa (bib15) 1995; 95 Venkataraman (10.1016/j.jallcom.2010.07.036_bib19) 1996; 44 Wang (10.1016/j.jallcom.2010.07.036_bib16) 1991; 146 Hemanth (10.1016/j.jallcom.2010.07.036_bib11) 1998; 33 Hemanth (10.1016/j.jallcom.2010.07.036_bib1) 2003; 24 Moore (10.1016/j.jallcom.2010.07.036_bib17) 1976; 7A Raza Batne (10.1016/j.jallcom.2010.07.036_bib7) 2006; 260 Mondal (10.1016/j.jallcom.2010.07.036_bib13) 1998; 223 Zhang (10.1016/j.jallcom.2010.07.036_bib21) 1993; 161 Meng (10.1016/j.jallcom.2010.07.036_bib5) 1994; 7 Hemanth (10.1016/j.jallcom.2010.07.036_bib10) 1996; 192 Zhenhua (10.1016/j.jallcom.2010.07.036_bib8) 2007; 262 Wang (10.1016/j.jallcom.2010.07.036_bib14) 1989; 5 Moustafa (10.1016/j.jallcom.2010.07.036_bib15) 1995; 95 Ahmed (10.1016/j.jallcom.2010.07.036_bib9) 2007; 182 Prasad (10.1016/j.jallcom.2010.07.036_bib20) 1997; 28A Collins (10.1016/j.jallcom.2010.07.036_bib3) 1997; 23 Iwai (10.1016/j.jallcom.2010.07.036_bib12) 1995; 181 Bensely (10.1016/j.jallcom.2010.07.036_bib6) 2006; 45 Huang (10.1016/j.jallcom.2010.07.036_bib2) 2003; A339 Barron (10.1016/j.jallcom.2010.07.036_bib4) 1973 Prasad (10.1016/j.jallcom.2010.07.036_bib18) 1994; 27 |
References_xml | – volume: 192 start-page: 134 year: 1996 end-page: 143 ident: bib10 publication-title: Wear – volume: 95 start-page: 185 year: 1995 end-page: 198 ident: bib15 publication-title: Wear – volume: 182 start-page: 327 year: 2007 end-page: 332 ident: bib9 publication-title: J. Mater. Process. Technol. – volume: 28A start-page: 301 year: 1997 end-page: 309 ident: bib20 publication-title: Compos. Part A – volume: 161 start-page: 273 year: 1993 end-page: 280 ident: bib21 publication-title: Mater. Sci. Eng. – volume: 7 start-page: 865 year: 1994 end-page: 868 ident: bib5 publication-title: Scripta Metall. Mater. – volume: 260 start-page: 116 year: 2006 end-page: 122 ident: bib7 publication-title: Wear – volume: 44 start-page: 451 year: 1996 end-page: 462 ident: bib19 publication-title: Acta Mater. – volume: A339 start-page: 241 year: 2003 end-page: 244 ident: bib2 publication-title: Mater. Sci. Eng. A – volume: 262 start-page: 362 year: 2007 end-page: 368 ident: bib8 publication-title: Wear – volume: 7A start-page: 1833 year: 1976 end-page: 1842 ident: bib17 publication-title: Metall. Trans. – volume: 27 start-page: 153 year: 1994 end-page: 158 ident: bib18 publication-title: Tribol. Int. – volume: 146 start-page: 337 year: 1991 end-page: 344 ident: bib16 publication-title: Wear – volume: 33 start-page: 23 year: 1998 end-page: 35 ident: bib11 publication-title: Mater. Sci. – volume: 24 start-page: 37 year: 2003 end-page: 45 ident: bib1 publication-title: Mater. Des. – volume: 181 start-page: 594 year: 1995 end-page: 602 ident: bib12 publication-title: Wear – volume: 5 start-page: 71 year: 1989 end-page: 84 ident: bib14 publication-title: Mater. Sci. Technol. – year: 1973 ident: bib4 publication-title: Prog. Refrig. Sci. Technol. – volume: 223 start-page: 131 year: 1998 end-page: 139 ident: bib13 publication-title: Wear – volume: 23 start-page: 71 year: 1997 end-page: 76 ident: bib3 publication-title: Heat Treat. Mater. – volume: 45 start-page: 747 year: 2006 end-page: 754 ident: bib6 publication-title: Cryogenics – year: 1973 ident: 10.1016/j.jallcom.2010.07.036_bib4 publication-title: Prog. Refrig. Sci. Technol. – volume: 23 start-page: 71 year: 1997 ident: 10.1016/j.jallcom.2010.07.036_bib3 publication-title: Heat Treat. Mater. – volume: 28A start-page: 301 year: 1997 ident: 10.1016/j.jallcom.2010.07.036_bib20 publication-title: Compos. Part A doi: 10.1016/S1359-835X(96)00115-7 – volume: A339 start-page: 241 year: 2003 ident: 10.1016/j.jallcom.2010.07.036_bib2 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(02)00165-X – volume: 45 start-page: 747 year: 2006 ident: 10.1016/j.jallcom.2010.07.036_bib6 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2005.10.004 – volume: 5 start-page: 71 year: 1989 ident: 10.1016/j.jallcom.2010.07.036_bib14 publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1989.5.1.71 – volume: 260 start-page: 116 year: 2006 ident: 10.1016/j.jallcom.2010.07.036_bib7 publication-title: Wear doi: 10.1016/j.wear.2004.12.037 – volume: 146 start-page: 337 year: 1991 ident: 10.1016/j.jallcom.2010.07.036_bib16 publication-title: Wear doi: 10.1016/0043-1648(91)90073-4 – volume: 192 start-page: 134 year: 1996 ident: 10.1016/j.jallcom.2010.07.036_bib10 publication-title: Wear doi: 10.1016/0043-1648(95)06781-7 – volume: 27 start-page: 153 year: 1994 ident: 10.1016/j.jallcom.2010.07.036_bib18 publication-title: Tribol. Int. doi: 10.1016/0301-679X(94)90039-6 – volume: 33 start-page: 23 year: 1998 ident: 10.1016/j.jallcom.2010.07.036_bib11 publication-title: Mater. Sci. doi: 10.1023/A:1004321007806 – volume: 223 start-page: 131 year: 1998 ident: 10.1016/j.jallcom.2010.07.036_bib13 publication-title: Wear doi: 10.1016/S0043-1648(98)00278-6 – volume: 95 start-page: 185 year: 1995 ident: 10.1016/j.jallcom.2010.07.036_bib15 publication-title: Wear – volume: 44 start-page: 451 year: 1996 ident: 10.1016/j.jallcom.2010.07.036_bib19 publication-title: Acta Mater. doi: 10.1016/1359-6454(95)00217-0 – volume: 182 start-page: 327 year: 2007 ident: 10.1016/j.jallcom.2010.07.036_bib9 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.08.009 – volume: 7 start-page: 865 year: 1994 ident: 10.1016/j.jallcom.2010.07.036_bib5 publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(94)90493-6 – volume: 24 start-page: 37 year: 2003 ident: 10.1016/j.jallcom.2010.07.036_bib1 publication-title: Mater. Des. doi: 10.1016/S0261-3069(02)00086-9 – volume: 262 start-page: 362 year: 2007 ident: 10.1016/j.jallcom.2010.07.036_bib8 publication-title: Wear doi: 10.1016/j.wear.2006.05.019 – volume: 181 start-page: 594 year: 1995 ident: 10.1016/j.jallcom.2010.07.036_bib12 publication-title: Wear doi: 10.1016/0043-1648(95)90175-2 – volume: 7A start-page: 1833 year: 1976 ident: 10.1016/j.jallcom.2010.07.036_bib17 publication-title: Metall. Trans. doi: 10.1007/BF02659813 – volume: 161 start-page: 273 year: 1993 ident: 10.1016/j.jallcom.2010.07.036_bib21 publication-title: Mater. Sci. Eng. doi: 10.1016/0921-5093(93)90522-G |
SSID | ssj0001931 |
Score | 1.9586217 |
Snippet | ▶ Microstructure of the chilled steels is finer than that of the un-chilled steel with random orientation of carbide particles in pearlite matrix. ▶ Strength,... This paper deals with the production of Deep Cryogenically Chilled (DCC) ASTM A216 WCB steel (plane carbon group) having 0.5% chromium, subject to different... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 645 |
SubjectTerms | Chilled Chilling Chills Chromium Chromium steels Condensed matter: structure, mechanical and thermal properties Cooling Deformation and plasticity (including yield, ductility, and superplasticity) Exact sciences and technology Heat capacity Mechanical and acoustical properties Mechanical and acoustical properties of condensed matter Mechanical properties Mechanical properties of solids Metallography Microstructure Physical properties of thin films, nonelectronic Physics Steels Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Thermal properties of condensed matter Thermal properties of crystalline solids Tribology and hardness |
Title | Microstructure, mechanical properties and wear behavior of metallic, nonmetallic and deep cryogenically chilled ASTM A216 WCB steel |
URI | https://dx.doi.org/10.1016/j.jallcom.2010.07.036 https://www.proquest.com/docview/864401505 |
Volume | 506 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH_0g7GNMbZso9lH0GHHOpEtW7KPaVjJNtJLW9abkGQZEtzEJC2jl176j_c9f6QrGxR2tNGzjN5P70N6HwBfVVoI6bkIjAtNEKNKwy0lXRCja8CLTMaJoOTk2Ymcnsc_LpKLHZh0uTAUVtnK_kam19K6fTNqV3NUzeejU55FdOeXUhUhJaTchf1IZBKhvT_-_nN6shXIaKPUjfNwfEAED4k8o8VwYcqS4kaaIC815HWx5n-qqFeV2eDCFU3Hi7-Ed62Rjt_A69aUZOPmb9_Cjl_24Pmk6-DWg5d_FBvswbM62NNt3sHdjKLwmsqx12t_yC495f8Su1hFh_NrqrLKzDJnv3EjsC6Vn60KHIrWejl3h2xJ6XHNQz00975ibn2zQkjSp8obRpnipc_Z-PRsxsZRKNmvyRFDXPnyPZwffzubTIO2GUPghAqvgjD0eepFVPjCOSUza22q8iSPjYwsFzE3IrW5NLlz6HEbzq200kce_U8lw9yID7CHP-YPgMVOcEeHHYkhOmsSBIaPbOo5d2ls-xB3669dW6mcGmaUugtJW-iWbZrYprnSyLY-DLdkVVOq4ymCtGOufoQ5jerkKdLBIzBsJ0QDVaFHmfSBdejQyHW6hTFLv7re6BQtUDpmSj7-__Sf4EUTxZAFofoMewgY_wWNoys7gN3hbThot8A9HIUPqg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9GkMoYEQggJa-Rg-cFxaJ05s91gqpgLrLuvEbpbtOFKr0EbtpmkXLvxx3svHxgTSJI6J_GzL79t-HwAflS6EDFxE1sc2SlGlIUtJH6XoGvBiJNNMUHLy7EROz9Kv59n5Dky6XBgKq2xlfyPTa2nd_hm2pzmsFovhKR8l9OanqYqQElI-gIc4sybuHPy8jfNAC6Vum4ejIxp-m8YzXA6WtiwpaqQJ8VIDXpdq_qeCelrZLR5b0fS7-Et01_ro6Dk8aw1JNm72-gJ2wqoHe5Ouf1sPnvxRarAHj-pQT799Cb9mFIPX1I293IRD9iNQ9i8hi1V0Nb-hGqvMrnJ2hWzAukR-ti5wKNrq5cIfshUlxzUf9dA8hIr5zfUaCZKmKq8Z5YmXIWfj0_mMjZNYsu-TTwypKpSv4Ozo83wyjdpWDJEXKr6I4jjkOoikCIX3So6cc1rlWZ5amTguUm6Fdrm0uffob1vOnXQyJAG9TyXj3IrXsIsbC_vAUi-4p6uOzBKcsxmSRUicDpx7nbo-pN35G9_WKad2GaXpAtKWpkWbIbQZrgyirQ-DG7CqKdRxH4DukGvuUJxBZXIf6MEdYrhZEM1Thf5k1gfWUYdBrNMbjF2F9eXWaLQ_6ZIpe_P_y3-Avel8dmyOv5x8ewuPm3iGURSrd7CLxBPeo5l04Q5qNvgNWjoQbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure%2C+mechanical+properties+and+wear+behavior+of+metallic%2C+nonmetallic+and+deep+cryogenically+chilled+ASTM+A216+WCB+steel&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=HEMANTH%2C+Joel&rft.date=2010-09-17&rft.pub=Elsevier&rft.issn=0925-8388&rft.volume=506&rft.issue=2&rft.spage=645&rft.epage=652&rft_id=info:doi/10.1016%2Fj.jallcom.2010.07.036&rft.externalDBID=n%2Fa&rft.externalDocID=23272595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |