Hyperspectral remote sensing image feature extraction based on spectral clustering and subclass discriminant analysis
Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class subdivision and feature extraction method based on spectral clustering (SC) and subclass discriminant analysis (SDA), namely SC-SDA, is presented. F...
Saved in:
Published in | Remote sensing letters Vol. 11; no. 2; pp. 166 - 175 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.02.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class subdivision and feature extraction method based on spectral clustering (SC) and subclass discriminant analysis (SDA), namely SC-SDA, is presented. Firstly, when the overall separability is improved should a class be subdivided. Secondly, a generalized simple matching coefficient (GSMC) is proposed to evaluate the similarity of the clustering results in neighbouring dimensionality SC subspaces, and the SC subspace dimensionality corresponding to the maximum GSMC is selected. Then, SC is performed in the selected SC subspace according to the number of subclasses selected by intra-class separability. Finally, SDA is executed based on the class subdivision result. The experimental results of four real HRSIs datasets show that the classification results of the SC-SDA method are superior to those of linear discriminant analysis, separability-oriented subclass discriminant analysis and SDA methods. |
---|---|
AbstractList | Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class subdivision and feature extraction method based on spectral clustering (SC) and subclass discriminant analysis (SDA), namely SC-SDA, is presented. Firstly, when the overall separability is improved should a class be subdivided. Secondly, a generalized simple matching coefficient (GSMC) is proposed to evaluate the similarity of the clustering results in neighbouring dimensionality SC subspaces, and the SC subspace dimensionality corresponding to the maximum GSMC is selected. Then, SC is performed in the selected SC subspace according to the number of subclasses selected by intra-class separability. Finally, SDA is executed based on the class subdivision result. The experimental results of four real HRSIs datasets show that the classification results of the SC-SDA method are superior to those of linear discriminant analysis, separability-oriented subclass discriminant analysis and SDA methods. |
Author | Liu, Jing Guo, Ximei Liu, Yi |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-3960-6902 surname: Liu fullname: Liu, Jing email: zyhalj1975@163.com organization: School of Electronic Engineering, Xi'an University of Posts and Telecommunications – sequence: 2 givenname: Ximei orcidid: 0000-0003-2155-200X surname: Guo fullname: Guo, Ximei organization: School of Electronic Engineering, Xi'an University of Posts and Telecommunications – sequence: 3 givenname: Yi orcidid: 0000-0001-9993-0731 surname: Liu fullname: Liu, Yi organization: School of Electronic Engineering, Xidian University |
BookMark | eNqFkcFrHCEUxqUk0HSTPyEw0Esvu9EZZ1V6aQltEwj00kBu8tZ5EwyObn0O7f73ddg0hxxaEXzq9_t4-r1jJzFFZOxS8I3gml-1oueKy4dNy4XZiK1pO92_YWfL-VrxXp-81PLhLbsgeuJ1dEJqpc_YfHPYY6Y9upIhNBmnVLAhjOTjY-MneMRmRChzxgZ_V40rPsVmB4RDU4sX0oWZCuaFgjg0NO9cAKJm8OSyn3yEWOoNhAN5OmenIwTCi-d1xe6_fvlxfbO--_7t9vrz3dp1SpS1EKjkoEH3g9bohDC7rRbouFKdNGPdcLOVrVAwgBl1nYMyOwkK-CC3kncr9uHou8_p54xU7FTbwRAgYprJtrIzlTfVb8Xev5I-pTnXfquqa42qfmYx7I8qlxNRxtHu6-MgH6zgdsnD_s3DLnnY5zwq9_EV53yB5Svr5_nwX_rTkfZxTHmCXymHwRY4hJTHDNF5st2_Lf4Ayp6noA |
CitedBy_id | crossref_primary_10_1049_ipr2_12266 crossref_primary_10_1007_s13042_020_01231_2 crossref_primary_10_1109_ACCESS_2022_3194260 crossref_primary_10_1080_01431161_2023_2287560 crossref_primary_10_3390_rs13132599 |
Cites_doi | 10.1109/TPAMI.2017.2672557 10.1109/34.824819 10.6046/gtzyyg.2016.02.13 10.1002/mp.12920 10.1007/978-3-319-18833-1_16 10.1016/S1005-8885(15)60626-4 10.14004/j.cnki.ckt.2016.2620 10.1080/2150704X.2019.1607979 10.3969/j.issn.0372-2112.2013.05.025 10.7523/j.issn.2095-6134.2019.02.015 10.1080/10095020.2017.1418263 10.1007/s11105-012-0491-x 10.1109/TPAMI.2006.172 10.1080/2150704X.2019.1579936 10.1080/2150704X.2018.1524993 10.1080/10095020.2018.1465209 10.1109/LSP.2011.2127474 |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TN 8FD F1W FR3 H8D H96 KR7 L.G L7M 7S9 L.6 |
DOI | 10.1080/2150704X.2019.1692385 |
DatabaseName | CrossRef Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2150-7058 |
EndPage | 175 |
ExternalDocumentID | 10_1080_2150704X_2019_1692385 1692385 |
Genre | Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province of China grantid: 2018JM4018 – fundername: Fundamental Research Funds for the Central Universities grantid: JB170204 – fundername: National Natural Science Foundation of China grantid: 61672405 funderid: 10.13039/501100001809 |
GroupedDBID | .7F 0BK 0R~ 2DF 30N 4.4 AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADMSI AEISY AENEX AEYOC AFRAH AGDLA AHDSZ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 DGEBU DKSSO EBS GTTXZ H13 HZ~ IPNFZ J~4 KYCEM LJTGL M4Z O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ SNACF TBQAZ TDBHL TEN TFL TFT TFW TQWBC TTHFI TUROJ UU3 ZGOLN AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TN 8FD F1W FR3 H8D H96 KR7 L.G L7M TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c371t-11e74d8a85d88ec119b681ec077349fb680964217ada9f89f8d79b4a7a0d46403 |
ISSN | 2150-704X 2150-7058 |
IngestDate | Wed Jul 02 04:45:28 EDT 2025 Wed Aug 13 11:08:36 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 03:28:04 EDT 2025 Wed Dec 25 09:07:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c371t-11e74d8a85d88ec119b681ec077349fb680964217ada9f89f8d79b4a7a0d46403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2155-200X 0000-0002-3960-6902 0000-0001-9993-0731 |
PQID | 2329746490 |
PQPubID | 436422 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2329746490 crossref_primary_10_1080_2150704X_2019_1692385 crossref_citationtrail_10_1080_2150704X_2019_1692385 informaworld_taylorfrancis_310_1080_2150704X_2019_1692385 proquest_miscellaneous_2439421977 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Remote sensing letters |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0001 CIT0012 CIT0011 CIT0003 CIT0014 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0006 CIT0017 CIT0009 CIT0008 |
References_xml | – ident: CIT0008 doi: 10.1109/TPAMI.2017.2672557 – ident: CIT0003 doi: 10.1109/34.824819 – ident: CIT0012 doi: 10.6046/gtzyyg.2016.02.13 – ident: CIT0001 doi: 10.1002/mp.12920 – ident: CIT0007 doi: 10.1007/978-3-319-18833-1_16 – ident: CIT0005 doi: 10.1016/S1005-8885(15)60626-4 – ident: CIT0010 doi: 10.14004/j.cnki.ckt.2016.2620 – ident: CIT0015 doi: 10.1080/2150704X.2019.1607979 – ident: CIT0009 doi: 10.3969/j.issn.0372-2112.2013.05.025 – ident: CIT0011 doi: 10.7523/j.issn.2095-6134.2019.02.015 – ident: CIT0013 doi: 10.1080/10095020.2017.1418263 – ident: CIT0006 doi: 10.1007/s11105-012-0491-x – ident: CIT0017 doi: 10.1109/TPAMI.2006.172 – ident: CIT0014 doi: 10.1080/2150704X.2019.1579936 – ident: CIT0016 doi: 10.1080/2150704X.2018.1524993 – ident: CIT0004 doi: 10.1080/10095020.2018.1465209 – ident: CIT0002 doi: 10.1109/LSP.2011.2127474 |
SSID | ssj0000314878 |
Score | 2.204041 |
Snippet | Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 166 |
SubjectTerms | Analysis Clustering data collection Discriminant analysis Feature extraction Remote sensing Spectra Subspaces |
Title | Hyperspectral remote sensing image feature extraction based on spectral clustering and subclass discriminant analysis |
URI | https://www.tandfonline.com/doi/abs/10.1080/2150704X.2019.1692385 https://www.proquest.com/docview/2329746490 https://www.proquest.com/docview/2439421977 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dq9MwFA96fdAX8ROnV4ng26UzWdM2eRS5lyFzgmwwn0qapjjY3b1s7YP-9Z6TpF3rLl4VRmmzJh39_XZyTnI-CHmXai6ZSXRUVUxEQIoyUkokkbJlwrXhypQYO_x5nk6X4tMqWfV2TDG6pC7G5ueNcSX_gyq0Aa4YJfsPyHaDQgOcA75wBITh-FcYT8GI9LGSO5efH167PdujSzoGqlyiO05lXebOM5DBu1AWHCeuEjcJup5m02C-hDZecd8UBpVq3L0xvuyXc0T36Uv66uzX4SM3Ljao09Jn68aRpJ0d0c2ncUuzq_WlXf9227d1fwUCzE028OZYHBUD6XkkgRwDpYJFGfOOmGPbb_NZ2ztBzHuEm_SkKveFWY6kvXePxLFwePTTU2OegsrqqwANs2vPv-QXy9ksX5yvFnfJvQmYFVjxImbzbk0OU_lLN3l3v7kN-pLs_Y3PGagzg2S3R5O701gWj8jDYGrQD543j8kdu31C7oeq999_PCXNgD_U84cGMKnjDw38oQf-UMcfCiddzwN_KPCHtvyhff7Qlj_PyPLifPFxGoUyHJGJM15HnNtMlFLLpJTSGs5VkUpuDcuyWKgKLsAMFmDa6lKrSsKnzFQhdKZZKVLB4ufkZHu1tS8I1alWrLA6Y9yKBPqqyYQXhQSNCd6pNCMi2reZm5CjHkulbHIeUtm2IOQIQh5AGJFx1-3aJ2m5rYPqQ5XXjsKVZ28e39L3tMU1D7Jgn4NdAoZ5KhQbkbfd1yCpcftNb-1VA_dgEDooCFn28s9DvCIPDn-zU3JS7xr7GlTfunjj-PoLqMCtXg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXoFDUhQJG4pqtvXFi-4hQqwXaPbXS3izHdgC1TdFucoBfz0ycrFoq1EOlHBLZkziOPa_MfAPwsXRCc1-4rK65zHBRhMwYWWQmhkI4L4wPlDt8uijn5_LrsljeyIWhsEqyoesEFNHzatrc5IweQ-IOZ6TFcLmkyCwzFSUqKbp4DNuFKRVVMcj5YuNnIXh23TNkosqIbEzk-d-dbomoWwCmdxh2L4WOn4Efx5-CTy6mXVtN_Z9_oB0f9oLP4emgpLJPaVXtwqPYvICdoV76j98voZuj-ZqyNFfYcRXxg0e2pmD45jv7eYVMitWxxwxlyP1XKXuCkcgMDE82lP6yI6QGosLRsnVXeVLnGSULp4JjTYstCThlD86Pj84-z7OhgEPmcyXaTIioZNBOF0Hr6IUwValF9FypXJoaL9CAkmgUueBMrfEIylTSKceDLCXPX8FWc93EfWCudIZX0SkuoiyQ1sxmoqo0ylqcIu0nIMdvZv2Abk5FNi6tGEBQxzm1NKd2mNMJTDdkvxK8x30E5uaCsG3vV6lTERSb30N7MK4eO3CKtUWNFk26Uho-gQ-bZtzj9OPGNfG6wz6UvoyiRanXD3j8e9iZn52e2JMvi29v4MmMHAd9-PkBbLWrLr5F7aqt3vXb5y8dvBe2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8lYXChiJaxZ714ntYwWslteKA5V6s_wKVC1ptZsc4NczEycrCkI9VMohkT2JM7Hn4cx8A_CqckLzULqirrkscFLEwhhZFibFUrggTIiUO_x5VS2P5Ifjcowm3AxhleRD1xkoopfVtLgvYj1GxL2ekRHD5TEFZpmpqNBG0eVNuFUReDhlcfDVdpuF0Nl1L4-JqiCyMY_nf3e6pKEu4Zf-I697JbS4C34cfo49OZ12rZ-GX38hO17r_e7B3mCissM8p-7DjdQ8gDtDtfTvPx9Ct0TnNedorrHjOuHnTmxDofDNN3byA0UUq1OPGMpQ9q9z7gQjhRkZnmwpw1lHOA1EhYNlm84HMuYZpQrncmNNiy0ZNuURHC3efX2zLIbyDUWYK9EWQiQlo3a6jFqnIITxlRYpcKXm0tR4ge6TRJfIRWdqjUdUxkunHI-yknz-GHaa8ybtA3OVM9wnp7hIskRaM5sJ7zVqWmSRDhOQ4yezYcA2pxIbZ1YMEKgjTy3x1A48ncB0S3aRwT2uIjB_zgfb9rsqdS6BYudX0B6Mk8cOcmJj0Z5Fh66Shk_g5bYZVzj9tnFNOu-wDyUvo2JR6sk1Hv8Cbn95u7Cf3q8-PoXdGe0a9LHnB7DTrrv0DE2r1j_vF89vkzkWWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+remote+sensing+image+feature+extraction+based+on+spectral+clustering+and+subclass+discriminant+analysis&rft.jtitle=Remote+sensing+letters&rft.au=Liu%2C+Jing&rft.au=Guo%2C+Ximei&rft.au=Liu%2C+Yi&rft.date=2020-02-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2150-704X&rft.eissn=2150-7058&rft.volume=11&rft.issue=2&rft.spage=166&rft_id=info:doi/10.1080%2F2150704X.2019.1692385&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-704X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-704X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-704X&client=summon |