Hyperspectral remote sensing image feature extraction based on spectral clustering and subclass discriminant analysis

Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class subdivision and feature extraction method based on spectral clustering (SC) and subclass discriminant analysis (SDA), namely SC-SDA, is presented. F...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing letters Vol. 11; no. 2; pp. 166 - 175
Main Authors Liu, Jing, Guo, Ximei, Liu, Yi
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.02.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class subdivision and feature extraction method based on spectral clustering (SC) and subclass discriminant analysis (SDA), namely SC-SDA, is presented. Firstly, when the overall separability is improved should a class be subdivided. Secondly, a generalized simple matching coefficient (GSMC) is proposed to evaluate the similarity of the clustering results in neighbouring dimensionality SC subspaces, and the SC subspace dimensionality corresponding to the maximum GSMC is selected. Then, SC is performed in the selected SC subspace according to the number of subclasses selected by intra-class separability. Finally, SDA is executed based on the class subdivision result. The experimental results of four real HRSIs datasets show that the classification results of the SC-SDA method are superior to those of linear discriminant analysis, separability-oriented subclass discriminant analysis and SDA methods.
AbstractList Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class subdivision and feature extraction method based on spectral clustering (SC) and subclass discriminant analysis (SDA), namely SC-SDA, is presented. Firstly, when the overall separability is improved should a class be subdivided. Secondly, a generalized simple matching coefficient (GSMC) is proposed to evaluate the similarity of the clustering results in neighbouring dimensionality SC subspaces, and the SC subspace dimensionality corresponding to the maximum GSMC is selected. Then, SC is performed in the selected SC subspace according to the number of subclasses selected by intra-class separability. Finally, SDA is executed based on the class subdivision result. The experimental results of four real HRSIs datasets show that the classification results of the SC-SDA method are superior to those of linear discriminant analysis, separability-oriented subclass discriminant analysis and SDA methods.
Author Liu, Jing
Guo, Ximei
Liu, Yi
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-3960-6902
  surname: Liu
  fullname: Liu, Jing
  email: zyhalj1975@163.com
  organization: School of Electronic Engineering, Xi'an University of Posts and Telecommunications
– sequence: 2
  givenname: Ximei
  orcidid: 0000-0003-2155-200X
  surname: Guo
  fullname: Guo, Ximei
  organization: School of Electronic Engineering, Xi'an University of Posts and Telecommunications
– sequence: 3
  givenname: Yi
  orcidid: 0000-0001-9993-0731
  surname: Liu
  fullname: Liu, Yi
  organization: School of Electronic Engineering, Xidian University
BookMark eNqFkcFrHCEUxqUk0HSTPyEw0Esvu9EZZ1V6aQltEwj00kBu8tZ5EwyObn0O7f73ddg0hxxaEXzq9_t4-r1jJzFFZOxS8I3gml-1oueKy4dNy4XZiK1pO92_YWfL-VrxXp-81PLhLbsgeuJ1dEJqpc_YfHPYY6Y9upIhNBmnVLAhjOTjY-MneMRmRChzxgZ_V40rPsVmB4RDU4sX0oWZCuaFgjg0NO9cAKJm8OSyn3yEWOoNhAN5OmenIwTCi-d1xe6_fvlxfbO--_7t9vrz3dp1SpS1EKjkoEH3g9bohDC7rRbouFKdNGPdcLOVrVAwgBl1nYMyOwkK-CC3kncr9uHou8_p54xU7FTbwRAgYprJtrIzlTfVb8Xev5I-pTnXfquqa42qfmYx7I8qlxNRxtHu6-MgH6zgdsnD_s3DLnnY5zwq9_EV53yB5Svr5_nwX_rTkfZxTHmCXymHwRY4hJTHDNF5st2_Lf4Ayp6noA
CitedBy_id crossref_primary_10_1049_ipr2_12266
crossref_primary_10_1007_s13042_020_01231_2
crossref_primary_10_1109_ACCESS_2022_3194260
crossref_primary_10_1080_01431161_2023_2287560
crossref_primary_10_3390_rs13132599
Cites_doi 10.1109/TPAMI.2017.2672557
10.1109/34.824819
10.6046/gtzyyg.2016.02.13
10.1002/mp.12920
10.1007/978-3-319-18833-1_16
10.1016/S1005-8885(15)60626-4
10.14004/j.cnki.ckt.2016.2620
10.1080/2150704X.2019.1607979
10.3969/j.issn.0372-2112.2013.05.025
10.7523/j.issn.2095-6134.2019.02.015
10.1080/10095020.2017.1418263
10.1007/s11105-012-0491-x
10.1109/TPAMI.2006.172
10.1080/2150704X.2019.1579936
10.1080/2150704X.2018.1524993
10.1080/10095020.2018.1465209
10.1109/LSP.2011.2127474
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TN
8FD
F1W
FR3
H8D
H96
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/2150704X.2019.1692385
DatabaseName CrossRef
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2150-7058
EndPage 175
ExternalDocumentID 10_1080_2150704X_2019_1692385
1692385
Genre Article
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province of China
  grantid: 2018JM4018
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JB170204
– fundername: National Natural Science Foundation of China
  grantid: 61672405
  funderid: 10.13039/501100001809
GroupedDBID .7F
0BK
0R~
2DF
30N
4.4
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADMSI
AEISY
AENEX
AEYOC
AFRAH
AGDLA
AHDSZ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EBS
GTTXZ
H13
HZ~
IPNFZ
J~4
KYCEM
LJTGL
M4Z
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
UU3
ZGOLN
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TN
8FD
F1W
FR3
H8D
H96
KR7
L.G
L7M
TASJS
7S9
L.6
ID FETCH-LOGICAL-c371t-11e74d8a85d88ec119b681ec077349fb680964217ada9f89f8d79b4a7a0d46403
ISSN 2150-704X
2150-7058
IngestDate Wed Jul 02 04:45:28 EDT 2025
Wed Aug 13 11:08:36 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 03:28:04 EDT 2025
Wed Dec 25 09:07:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-11e74d8a85d88ec119b681ec077349fb680964217ada9f89f8d79b4a7a0d46403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2155-200X
0000-0002-3960-6902
0000-0001-9993-0731
PQID 2329746490
PQPubID 436422
PageCount 10
ParticipantIDs proquest_journals_2329746490
crossref_primary_10_1080_2150704X_2019_1692385
crossref_citationtrail_10_1080_2150704X_2019_1692385
informaworld_taylorfrancis_310_1080_2150704X_2019_1692385
proquest_miscellaneous_2439421977
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Remote sensing letters
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0001
CIT0012
CIT0011
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0006
CIT0017
CIT0009
CIT0008
References_xml – ident: CIT0008
  doi: 10.1109/TPAMI.2017.2672557
– ident: CIT0003
  doi: 10.1109/34.824819
– ident: CIT0012
  doi: 10.6046/gtzyyg.2016.02.13
– ident: CIT0001
  doi: 10.1002/mp.12920
– ident: CIT0007
  doi: 10.1007/978-3-319-18833-1_16
– ident: CIT0005
  doi: 10.1016/S1005-8885(15)60626-4
– ident: CIT0010
  doi: 10.14004/j.cnki.ckt.2016.2620
– ident: CIT0015
  doi: 10.1080/2150704X.2019.1607979
– ident: CIT0009
  doi: 10.3969/j.issn.0372-2112.2013.05.025
– ident: CIT0011
  doi: 10.7523/j.issn.2095-6134.2019.02.015
– ident: CIT0013
  doi: 10.1080/10095020.2017.1418263
– ident: CIT0006
  doi: 10.1007/s11105-012-0491-x
– ident: CIT0017
  doi: 10.1109/TPAMI.2006.172
– ident: CIT0014
  doi: 10.1080/2150704X.2019.1579936
– ident: CIT0016
  doi: 10.1080/2150704X.2018.1524993
– ident: CIT0004
  doi: 10.1080/10095020.2018.1465209
– ident: CIT0002
  doi: 10.1109/LSP.2011.2127474
SSID ssj0000314878
Score 2.204041
Snippet Hyperspectral remote sensing images (HRSIs) have the problems of high dimensionality and phenomenon of the same subject with different spectra. A class...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Analysis
Clustering
data collection
Discriminant analysis
Feature extraction
Remote sensing
Spectra
Subspaces
Title Hyperspectral remote sensing image feature extraction based on spectral clustering and subclass discriminant analysis
URI https://www.tandfonline.com/doi/abs/10.1080/2150704X.2019.1692385
https://www.proquest.com/docview/2329746490
https://www.proquest.com/docview/2439421977
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dq9MwFA96fdAX8ROnV4ng26UzWdM2eRS5lyFzgmwwn0qapjjY3b1s7YP-9Z6TpF3rLl4VRmmzJh39_XZyTnI-CHmXai6ZSXRUVUxEQIoyUkokkbJlwrXhypQYO_x5nk6X4tMqWfV2TDG6pC7G5ueNcSX_gyq0Aa4YJfsPyHaDQgOcA75wBITh-FcYT8GI9LGSO5efH167PdujSzoGqlyiO05lXebOM5DBu1AWHCeuEjcJup5m02C-hDZecd8UBpVq3L0xvuyXc0T36Uv66uzX4SM3Ljao09Jn68aRpJ0d0c2ncUuzq_WlXf9227d1fwUCzE028OZYHBUD6XkkgRwDpYJFGfOOmGPbb_NZ2ztBzHuEm_SkKveFWY6kvXePxLFwePTTU2OegsrqqwANs2vPv-QXy9ksX5yvFnfJvQmYFVjxImbzbk0OU_lLN3l3v7kN-pLs_Y3PGagzg2S3R5O701gWj8jDYGrQD543j8kdu31C7oeq999_PCXNgD_U84cGMKnjDw38oQf-UMcfCiddzwN_KPCHtvyhff7Qlj_PyPLifPFxGoUyHJGJM15HnNtMlFLLpJTSGs5VkUpuDcuyWKgKLsAMFmDa6lKrSsKnzFQhdKZZKVLB4ufkZHu1tS8I1alWrLA6Y9yKBPqqyYQXhQSNCd6pNCMi2reZm5CjHkulbHIeUtm2IOQIQh5AGJFx1-3aJ2m5rYPqQ5XXjsKVZ28e39L3tMU1D7Jgn4NdAoZ5KhQbkbfd1yCpcftNb-1VA_dgEDooCFn28s9DvCIPDn-zU3JS7xr7GlTfunjj-PoLqMCtXg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXoFDUhQJG4pqtvXFi-4hQqwXaPbXS3izHdgC1TdFucoBfz0ycrFoq1EOlHBLZkziOPa_MfAPwsXRCc1-4rK65zHBRhMwYWWQmhkI4L4wPlDt8uijn5_LrsljeyIWhsEqyoesEFNHzatrc5IweQ-IOZ6TFcLmkyCwzFSUqKbp4DNuFKRVVMcj5YuNnIXh23TNkosqIbEzk-d-dbomoWwCmdxh2L4WOn4Efx5-CTy6mXVtN_Z9_oB0f9oLP4emgpLJPaVXtwqPYvICdoV76j98voZuj-ZqyNFfYcRXxg0e2pmD45jv7eYVMitWxxwxlyP1XKXuCkcgMDE82lP6yI6QGosLRsnVXeVLnGSULp4JjTYstCThlD86Pj84-z7OhgEPmcyXaTIioZNBOF0Hr6IUwValF9FypXJoaL9CAkmgUueBMrfEIylTSKceDLCXPX8FWc93EfWCudIZX0SkuoiyQ1sxmoqo0ylqcIu0nIMdvZv2Abk5FNi6tGEBQxzm1NKd2mNMJTDdkvxK8x30E5uaCsG3vV6lTERSb30N7MK4eO3CKtUWNFk26Uho-gQ-bZtzj9OPGNfG6wz6UvoyiRanXD3j8e9iZn52e2JMvi29v4MmMHAd9-PkBbLWrLr5F7aqt3vXb5y8dvBe2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCX8lYXChiJaxZ714ntYwWslteKA5V6s_wKVC1ptZsc4NczEycrCkI9VMohkT2JM7Hn4cx8A_CqckLzULqirrkscFLEwhhZFibFUrggTIiUO_x5VS2P5Ifjcowm3AxhleRD1xkoopfVtLgvYj1GxL2ekRHD5TEFZpmpqNBG0eVNuFUReDhlcfDVdpuF0Nl1L4-JqiCyMY_nf3e6pKEu4Zf-I697JbS4C34cfo49OZ12rZ-GX38hO17r_e7B3mCissM8p-7DjdQ8gDtDtfTvPx9Ct0TnNedorrHjOuHnTmxDofDNN3byA0UUq1OPGMpQ9q9z7gQjhRkZnmwpw1lHOA1EhYNlm84HMuYZpQrncmNNiy0ZNuURHC3efX2zLIbyDUWYK9EWQiQlo3a6jFqnIITxlRYpcKXm0tR4ge6TRJfIRWdqjUdUxkunHI-yknz-GHaa8ybtA3OVM9wnp7hIskRaM5sJ7zVqWmSRDhOQ4yezYcA2pxIbZ1YMEKgjTy3x1A48ncB0S3aRwT2uIjB_zgfb9rsqdS6BYudX0B6Mk8cOcmJj0Z5Fh66Shk_g5bYZVzj9tnFNOu-wDyUvo2JR6sk1Hv8Cbn95u7Cf3q8-PoXdGe0a9LHnB7DTrrv0DE2r1j_vF89vkzkWWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+remote+sensing+image+feature+extraction+based+on+spectral+clustering+and+subclass+discriminant+analysis&rft.jtitle=Remote+sensing+letters&rft.au=Liu%2C+Jing&rft.au=Guo%2C+Ximei&rft.au=Liu%2C+Yi&rft.date=2020-02-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2150-704X&rft.eissn=2150-7058&rft.volume=11&rft.issue=2&rft.spage=166&rft_id=info:doi/10.1080%2F2150704X.2019.1692385&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-704X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-704X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-704X&client=summon