Intricate SUMO-based control of the homologous recombination machinery
The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing...
Saved in:
Published in | Genes & development Vol. 33; no. 19-20; pp. 1346 - 1354 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions. |
---|---|
AbstractList | The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions. The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions.The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions. In this review, Dhingra et al. discuss the roles of SUMO in light of its newly identified effects on recombinational repair, and present further thoughts on many unanswered questions. The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions. |
Author | Dhingra, Nalini Zhao, Xiaolan |
AuthorAffiliation | Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA |
AuthorAffiliation_xml | – name: Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA |
Author_xml | – sequence: 1 givenname: Nalini surname: Dhingra fullname: Dhingra, Nalini – sequence: 2 givenname: Xiaolan surname: Zhao fullname: Zhao, Xiaolan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31575678$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1PAjEQbYxGQL16NHv0stjSdtteTAwRJdFwUM5NvxZqdre4XUz49xYBoyaeJvPx3puZNwDHTWgcAJcIDhGC6Gah7BCPOMUk5eII9BElIqeEsWPQh1zAXOBC9MAgxjcIYQGL4hT0MKKMFoz3wWTadK03qnPZy_x5lmsVnc1MSNVQZaHMuqXLlqEOVViEdcxaZ0KtfaM6H5qsVmbpG9duzsFJqaroLvbxDMwn96_jx_xp9jAd3z3lBjMkci2UYhwbrDktuFAFtZRoQqHCGruyRNpwNrIltRojTUpmiDHWWsqRQoQgfAZud7yrta6dNS7tqSq5an2t2o0MysvfncYv5SJ8yIIxhPkoEVzvCdrwvnaxk7WPxlWValy6T44whIhxTrdaVz-1vkUOz0sDZDdg2hBj60ppfPf1mCTtK4mg3Hokk0dy51HKRYIN_8AOzP8APgEz5JTo |
CitedBy_id | crossref_primary_10_1016_j_molcel_2025_02_004 crossref_primary_10_7554_eLife_57720 crossref_primary_10_1016_j_gde_2021_07_007 crossref_primary_10_3389_fgene_2021_671392 crossref_primary_10_1089_crispr_2021_0039 crossref_primary_10_1016_j_jbc_2021_101200 crossref_primary_10_3389_fendo_2024_1393111 crossref_primary_10_1016_j_bbrc_2021_12_099 crossref_primary_10_3390_molecules26040828 crossref_primary_10_1016_j_devcel_2021_06_012 crossref_primary_10_31857_S0026898424040029 crossref_primary_10_1002_1873_3468_14751 crossref_primary_10_1134_S0026893324700201 crossref_primary_10_1016_j_jbc_2023_105547 |
Cites_doi | 10.1101/gad.278275.116 10.1038/nature08593 10.1093/nar/gks484 10.1098/rstb.2016.0282 10.1016/j.molcel.2019.01.005 10.1073/pnas.1303111110 10.1038/sj.emboj.7601158 10.1093/nar/gkp1008 10.1038/nrm3478 10.1016/j.molcel.2010.08.028 10.1128/JVI.01273-12 10.1016/j.molcel.2017.04.017 10.1038/s41467-018-07364-x 10.1371/journal.pgen.1000858 10.1007/s00412-017-0658-1 10.1038/emboj.2013.24 10.1371/journal.pgen.1007942 10.1016/j.tibs.2015.02.006 10.1016/j.molcel.2014.11.014 10.15252/embr.201440017 10.1016/j.celrep.2016.06.015 10.1016/j.molcel.2015.01.022 10.1101/gad.238535.114 10.1074/mcp.O114.044792 10.1038/s41467-017-00183-6 10.1534/genetics.114.166140 10.1038/nature08657 10.1083/jcb.201010117 10.1074/jbc.M512757200 10.1074/jbc.RA118.006006 10.1016/j.molcel.2005.06.001 10.1080/10409238.2018.1488803 10.1016/j.cell.2006.08.050 10.1093/nar/gks270 10.1016/j.molcel.2012.02.017 10.1101/sqb.2015.80.027649 10.1534/genetics.116.196568 10.1093/nar/gkv1523 10.1371/journal.pone.0051540 10.1242/jcs.133744 10.1093/nar/gkq195 10.1038/nature01965 10.1038/nrm.2016.58 10.1038/nature03665 10.1038/ncb2729 10.1101/gad.265058.115 10.1038/nature19071 10.3390/biom6010014 10.1038/sj.emboj.7600394 10.1371/journal.pone.0214102 10.1016/j.molcel.2011.11.010 10.1038/ncb1619 10.1074/jbc.M115.685891 10.1038/nature00991 10.1016/j.celrep.2014.08.054 10.7554/eLife.22195 10.1074/jbc.M009476200 10.1038/emboj.2013.9 10.1016/j.dnarep.2016.04.001 10.1080/15384101.2017.1302628 10.1146/annurev.biochem.73.011303.074118 10.1016/j.celrep.2016.05.007 10.1074/jbc.M100006200 10.1016/j.gde.2016.10.005 10.1146/annurev-biochem-061909-093311 10.1101/gad.265629.115 10.3109/10409238.2016.1172552 10.1016/j.molcel.2011.11.028 10.1016/j.molcel.2010.07.021 10.1371/journal.pgen.1003833 10.1038/ncb1488 10.1073/pnas.0500537102 10.1093/hmg/ddp478 10.1016/j.molcel.2014.11.015 10.1016/j.ceb.2016.02.018 10.1515/bmc-2016-0030 10.1098/rstb.2016.0281 10.1080/15384101.2015.1060381 10.3389/fgene.2013.00167 10.1371/journal.pone.0080442 10.1146/annurev-genet-120215-035043 10.1093/nar/gkn441 10.1371/journal.pgen.1004899 10.1016/j.cell.2012.10.021 10.1073/pnas.0403498101 10.1101/cshperspect.a016501 |
ContentType | Journal Article |
Copyright | 2019 Dhingra and Zhao; Published by Cold Spring Harbor Laboratory Press. 2019 |
Copyright_xml | – notice: 2019 Dhingra and Zhao; Published by Cold Spring Harbor Laboratory Press. – notice: 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1101/gad.328534.119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Dhingra and Zhao |
EISSN | 1549-5477 |
EndPage | 1354 |
ExternalDocumentID | PMC6771382 31575678 10_1101_gad_328534_119 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM080670 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: ; grantid: GM080670 |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XSW YBU YHG YKV YSK CGR CUY CVF ECM EIF NPM RHF VQA 7X8 5PM |
ID | FETCH-LOGICAL-c3719-b9aa783c3b85689a65d54b450a3b3eff1bc872df5db31b4f7c4ccddd581a14413 |
ISSN | 0890-9369 1549-5477 |
IngestDate | Thu Aug 21 14:09:02 EDT 2025 Fri Jul 11 04:17:03 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 01:12:09 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19-20 |
Keywords | genome maintenance sumoylation homologous recombination double-strand break repair |
Language | English |
License | 2019 Dhingra and Zhao; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3719-b9aa783c3b85689a65d54b450a3b3eff1bc872df5db31b4f7c4ccddd581a14413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6771382 |
PMID | 31575678 |
PQID | 2300178851 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771382 proquest_miscellaneous_2300178851 pubmed_primary_31575678 crossref_citationtrail_10_1101_gad_328534_119 crossref_primary_10_1101_gad_328534_119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2019 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111620145409000_33.19-20.1346.17 2021111620145409000_33.19-20.1346.16 2021111620145409000_33.19-20.1346.19 2021111620145409000_33.19-20.1346.18 2021111620145409000_33.19-20.1346.53 2021111620145409000_33.19-20.1346.52 2021111620145409000_33.19-20.1346.11 2021111620145409000_33.19-20.1346.55 2021111620145409000_33.19-20.1346.10 2021111620145409000_33.19-20.1346.54 2021111620145409000_33.19-20.1346.13 2021111620145409000_33.19-20.1346.57 2021111620145409000_33.19-20.1346.12 2021111620145409000_33.19-20.1346.56 2021111620145409000_33.19-20.1346.15 2021111620145409000_33.19-20.1346.59 2021111620145409000_33.19-20.1346.14 2021111620145409000_33.19-20.1346.58 2021111620145409000_33.19-20.1346.51 2021111620145409000_33.19-20.1346.50 2021111620145409000_33.19-20.1346.49 2021111620145409000_33.19-20.1346.42 2021111620145409000_33.19-20.1346.86 2021111620145409000_33.19-20.1346.41 2021111620145409000_33.19-20.1346.85 2021111620145409000_33.19-20.1346.44 2021111620145409000_33.19-20.1346.43 2021111620145409000_33.19-20.1346.46 2021111620145409000_33.19-20.1346.45 2021111620145409000_33.19-20.1346.48 2021111620145409000_33.19-20.1346.47 2021111620145409000_33.19-20.1346.80 2021111620145409000_33.19-20.1346.82 2021111620145409000_33.19-20.1346.81 2021111620145409000_33.19-20.1346.40 2021111620145409000_33.19-20.1346.84 2021111620145409000_33.19-20.1346.83 2021111620145409000_33.19-20.1346.39 2021111620145409000_33.19-20.1346.38 2021111620145409000_33.19-20.1346.31 2021111620145409000_33.19-20.1346.75 2021111620145409000_33.19-20.1346.30 2021111620145409000_33.19-20.1346.74 2021111620145409000_33.19-20.1346.33 2021111620145409000_33.19-20.1346.77 2021111620145409000_33.19-20.1346.32 2021111620145409000_33.19-20.1346.76 2021111620145409000_33.19-20.1346.35 2021111620145409000_33.19-20.1346.79 2021111620145409000_33.19-20.1346.34 2021111620145409000_33.19-20.1346.78 2021111620145409000_33.19-20.1346.37 2021111620145409000_33.19-20.1346.36 2021111620145409000_33.19-20.1346.71 2021111620145409000_33.19-20.1346.70 2021111620145409000_33.19-20.1346.73 2021111620145409000_33.19-20.1346.72 2021111620145409000_33.19-20.1346.28 2021111620145409000_33.19-20.1346.27 2021111620145409000_33.19-20.1346.29 2021111620145409000_33.19-20.1346.2 2021111620145409000_33.19-20.1346.20 2021111620145409000_33.19-20.1346.64 2021111620145409000_33.19-20.1346.1 2021111620145409000_33.19-20.1346.63 2021111620145409000_33.19-20.1346.22 2021111620145409000_33.19-20.1346.66 2021111620145409000_33.19-20.1346.21 2021111620145409000_33.19-20.1346.65 2021111620145409000_33.19-20.1346.24 2021111620145409000_33.19-20.1346.68 2021111620145409000_33.19-20.1346.23 2021111620145409000_33.19-20.1346.67 2021111620145409000_33.19-20.1346.26 2021111620145409000_33.19-20.1346.25 2021111620145409000_33.19-20.1346.69 2021111620145409000_33.19-20.1346.9 2021111620145409000_33.19-20.1346.8 2021111620145409000_33.19-20.1346.7 2021111620145409000_33.19-20.1346.6 2021111620145409000_33.19-20.1346.60 2021111620145409000_33.19-20.1346.5 2021111620145409000_33.19-20.1346.4 2021111620145409000_33.19-20.1346.62 2021111620145409000_33.19-20.1346.3 2021111620145409000_33.19-20.1346.61 |
References_xml | – ident: 2021111620145409000_33.19-20.1346.4 doi: 10.1101/gad.278275.116 – ident: 2021111620145409000_33.19-20.1346.43 doi: 10.1038/nature08593 – ident: 2021111620145409000_33.19-20.1346.31 doi: 10.1093/nar/gks484 – ident: 2021111620145409000_33.19-20.1346.75 doi: 10.1098/rstb.2016.0282 – ident: 2021111620145409000_33.19-20.1346.49 doi: 10.1016/j.molcel.2019.01.005 – ident: 2021111620145409000_33.19-20.1346.41 doi: 10.1073/pnas.1303111110 – ident: 2021111620145409000_33.19-20.1346.54 doi: 10.1038/sj.emboj.7601158 – ident: 2021111620145409000_33.19-20.1346.40 doi: 10.1093/nar/gkp1008 – ident: 2021111620145409000_33.19-20.1346.25 doi: 10.1038/nrm3478 – ident: 2021111620145409000_33.19-20.1346.64 doi: 10.1016/j.molcel.2010.08.028 – ident: 2021111620145409000_33.19-20.1346.67 doi: 10.1128/JVI.01273-12 – ident: 2021111620145409000_33.19-20.1346.78 doi: 10.1016/j.molcel.2017.04.017 – ident: 2021111620145409000_33.19-20.1346.74 doi: 10.1038/s41467-018-07364-x – ident: 2021111620145409000_33.19-20.1346.58 doi: 10.1371/journal.pgen.1000858 – ident: 2021111620145409000_33.19-20.1346.53 doi: 10.1007/s00412-017-0658-1 – ident: 2021111620145409000_33.19-20.1346.37 doi: 10.1038/emboj.2013.24 – ident: 2021111620145409000_33.19-20.1346.51 doi: 10.1371/journal.pgen.1007942 – ident: 2021111620145409000_33.19-20.1346.59 doi: 10.1016/j.tibs.2015.02.006 – ident: 2021111620145409000_33.19-20.1346.21 doi: 10.1016/j.molcel.2014.11.014 – ident: 2021111620145409000_33.19-20.1346.19 doi: 10.15252/embr.201440017 – ident: 2021111620145409000_33.19-20.1346.6 doi: 10.1016/j.celrep.2016.06.015 – ident: 2021111620145409000_33.19-20.1346.15 doi: 10.1016/j.molcel.2015.01.022 – ident: 2021111620145409000_33.19-20.1346.82 doi: 10.1101/gad.238535.114 – ident: 2021111620145409000_33.19-20.1346.84 doi: 10.1074/mcp.O114.044792 – ident: 2021111620145409000_33.19-20.1346.69 doi: 10.1038/s41467-017-00183-6 – ident: 2021111620145409000_33.19-20.1346.73 doi: 10.1534/genetics.114.166140 – ident: 2021111620145409000_33.19-20.1346.17 doi: 10.1038/nature08657 – ident: 2021111620145409000_33.19-20.1346.35 doi: 10.1083/jcb.201010117 – ident: 2021111620145409000_33.19-20.1346.23 doi: 10.1074/jbc.M512757200 – ident: 2021111620145409000_33.19-20.1346.12 doi: 10.1074/jbc.RA118.006006 – ident: 2021111620145409000_33.19-20.1346.47 doi: 10.1016/j.molcel.2005.06.001 – ident: 2021111620145409000_33.19-20.1346.20 doi: 10.1080/10409238.2018.1488803 – ident: 2021111620145409000_33.19-20.1346.7 doi: 10.1016/j.cell.2006.08.050 – ident: 2021111620145409000_33.19-20.1346.34 doi: 10.1093/nar/gks270 – ident: 2021111620145409000_33.19-20.1346.79 doi: 10.1016/j.molcel.2012.02.017 – ident: 2021111620145409000_33.19-20.1346.80 doi: 10.1101/sqb.2015.80.027649 – ident: 2021111620145409000_33.19-20.1346.33 doi: 10.1534/genetics.116.196568 – ident: 2021111620145409000_33.19-20.1346.9 doi: 10.1093/nar/gkv1523 – ident: 2021111620145409000_33.19-20.1346.85 doi: 10.1371/journal.pone.0051540 – ident: 2021111620145409000_33.19-20.1346.65 doi: 10.1242/jcs.133744 – ident: 2021111620145409000_33.19-20.1346.1 doi: 10.1093/nar/gkq195 – ident: 2021111620145409000_33.19-20.1346.70 doi: 10.1038/nature01965 – ident: 2021111620145409000_33.19-20.1346.62 doi: 10.1038/nrm.2016.58 – ident: 2021111620145409000_33.19-20.1346.48 doi: 10.1038/nature03665 – ident: 2021111620145409000_33.19-20.1346.3 doi: 10.1038/ncb2729 – ident: 2021111620145409000_33.19-20.1346.10 doi: 10.1101/gad.265058.115 – ident: 2021111620145409000_33.19-20.1346.71 doi: 10.1038/nature19071 – ident: 2021111620145409000_33.19-20.1346.44 doi: 10.3390/biom6010014 – ident: 2021111620145409000_33.19-20.1346.83 doi: 10.1038/sj.emboj.7600394 – ident: 2021111620145409000_33.19-20.1346.2 doi: 10.1371/journal.pone.0214102 – ident: 2021111620145409000_33.19-20.1346.42 doi: 10.1016/j.molcel.2011.11.010 – ident: 2021111620145409000_33.19-20.1346.76 doi: 10.1038/ncb1619 – ident: 2021111620145409000_33.19-20.1346.32 doi: 10.1074/jbc.M115.685891 – ident: 2021111620145409000_33.19-20.1346.26 doi: 10.1038/nature00991 – ident: 2021111620145409000_33.19-20.1346.60 doi: 10.1016/j.celrep.2014.08.054 – ident: 2021111620145409000_33.19-20.1346.39 doi: 10.7554/eLife.22195 – ident: 2021111620145409000_33.19-20.1346.55 doi: 10.1074/jbc.M009476200 – ident: 2021111620145409000_33.19-20.1346.8 doi: 10.1038/emboj.2013.9 – ident: 2021111620145409000_33.19-20.1346.66 doi: 10.1016/j.dnarep.2016.04.001 – ident: 2021111620145409000_33.19-20.1346.27 doi: 10.1080/15384101.2017.1302628 – ident: 2021111620145409000_33.19-20.1346.29 doi: 10.1146/annurev.biochem.73.011303.074118 – ident: 2021111620145409000_33.19-20.1346.38 doi: 10.1016/j.celrep.2016.05.007 – ident: 2021111620145409000_33.19-20.1346.57 doi: 10.1074/jbc.M100006200 – ident: 2021111620145409000_33.19-20.1346.63 doi: 10.1016/j.gde.2016.10.005 – ident: 2021111620145409000_33.19-20.1346.16 doi: 10.1146/annurev-biochem-061909-093311 – ident: 2021111620145409000_33.19-20.1346.77 doi: 10.1101/gad.265629.115 – ident: 2021111620145409000_33.19-20.1346.72 doi: 10.3109/10409238.2016.1172552 – ident: 2021111620145409000_33.19-20.1346.11 doi: 10.1016/j.molcel.2011.11.028 – ident: 2021111620145409000_33.19-20.1346.13 doi: 10.1016/j.molcel.2010.07.021 – ident: 2021111620145409000_33.19-20.1346.14 doi: 10.1371/journal.pgen.1003833 – ident: 2021111620145409000_33.19-20.1346.56 doi: 10.1038/ncb1488 – ident: 2021111620145409000_33.19-20.1346.86 doi: 10.1073/pnas.0500537102 – ident: 2021111620145409000_33.19-20.1346.28 doi: 10.1093/hmg/ddp478 – ident: 2021111620145409000_33.19-20.1346.46 doi: 10.1016/j.molcel.2014.11.015 – ident: 2021111620145409000_33.19-20.1346.81 doi: 10.1016/j.ceb.2016.02.018 – ident: 2021111620145409000_33.19-20.1346.50 doi: 10.1515/bmc-2016-0030 – ident: 2021111620145409000_33.19-20.1346.18 doi: 10.1098/rstb.2016.0281 – ident: 2021111620145409000_33.19-20.1346.5 doi: 10.1080/15384101.2015.1060381 – ident: 2021111620145409000_33.19-20.1346.45 doi: 10.3389/fgene.2013.00167 – ident: 2021111620145409000_33.19-20.1346.30 doi: 10.1371/journal.pone.0080442 – ident: 2021111620145409000_33.19-20.1346.22 doi: 10.1146/annurev-genet-120215-035043 – ident: 2021111620145409000_33.19-20.1346.36 doi: 10.1093/nar/gkn441 – ident: 2021111620145409000_33.19-20.1346.61 doi: 10.1371/journal.pgen.1004899 – ident: 2021111620145409000_33.19-20.1346.52 doi: 10.1016/j.cell.2012.10.021 – ident: 2021111620145409000_33.19-20.1346.68 doi: 10.1073/pnas.0403498101 – ident: 2021111620145409000_33.19-20.1346.24 doi: 10.1101/cshperspect.a016501 |
SSID | ssj0006066 |
Score | 2.3902998 |
SecondaryResourceType | review_article |
Snippet | The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair,... In this review, Dhingra et al. discuss the roles of SUMO in light of its newly identified effects on recombinational repair, and present further thoughts on... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1346 |
SubjectTerms | Animals Gene Expression Regulation - genetics Homologous Recombination - genetics Humans Rad51 Recombinase - metabolism Review SUMO-1 Protein - metabolism Sumoylation |
Title | Intricate SUMO-based control of the homologous recombination machinery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31575678 https://www.proquest.com/docview/2300178851 https://pubmed.ncbi.nlm.nih.gov/PMC6771382 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCNQL4s3yUpCQOFQuSWzH8REVqhYocGilvUV-pa3UzVawPZRfz_gRJ9mCBL1EG6831vr7Mp4Zj2cQetMWqrSUK0xBnca0lgbXmhVYM9MaK2ojfLWGg6_V3hH9NGfzYSvGny5ZqW3964_nSq6DKrQBru6U7H8gmx4KDfAZ8IUrIAzXf8J4v1v5Kj92C4TjN-xWJJOCz-Pm_8ly4eSbi3R1xu8CLOGA-cKHUa4diXZZqH96Opghmigpu85b5esSgVB2JypHXmfvcZ2fSrCUu7EnoRApJi0G9CzPQMX17kR3gggouPUlENHt9o8jQrxwEjl2xQDDOhKFJxWY0ViWJUrXkOaiZ5HAZT4SlwWJ_kcbb0NC6ati3ZcTOJZmm5SgX1BoEeOOAMv5woNMCtA_q1AVaC2R9veDnYpzl3PxJrpVglXhCl582P-cFm5ny3mjI_61mOMTBn83HXoT3enHmaozV2yU9VDbke5yeA_djUZH9j4w6D66YbsH6HYoQ3r5EO0mHmUDj7LIo2zZZsCjbOBRNuFRlnj0CB3tfjzc2cOxvgbWhAMUSkjJa6KJqllVC1kxw6iiLJdEEdvCa6xrXpqWGUUKRVuuqdbGGFYX0tnh5DHa6JadfYoyKRmtcqtLLjW1tVbSSp6bvFXWSqrFDOF-mhodk8-7GihnjTdC86KBGW7CDMM99H-b-p-HtCt_7fm6n_UGJKPb7pKdhclowLiG5aYGk2KGngQU0rN6-GaIT_BJHVzW9ek33emJz74eOfTs2r98jjaHt-8F2lj9uLAvQbNdqVeej78BvzKmrw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intricate+SUMO-based+control+of+the+homologous+recombination+machinery&rft.jtitle=Genes+%26+development&rft.au=Dhingra%2C+Nalini&rft.au=Zhao%2C+Xiaolan&rft.date=2019-10-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=33&rft.issue=19-20&rft.spage=1346&rft.epage=1354&rft_id=info:doi/10.1101%2Fgad.328534.119&rft_id=info%3Apmid%2F31575678&rft.externalDocID=PMC6771382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |