Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data
Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this proble...
Saved in:
Published in | Geocarto international Vol. 38; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2023
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy. |
---|---|
AbstractList | Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy. |
Author | Zhang, Guanghe Kang, Ruihong Hu, Hong Wang, Chunlin Wu, Yanlan Ao, Jianfeng |
Author_xml | – sequence: 1 givenname: Hong surname: Hu fullname: Hu, Hong organization: Anhui Province Engineering Laboratory for Mine Ecological Remediation – sequence: 2 givenname: Guanghe surname: Zhang fullname: Zhang, Guanghe organization: School of Resource and Environmental Engineering, Anhui University – sequence: 3 givenname: Jianfeng surname: Ao fullname: Ao, Jianfeng organization: School of Civil Engineering and Surveying Engineering, Jiangxi University of Science and Technology – sequence: 4 givenname: Chunlin surname: Wang fullname: Wang, Chunlin organization: Anhui & Huaihe River Institute of Hydraulic Research – sequence: 5 givenname: Ruihong surname: Kang fullname: Kang, Ruihong organization: School of Resource and Environmental Engineering, Anhui University – sequence: 6 givenname: Yanlan surname: Wu fullname: Wu, Yanlan organization: Anhui Engineering Research Center for Geographical Information Intelligent Technology |
BookMark | eNqFkUtr3TAQhUVJoHn0JxS8LATf6mVbopuGJG0CN0kpWXQnRvKoVbCtVJIp-ff1fWTTRbqaYfjOmWHOMTmY4oSEvGd0xaiiHxlltKVSrzjlfMVZIzTXb8gR6xpe067lB0u_MPUGekuOc36kVHSqFUfkx-08lFCHycc0Qglxqr7FMJU7LGdnlZ_zZjJi-RX7akGqy6vbysUplzS7Le1THCsIycY0YbUOl-ffqx4KnJJDD0PGd_t6Qh6-XD1cXNfr-683F-fr2omO6Zpp6q1oXYPeSquRo2t91_EGPPSiawTTCmXbo_eKSdugoxJ67ZB1WiorTsjNzraP8GieUhghPZsIwWwHMf00kEpwAxqrUOlliWq5lq20AD1v1LJMWqYk4OL1Yef1lOLvGXMxY8gOhwEmjHM2gkoqNGVcL-inHepSzDmhNy6U7ftKgjAYRs0mGvMSjdlEY_bRLOrmH_XL4f_Tfd7p9nH9iWnoTYHnISafYHJhOfJ1i7_Jk6br |
CitedBy_id | crossref_primary_10_3390_rs15164105 crossref_primary_10_3390_land13111924 crossref_primary_10_3390_rs16173131 crossref_primary_10_1111_phor_12476 crossref_primary_10_3390_rs16010115 |
Cites_doi | 10.1109/ACCESS.2019.2905546 10.1109/JSTARS.2013.2262996 10.1016/j.isprsjprs.2011.10.002 10.3390/rs11091037 10.5194/isprs-annals-V-2-2020-203-2020 10.3390/rs8010035 10.1109/CVPR42600.2020.01112 10.1016/S0924-2716(99)00008-8 10.3390/rs13030472 10.23919/ICCAS50221.2020.9268197 10.1109/ACCESS.2019.2926497 10.1016/j.isprsjprs.2014.02.014 10.1109/ICCV.2017.99 10.1016/j.optlastec.2018.10.051 10.1016/j.isprsjprs.2020.03.016 10.1016/j.apsusc.2019.03.050 10.3390/rs8060501 10.1016/j.isprsjprs.2021.01.007 10.1016/j.isprsjprs.2013.05.001 10.1016/j.isprsjprs.2020.02.004 10.1016/j.isprsjprs.2021.04.017 10.1016/S0924-2716(98)00009-4 10.1109/TGRS.2003.810682 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/10106049.2022.2153929 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Physics |
EISSN | 1752-0762 |
ExternalDocumentID | oai_doaj_org_article_b8e89b4b8629464baad258f774b184ae 10_1080_10106049_2022_2153929 2153929 |
Genre | Research Article |
GrantInformation_xml | – fundername: China Scholarship Council – fundername: National Natural Science Foundation of China grantid: 41704036; 41971311 – fundername: National Natural Science Foundation of China |
GroupedDBID | .7F .QJ 0BK 0YH 30N 4.4 5GY 5VS AAENE AAHBH AAJMT ABCCY ABFIM ABHAV ABJNI ABPAQ ABPEM ABTAI ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GROUPED_DOAJ GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P RIG ROSJB S-T SJN SNACF TDBHL TFL TFT TFW TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ~02 ~S~ AAYXX AFRVT AIYEW CITATION NX~ 7S9 L.6 |
ID | FETCH-LOGICAL-c3719-190fb36c5efb4b9e2ec6f7725afad3753198e46deff814b5ec04ad9ce17948b3 |
IEDL.DBID | DOA |
ISSN | 1010-6049 1752-0762 |
IngestDate | Wed Aug 27 01:19:07 EDT 2025 Wed Jul 02 04:40:56 EDT 2025 Tue Jul 01 01:58:20 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Wed Dec 25 09:04:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3719-190fb36c5efb4b9e2ec6f7725afad3753198e46deff814b5ec04ad9ce17948b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/b8e89b4b8629464baad258f774b184ae |
PQID | 3040390129 |
PQPubID | 24069 |
ParticipantIDs | crossref_citationtrail_10_1080_10106049_2022_2153929 proquest_miscellaneous_3040390129 crossref_primary_10_1080_10106049_2022_2153929 doaj_primary_oai_doaj_org_article_b8e89b4b8629464baad258f774b184ae informaworld_taylorfrancis_310_1080_10106049_2022_2153929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231231 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231231 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Geocarto international |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_4_4_1 e_1_3_4_2_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_26_1 e_1_3_4_29_1 Yang B (e_1_3_4_31_1) 2017; 46 Brzank A (e_1_3_4_5_1) 2006; 36 Qi CR (e_1_3_4_23_1) 2017; 30 Li Y (e_1_3_4_18_1) 2018 e_1_3_4_30_1 Vosselman G. (e_1_3_4_25_1) 2000; 33 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 Chen YF (e_1_3_4_9_1) 2014; 31 e_1_3_4_15_1 Qi CR (e_1_3_4_22_1) 2017 e_1_3_4_19_1 Axelsson P. (e_1_3_4_3_1) 2000; 33 |
References_xml | – ident: e_1_3_4_30_1 doi: 10.1109/ACCESS.2019.2905546 – ident: e_1_3_4_21_1 doi: 10.1109/JSTARS.2013.2262996 – ident: e_1_3_4_20_1 doi: 10.1016/j.isprsjprs.2011.10.002 – ident: e_1_3_4_6_1 doi: 10.3390/rs11091037 – start-page: 652 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2017 ident: e_1_3_4_22_1 – ident: e_1_3_4_4_1 doi: 10.5194/isprs-annals-V-2-2020-203-2020 – ident: e_1_3_4_12_1 doi: 10.3390/rs8010035 – ident: e_1_3_4_14_1 doi: 10.1109/CVPR42600.2020.01112 – ident: e_1_3_4_2_1 doi: 10.1016/S0924-2716(99)00008-8 – ident: e_1_3_4_8_1 doi: 10.3390/rs13030472 – ident: e_1_3_4_24_1 doi: 10.23919/ICCAS50221.2020.9268197 – volume: 33 start-page: 935 issue: 3 year: 2000 ident: e_1_3_4_25_1 article-title: Slope based filtering of laser altimetry data publication-title: Int Arch Photogramm Remote Sens – ident: e_1_3_4_10_1 doi: 10.1109/ACCESS.2019.2926497 – ident: e_1_3_4_13_1 doi: 10.1016/j.isprsjprs.2014.02.014 – start-page: 828 volume-title: Advances in Neural Information Processing Systems year: 2018 ident: e_1_3_4_18_1 – ident: e_1_3_4_17_1 doi: 10.1109/ICCV.2017.99 – ident: e_1_3_4_11_1 doi: 10.1016/j.optlastec.2018.10.051 – ident: e_1_3_4_19_1 doi: 10.1016/j.isprsjprs.2020.03.016 – volume: 31 start-page: 603 issue: 6 year: 2014 ident: e_1_3_4_9_1 article-title: LiDAR points cloud filtering method based on adaptive morphological publication-title: J Geomat Sci Technol – ident: e_1_3_4_27_1 doi: 10.1016/j.apsusc.2019.03.050 – ident: e_1_3_4_33_1 doi: 10.3390/rs8060501 – volume: 36 start-page: 197 year: 2006 ident: e_1_3_4_5_1 article-title: Classification of Lidar data into water and land points in coastal areas publication-title: Remote Sens Spatial Inform Sci – ident: e_1_3_4_28_1 doi: 10.1016/j.isprsjprs.2021.01.007 – volume: 33 start-page: 110 issue: 4 year: 2000 ident: e_1_3_4_3_1 article-title: DEM generation from laser scanner data using adaptive TIN models publication-title: Int Arch Photogramm Remote Sens – volume: 46 start-page: 1509 issue: 10 year: 2017 ident: e_1_3_4_31_1 article-title: Progress, challenges and perspectives of 3D LiDAR point cloud processing publication-title: Acta Geodaet Cartograph Sin – ident: e_1_3_4_7_1 doi: 10.1016/j.isprsjprs.2013.05.001 – ident: e_1_3_4_26_1 – ident: e_1_3_4_29_1 doi: 10.1016/j.isprsjprs.2020.02.004 – volume: 30 year: 2017 ident: e_1_3_4_23_1 article-title: Pointnet++: deep hierarchical feature learning on point sets in a metric space publication-title: Adv Neur Inform Process Syst – ident: e_1_3_4_15_1 doi: 10.1016/j.isprsjprs.2021.04.017 – ident: e_1_3_4_16_1 doi: 10.1016/S0924-2716(98)00009-4 – ident: e_1_3_4_32_1 doi: 10.1109/TGRS.2003.810682 |
SSID | ssj0037863 |
Score | 2.2977712 |
Snippet | Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | algorithms data collection deep learning Digital elevation model digital elevation models landscapes lidar light detection and ranging photogrammetry PointNet surveys |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI9gCLELggHibYCCxG3q1DZO2hzHYHpCMCE0pHGqktSBJ6EW7b0d9t_PTtPxJbQDp0pVHDV2bMep_bMQr6q-jsZAVZjaqwJCQ3bQl7aIOkCEqExM2J0fTszyM7w703M24TqnVXIMHSegiGSrWbmdX88ZcfSsGPKFy0zq-oB8Fvv42-IOeeKSmxiUX5azMVZNa6YcezI3TDMX8fxrmt_cU0Lx_wPD9C-bnRzR8QNxP58g5eEk8ofiFg474l5uZv7tckfcTVmdYf1InKXy2iJPzCKQH8fVsDnBzf6-jBd8UyanHtKShkgSigzjT0xZycUn0q3OaaMMKN-v3hx-kpxT-licHr89PVoWuZVCEVRT2YLcfvTKBI3Rg7dYYzCRDtbaRderhhWxRTA9xthW4DWGElxvA7K-tl49EVvDOOBTIb0ONY2gsMx7ABVaQBsRNOoSmuj1QsDMwC5kmHHudvG9qzIa6cz3jvneZb4vxME12Y8JZ-MmgtcsnevBDJOdXoznX7usdZ1vsbW0YArbLBjwzvW1bmnh4CmydbgQ9lfZdpt0SxKnliaduuEDXs4boSOV5P8sbsDxgujIMPJVUm13_2P-PbHNre0nUMlnYotEj8_pALTxL9IWvwK0i_c_ priority: 102 providerName: Taylor & Francis |
Title | Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data |
URI | https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2153929 https://www.proquest.com/docview/3040390129 https://doaj.org/article/b8e89b4b8629464baad258f774b184ae |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9aEL2IVsXnR4ngrWy7m0yyybF-lIdoEanwPIVNdoIPyj7R14P_vTOb3Vr18C5eQ7KEXybzkZ35jRAvm15la6GprIq6gtSSHoy1r7JJkCFrm0fuzg9ndvkZ3q3M6lqrL84JK_TABbjj6ND5CJE8bw8WYtf1yrhMXkuk4KRD1r5k8-Zgquhg3TpbUutJy1hygufaHVcf8xgPUWyo1BFZPPYQ_rBKI3n_X9Sl_6jq0f6c3hN3J8dRnpQN3xc3cNgXt6ce5l9_7otbYzJn-vFArMaq2mr6MCMvP27Ww_YMt4eHMl_yA5ksraMlTZF0FjJtflPJSq45kd36O8nHgPL9-s3JJ8mppA_F-enb89fLauqgUCXdNr4ia5-jtslgJgg9KkyWoFOmy12vW75_DsH2mLNrIBpMNXS9T8jX1EX9SOwNmwEfCxlNUjSDorEYAXRygD4jGDQ1tDmahYAZwJAmdnFucnERmomEdMY9MO5hwn0hjq6WfSv0GrsWvOLTuZrM7NjjAMlMmGQm7JKZhfDXzzZsx8eRXDqZBL1jAy9mQQh0E_n3Sjfg5pLWkT7kFyTln_yPTT4Vd7i1fSGVfCb2SAbwOTlA23ggbtZflgejxP8C6Ab7rA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VItReeBRQl6eR4FRltfEr8YFDoVRbul0htEh7s2LHhhUoQe2uUPlX_BV-ETN5FChCPaAeOEVKbMuPb2ZsZ-YbgKdpyaPWMk00dyKRPkM96EYmicrLKKPQseHuPJrq8Tv5eq7ma_Ctj4Uht0o6Q8eWKKLR1STcdBndu8ThMyXOF4oz4XyIRouMfOdYeRhOv-Cx7eT5wR6u8TPO91_NXo6TLrNA4kWWmgStYHRCexWik84EHryOuM9URSxKkREu8yB1GWLMU-lU8CNZlMYHgm_uBDZ7Ba4qozMSLTGa9spfZLluffpRvVEX-6Chv_X6N3PYZA04x5n6h41oDN_-DfjeT1nr7_JxuFq6of96jk3yv5rTm3C924az3VZubsFaqLZgo8sI_-F0C641rrH-5DbMmxjlpJstwjF7Uy-q5TQsd3ZYXNF1I2sTcTMswhDZzNc_iXkZRfCwYnGM0lYFNlns7b5l5Jh7B2aXMcK7sF7VVdgG5pTnWALPts5JKXwug4lBqqBGMotODUD2qLC-42qnlCGfbNpRuvbLZWm5bLdcAxieVfvckpVcVOEFQe6sMHGNNy_q4_e2U13W5SE3OGA8-xqppSuKkqscBy5dmssiDMD8Cli7bK6aYpsXxooLOvCkR7dFvUY_q4oq1Cush9aF7uO4ufcP7T-GjfHsaGInB9PD-7CJn0TL0vkA1hEG4SHuKJfuUSPDDOwl4_sHG9B10w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIqAXHqWoS3kYCU5VVhu_khx6KCyrlpZVhYq0Nyt2bFiBkqrNqmp_FX-Ff8RMHgWKUA-oB06REtvy4_OMx5n5BuBlXPCgtYwjza2IpEtQDtpRFgXlZJBB6NBwd76f6p2P8t1MzZbgWx8LQ26VZEOHliiikdW0uY-K0HvE4TMmyhcKM-F8iDqLdHznV7nnz07RajvZ2h3jEr_ifPL28M1O1CUWiJxI4ixCJRis0E75YKXNPPdOBzxmqjzkhUgIlqmXuvAhpLG0yruRzIvMeUJvagU2ewNuaorrpKCR0bSX_SJJdevSj9KNutjHDP2t179pwyZpwCXK1D9URKP3Jvfgez9jrbvLl-GitkN3folM8n-a0vtwtzuEs-121zyAJV-uwp0uH_zns1W41TjGupOHMGsilKNusgjF7KCal_XU15ubLCzospG1abgZFmGIa-aqn7S8jOJ3WD4_xr1WerY_H29_YOSWuwaH1zHCR7BcVqVfB2aV41gCLVtrpRQulT4LXiqvRjIJVg1A9qAwrmNqp4QhX03cEbr2y2VouUy3XAMYXlQ7aqlKrqrwmhB3UZiYxpsX1fEn0wkuY1OfZjhgtHwzqaXN84KrFAcubZzK3A8g-xWvpm4umkKbFcaIKzrwoge3QalGv6ry0lcLrIe6hW7jePb4H9p_DrcPxhOzvzvd24AV_CJais4nsIwo8E_xOFnbZ80OZmCuGd4_AO9MdHc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-information+PointNet%2B%2B+fusion+method+for+DEM+construction+from+airborne+LiDAR+data&rft.jtitle=Geocarto+international&rft.au=Hu%2C+Hong&rft.au=Zhang%2C+Guanghe&rft.au=Ao%2C+Jianfeng&rft.au=Wang%2C+Chunlin&rft.date=2023-12-31&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=38&rft.issue=1&rft_id=info:doi/10.1080%2F10106049.2022.2153929&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2022_2153929 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon |