Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data

Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this proble...

Full description

Saved in:
Bibliographic Details
Published inGeocarto international Vol. 38; no. 1
Main Authors Hu, Hong, Zhang, Guanghe, Ao, Jianfeng, Wang, Chunlin, Kang, Ruihong, Wu, Yanlan
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2023
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy.
AbstractList Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy.
Author Zhang, Guanghe
Kang, Ruihong
Hu, Hong
Wang, Chunlin
Wu, Yanlan
Ao, Jianfeng
Author_xml – sequence: 1
  givenname: Hong
  surname: Hu
  fullname: Hu, Hong
  organization: Anhui Province Engineering Laboratory for Mine Ecological Remediation
– sequence: 2
  givenname: Guanghe
  surname: Zhang
  fullname: Zhang, Guanghe
  organization: School of Resource and Environmental Engineering, Anhui University
– sequence: 3
  givenname: Jianfeng
  surname: Ao
  fullname: Ao, Jianfeng
  organization: School of Civil Engineering and Surveying Engineering, Jiangxi University of Science and Technology
– sequence: 4
  givenname: Chunlin
  surname: Wang
  fullname: Wang, Chunlin
  organization: Anhui & Huaihe River Institute of Hydraulic Research
– sequence: 5
  givenname: Ruihong
  surname: Kang
  fullname: Kang, Ruihong
  organization: School of Resource and Environmental Engineering, Anhui University
– sequence: 6
  givenname: Yanlan
  surname: Wu
  fullname: Wu, Yanlan
  organization: Anhui Engineering Research Center for Geographical Information Intelligent Technology
BookMark eNqFkUtr3TAQhUVJoHn0JxS8LATf6mVbopuGJG0CN0kpWXQnRvKoVbCtVJIp-ff1fWTTRbqaYfjOmWHOMTmY4oSEvGd0xaiiHxlltKVSrzjlfMVZIzTXb8gR6xpe067lB0u_MPUGekuOc36kVHSqFUfkx-08lFCHycc0Qglxqr7FMJU7LGdnlZ_zZjJi-RX7akGqy6vbysUplzS7Le1THCsIycY0YbUOl-ffqx4KnJJDD0PGd_t6Qh6-XD1cXNfr-683F-fr2omO6Zpp6q1oXYPeSquRo2t91_EGPPSiawTTCmXbo_eKSdugoxJ67ZB1WiorTsjNzraP8GieUhghPZsIwWwHMf00kEpwAxqrUOlliWq5lq20AD1v1LJMWqYk4OL1Yef1lOLvGXMxY8gOhwEmjHM2gkoqNGVcL-inHepSzDmhNy6U7ftKgjAYRs0mGvMSjdlEY_bRLOrmH_XL4f_Tfd7p9nH9iWnoTYHnISafYHJhOfJ1i7_Jk6br
CitedBy_id crossref_primary_10_3390_rs15164105
crossref_primary_10_3390_land13111924
crossref_primary_10_3390_rs16173131
crossref_primary_10_1111_phor_12476
crossref_primary_10_3390_rs16010115
Cites_doi 10.1109/ACCESS.2019.2905546
10.1109/JSTARS.2013.2262996
10.1016/j.isprsjprs.2011.10.002
10.3390/rs11091037
10.5194/isprs-annals-V-2-2020-203-2020
10.3390/rs8010035
10.1109/CVPR42600.2020.01112
10.1016/S0924-2716(99)00008-8
10.3390/rs13030472
10.23919/ICCAS50221.2020.9268197
10.1109/ACCESS.2019.2926497
10.1016/j.isprsjprs.2014.02.014
10.1109/ICCV.2017.99
10.1016/j.optlastec.2018.10.051
10.1016/j.isprsjprs.2020.03.016
10.1016/j.apsusc.2019.03.050
10.3390/rs8060501
10.1016/j.isprsjprs.2021.01.007
10.1016/j.isprsjprs.2013.05.001
10.1016/j.isprsjprs.2020.02.004
10.1016/j.isprsjprs.2021.04.017
10.1016/S0924-2716(98)00009-4
10.1109/TGRS.2003.810682
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/10106049.2022.2153929
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
EISSN 1752-0762
ExternalDocumentID oai_doaj_org_article_b8e89b4b8629464baad258f774b184ae
10_1080_10106049_2022_2153929
2153929
Genre Research Article
GrantInformation_xml – fundername: China Scholarship Council
– fundername: National Natural Science Foundation of China
  grantid: 41704036; 41971311
– fundername: National Natural Science Foundation of China
GroupedDBID .7F
.QJ
0BK
0YH
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
ABCCY
ABFIM
ABHAV
ABJNI
ABPAQ
ABPEM
ABTAI
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
ROSJB
S-T
SJN
SNACF
TDBHL
TFL
TFT
TFW
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
~02
~S~
AAYXX
AFRVT
AIYEW
CITATION
NX~
7S9
L.6
ID FETCH-LOGICAL-c3719-190fb36c5efb4b9e2ec6f7725afad3753198e46deff814b5ec04ad9ce17948b3
IEDL.DBID DOA
ISSN 1010-6049
1752-0762
IngestDate Wed Aug 27 01:19:07 EDT 2025
Wed Jul 02 04:40:56 EDT 2025
Tue Jul 01 01:58:20 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Dec 25 09:04:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3719-190fb36c5efb4b9e2ec6f7725afad3753198e46deff814b5ec04ad9ce17948b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/b8e89b4b8629464baad258f774b184ae
PQID 3040390129
PQPubID 24069
ParticipantIDs crossref_citationtrail_10_1080_10106049_2022_2153929
proquest_miscellaneous_3040390129
crossref_primary_10_1080_10106049_2022_2153929
doaj_primary_oai_doaj_org_article_b8e89b4b8629464baad258f774b184ae
informaworld_taylorfrancis_310_1080_10106049_2022_2153929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231231
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 20231231
  day: 31
PublicationDecade 2020
PublicationTitle Geocarto international
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_26_1
e_1_3_4_29_1
Yang B (e_1_3_4_31_1) 2017; 46
Brzank A (e_1_3_4_5_1) 2006; 36
Qi CR (e_1_3_4_23_1) 2017; 30
Li Y (e_1_3_4_18_1) 2018
e_1_3_4_30_1
Vosselman G. (e_1_3_4_25_1) 2000; 33
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
Chen YF (e_1_3_4_9_1) 2014; 31
e_1_3_4_15_1
Qi CR (e_1_3_4_22_1) 2017
e_1_3_4_19_1
Axelsson P. (e_1_3_4_3_1) 2000; 33
References_xml – ident: e_1_3_4_30_1
  doi: 10.1109/ACCESS.2019.2905546
– ident: e_1_3_4_21_1
  doi: 10.1109/JSTARS.2013.2262996
– ident: e_1_3_4_20_1
  doi: 10.1016/j.isprsjprs.2011.10.002
– ident: e_1_3_4_6_1
  doi: 10.3390/rs11091037
– start-page: 652
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2017
  ident: e_1_3_4_22_1
– ident: e_1_3_4_4_1
  doi: 10.5194/isprs-annals-V-2-2020-203-2020
– ident: e_1_3_4_12_1
  doi: 10.3390/rs8010035
– ident: e_1_3_4_14_1
  doi: 10.1109/CVPR42600.2020.01112
– ident: e_1_3_4_2_1
  doi: 10.1016/S0924-2716(99)00008-8
– ident: e_1_3_4_8_1
  doi: 10.3390/rs13030472
– ident: e_1_3_4_24_1
  doi: 10.23919/ICCAS50221.2020.9268197
– volume: 33
  start-page: 935
  issue: 3
  year: 2000
  ident: e_1_3_4_25_1
  article-title: Slope based filtering of laser altimetry data
  publication-title: Int Arch Photogramm Remote Sens
– ident: e_1_3_4_10_1
  doi: 10.1109/ACCESS.2019.2926497
– ident: e_1_3_4_13_1
  doi: 10.1016/j.isprsjprs.2014.02.014
– start-page: 828
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: e_1_3_4_18_1
– ident: e_1_3_4_17_1
  doi: 10.1109/ICCV.2017.99
– ident: e_1_3_4_11_1
  doi: 10.1016/j.optlastec.2018.10.051
– ident: e_1_3_4_19_1
  doi: 10.1016/j.isprsjprs.2020.03.016
– volume: 31
  start-page: 603
  issue: 6
  year: 2014
  ident: e_1_3_4_9_1
  article-title: LiDAR points cloud filtering method based on adaptive morphological
  publication-title: J Geomat Sci Technol
– ident: e_1_3_4_27_1
  doi: 10.1016/j.apsusc.2019.03.050
– ident: e_1_3_4_33_1
  doi: 10.3390/rs8060501
– volume: 36
  start-page: 197
  year: 2006
  ident: e_1_3_4_5_1
  article-title: Classification of Lidar data into water and land points in coastal areas
  publication-title: Remote Sens Spatial Inform Sci
– ident: e_1_3_4_28_1
  doi: 10.1016/j.isprsjprs.2021.01.007
– volume: 33
  start-page: 110
  issue: 4
  year: 2000
  ident: e_1_3_4_3_1
  article-title: DEM generation from laser scanner data using adaptive TIN models
  publication-title: Int Arch Photogramm Remote Sens
– volume: 46
  start-page: 1509
  issue: 10
  year: 2017
  ident: e_1_3_4_31_1
  article-title: Progress, challenges and perspectives of 3D LiDAR point cloud processing
  publication-title: Acta Geodaet Cartograph Sin
– ident: e_1_3_4_7_1
  doi: 10.1016/j.isprsjprs.2013.05.001
– ident: e_1_3_4_26_1
– ident: e_1_3_4_29_1
  doi: 10.1016/j.isprsjprs.2020.02.004
– volume: 30
  year: 2017
  ident: e_1_3_4_23_1
  article-title: Pointnet++: deep hierarchical feature learning on point sets in a metric space
  publication-title: Adv Neur Inform Process Syst
– ident: e_1_3_4_15_1
  doi: 10.1016/j.isprsjprs.2021.04.017
– ident: e_1_3_4_16_1
  doi: 10.1016/S0924-2716(98)00009-4
– ident: e_1_3_4_32_1
  doi: 10.1109/TGRS.2003.810682
SSID ssj0037863
Score 2.2977712
Snippet Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms algorithms
data collection
deep learning
Digital elevation model
digital elevation models
landscapes
lidar
light detection and ranging
photogrammetry
PointNet
surveys
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDI9gCLELggHibYCCxG3q1DZO2hzHYHpCMCE0pHGqktSBJ6EW7b0d9t_PTtPxJbQDp0pVHDV2bMep_bMQr6q-jsZAVZjaqwJCQ3bQl7aIOkCEqExM2J0fTszyM7w703M24TqnVXIMHSegiGSrWbmdX88ZcfSsGPKFy0zq-oB8Fvv42-IOeeKSmxiUX5azMVZNa6YcezI3TDMX8fxrmt_cU0Lx_wPD9C-bnRzR8QNxP58g5eEk8ofiFg474l5uZv7tckfcTVmdYf1InKXy2iJPzCKQH8fVsDnBzf6-jBd8UyanHtKShkgSigzjT0xZycUn0q3OaaMMKN-v3hx-kpxT-licHr89PVoWuZVCEVRT2YLcfvTKBI3Rg7dYYzCRDtbaRderhhWxRTA9xthW4DWGElxvA7K-tl49EVvDOOBTIb0ONY2gsMx7ABVaQBsRNOoSmuj1QsDMwC5kmHHudvG9qzIa6cz3jvneZb4vxME12Y8JZ-MmgtcsnevBDJOdXoznX7usdZ1vsbW0YArbLBjwzvW1bmnh4CmydbgQ9lfZdpt0SxKnliaduuEDXs4boSOV5P8sbsDxgujIMPJVUm13_2P-PbHNre0nUMlnYotEj8_pALTxL9IWvwK0i_c_
  priority: 102
  providerName: Taylor & Francis
Title Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data
URI https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2153929
https://www.proquest.com/docview/3040390129
https://doaj.org/article/b8e89b4b8629464baad258f774b184ae
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9aEL2IVsXnR4ngrWy7m0yyybF-lIdoEanwPIVNdoIPyj7R14P_vTOb3Vr18C5eQ7KEXybzkZ35jRAvm15la6GprIq6gtSSHoy1r7JJkCFrm0fuzg9ndvkZ3q3M6lqrL84JK_TABbjj6ND5CJE8bw8WYtf1yrhMXkuk4KRD1r5k8-Zgquhg3TpbUutJy1hygufaHVcf8xgPUWyo1BFZPPYQ_rBKI3n_X9Sl_6jq0f6c3hN3J8dRnpQN3xc3cNgXt6ce5l9_7otbYzJn-vFArMaq2mr6MCMvP27Ww_YMt4eHMl_yA5ksraMlTZF0FjJtflPJSq45kd36O8nHgPL9-s3JJ8mppA_F-enb89fLauqgUCXdNr4ia5-jtslgJgg9KkyWoFOmy12vW75_DsH2mLNrIBpMNXS9T8jX1EX9SOwNmwEfCxlNUjSDorEYAXRygD4jGDQ1tDmahYAZwJAmdnFucnERmomEdMY9MO5hwn0hjq6WfSv0GrsWvOLTuZrM7NjjAMlMmGQm7JKZhfDXzzZsx8eRXDqZBL1jAy9mQQh0E_n3Sjfg5pLWkT7kFyTln_yPTT4Vd7i1fSGVfCb2SAbwOTlA23ggbtZflgejxP8C6Ab7rA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VItReeBRQl6eR4FRltfEr8YFDoVRbul0htEh7s2LHhhUoQe2uUPlX_BV-ETN5FChCPaAeOEVKbMuPb2ZsZ-YbgKdpyaPWMk00dyKRPkM96EYmicrLKKPQseHuPJrq8Tv5eq7ma_Ctj4Uht0o6Q8eWKKLR1STcdBndu8ThMyXOF4oz4XyIRouMfOdYeRhOv-Cx7eT5wR6u8TPO91_NXo6TLrNA4kWWmgStYHRCexWik84EHryOuM9URSxKkREu8yB1GWLMU-lU8CNZlMYHgm_uBDZ7Ba4qozMSLTGa9spfZLluffpRvVEX-6Chv_X6N3PYZA04x5n6h41oDN_-DfjeT1nr7_JxuFq6of96jk3yv5rTm3C924az3VZubsFaqLZgo8sI_-F0C641rrH-5DbMmxjlpJstwjF7Uy-q5TQsd3ZYXNF1I2sTcTMswhDZzNc_iXkZRfCwYnGM0lYFNlns7b5l5Jh7B2aXMcK7sF7VVdgG5pTnWALPts5JKXwug4lBqqBGMotODUD2qLC-42qnlCGfbNpRuvbLZWm5bLdcAxieVfvckpVcVOEFQe6sMHGNNy_q4_e2U13W5SE3OGA8-xqppSuKkqscBy5dmssiDMD8Cli7bK6aYpsXxooLOvCkR7dFvUY_q4oq1Cush9aF7uO4ufcP7T-GjfHsaGInB9PD-7CJn0TL0vkA1hEG4SHuKJfuUSPDDOwl4_sHG9B10w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIqAXHqWoS3kYCU5VVhu_khx6KCyrlpZVhYq0Nyt2bFiBkqrNqmp_FX-Ff8RMHgWKUA-oB06REtvy4_OMx5n5BuBlXPCgtYwjza2IpEtQDtpRFgXlZJBB6NBwd76f6p2P8t1MzZbgWx8LQ26VZEOHliiikdW0uY-K0HvE4TMmyhcKM-F8iDqLdHznV7nnz07RajvZ2h3jEr_ifPL28M1O1CUWiJxI4ixCJRis0E75YKXNPPdOBzxmqjzkhUgIlqmXuvAhpLG0yruRzIvMeUJvagU2ewNuaorrpKCR0bSX_SJJdevSj9KNutjHDP2t179pwyZpwCXK1D9URKP3Jvfgez9jrbvLl-GitkN3folM8n-a0vtwtzuEs-121zyAJV-uwp0uH_zns1W41TjGupOHMGsilKNusgjF7KCal_XU15ubLCzospG1abgZFmGIa-aqn7S8jOJ3WD4_xr1WerY_H29_YOSWuwaH1zHCR7BcVqVfB2aV41gCLVtrpRQulT4LXiqvRjIJVg1A9qAwrmNqp4QhX03cEbr2y2VouUy3XAMYXlQ7aqlKrqrwmhB3UZiYxpsX1fEn0wkuY1OfZjhgtHwzqaXN84KrFAcubZzK3A8g-xWvpm4umkKbFcaIKzrwoge3QalGv6ry0lcLrIe6hW7jePb4H9p_DrcPxhOzvzvd24AV_CJais4nsIwo8E_xOFnbZ80OZmCuGd4_AO9MdHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-information+PointNet%2B%2B+fusion+method+for+DEM+construction+from+airborne+LiDAR+data&rft.jtitle=Geocarto+international&rft.au=Hu%2C+Hong&rft.au=Zhang%2C+Guanghe&rft.au=Ao%2C+Jianfeng&rft.au=Wang%2C+Chunlin&rft.date=2023-12-31&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=38&rft.issue=1&rft_id=info:doi/10.1080%2F10106049.2022.2153929&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2022_2153929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon