Resilience assessment of electrified road networks subject to charging station failures
The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical fra...
Saved in:
Published in | Computer-aided civil and infrastructure engineering Vol. 37; no. 3; pp. 300 - 316 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast‐charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time, and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first‐stage model to assign the traffic under normal FCS operations. A second‐stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, that is, in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience‐critical FCSs for system resilience improvement. |
---|---|
AbstractList | The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast‐charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time, and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first‐stage model to assign the traffic under normal FCS operations. A second‐stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, that is, in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience‐critical FCSs for system resilience improvement. The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast‐charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time, and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first‐stage model to assign the traffic under normal FCS operations. A second‐stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, that is, in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience‐critical FCSs for system resilience improvement. The number of EVs and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast-charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first stage model to assign the traffic under normal FCS operations. A second stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, i.e., in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience-critical FCSs for system resilience improvement. |
Author | Wang, Hongping Abdin, Adam F. Fang, Yi‐Ping Zio, Enrico |
Author_xml | – sequence: 1 givenname: Hongping surname: Wang fullname: Wang, Hongping organization: Laboratoire Génie Industriel – sequence: 2 givenname: Adam F. surname: Abdin fullname: Abdin, Adam F. organization: Laboratoire Génie Industriel – sequence: 3 givenname: Yi‐Ping surname: Fang fullname: Fang, Yi‐Ping email: yiping.fang@centralesupelec.fr organization: Laboratoire Génie Industriel – sequence: 4 givenname: Enrico surname: Zio fullname: Zio, Enrico organization: Kyung Hee University |
BackLink | https://hal.science/hal-03266227$$DView record in HAL |
BookMark | eNp9kE9LAzEQxYNU8O_FTxDwpLA12WST3aOUagsVQRSPIc1ONHW70WTX4rc3dfUi4uSQIfm9Yd47QKPWt4DQCSVjmupi7QyMaS6Z2EH7lAuZlULIUepJxbJKlHIPHcS4Iqk4Z_vo8Q6iaxy0BrCOEWJcQ9thbzE0YLrgrIMaB69r3EK38eEl4tgvV-kPdx6bZx2eXPuEY6c751tstWv6APEI7VrdRDj-vg_Rw9X0fjLLFrfX88nlIjNMUpFZ0JyVljBOoQZeMsprWRdc1tIuieS0FpyKkhelZdLUGoQtNK-4JqWptCzYITob5j7rRr0Gt9bhQ3nt1OxyobZvhOVC5Ll8p4k9HdjX4N96iJ1a-T60aT2Vi3RKyYoqUWSgTPAxBrDKuMFcF5I5RYnaRq22UauvqJPk_JfkZ5M_YTrAG9fAxz-kuplPpoPmEyngkQc |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106339 crossref_primary_10_1016_j_tra_2023_103605 crossref_primary_10_1016_j_ress_2023_109381 crossref_primary_10_1111_mice_13088 crossref_primary_10_1016_j_cstp_2025_101401 crossref_primary_10_1002_int_22863 crossref_primary_10_1016_j_ins_2022_05_012 crossref_primary_10_1007_s10489_021_02850_0 crossref_primary_10_1016_j_trd_2025_104709 crossref_primary_10_1080_03610926_2022_2037646 crossref_primary_10_1111_mice_12999 crossref_primary_10_3390_app122211656 crossref_primary_10_1111_mice_12853 crossref_primary_10_1016_j_trd_2024_104379 crossref_primary_10_1016_j_cor_2023_106513 crossref_primary_10_23919_CHAIN_2024_000009 crossref_primary_10_1007_s00500_022_07351_x crossref_primary_10_1109_TTE_2022_3175499 crossref_primary_10_1007_s10489_022_03768_x crossref_primary_10_1016_j_prime_2024_100818 crossref_primary_10_3389_fenrg_2023_1112169 |
Cites_doi | 10.1016/j.ress.2017.09.009 10.1111/mice.12252 10.1016/j.ress.2019.106617 10.1109/TTE.2019.2957098 10.1111/mice.12527 10.1111/mice.12606 10.1111/risa.13320 10.1038/srep19540 10.1111/mice.12455 10.1016/j.cor.2019.104776 10.1016/j.trb.2012.05.001 10.1111/mice.12371 10.1109/TITS.2019.2955359 10.1111/risa.12093 10.1016/0191-2615(94)90002-7 10.1111/mice.12027 10.1287/trsc.34.1.37.12281 10.1016/j.ress.2018.12.013 10.1016/j.jpowsour.2017.06.079 10.1111/risa.13577 10.1126/sciadv.1701079 10.1111/mice.12573 10.1016/0191-2615(94)00022-R 10.1016/j.apenergy.2020.115006 10.1007/978-3-030-04565-4 10.1016/j.trb.2014.06.003 10.1109/TSG.2019.2943912 10.1016/j.enpol.2011.07.030 10.1109/TIA.2019.2936474 10.1016/j.trb.2012.07.010 10.1109/TCYB.2017.2691666 10.1109/TITS.2018.2883766 10.1016/j.aap.2019.01.007 10.1111/mice.12289 10.1080/18128600608685654 10.1111/mice.12576 10.1177/0361198119837180 10.1016/j.ress.2016.07.020 10.1016/j.trc.2013.09.003 10.1016/j.trc.2019.01.014 10.1016/j.scitotenv.2020.141001 10.1111/mice.12248 10.1038/nclimate2227 10.1287/opre.2018.1775 10.1287/trsc.18.2.185 10.1109/TVT.2015.2453125 10.1016/j.trb.2011.07.007 10.1016/S0191-2615(01)00011-X 10.1080/15472450.2019.1665521 |
ContentType | Journal Article |
Copyright | 2021 2022 Computer‐Aided Civil and Infrastructure Engineering Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: 2022 Computer‐Aided Civil and Infrastructure Engineering – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
DOI | 10.1111/mice.12736 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1467-8667 |
EndPage | 316 |
ExternalDocumentID | oai_HAL_hal_03266227v1 10_1111_mice_12736 MICE12736 |
Genre | article |
GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCFJ ACCZN ACGFS ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBS EDO EMK EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 TUS UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT 31~ AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG AHEFC AI. ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EJD FEDTE HF~ HVGLF LW6 PALCI RJQFR SAMSI VH1 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c3716-fea438f0341ede48314d7d547d7fb0741d64168458f37cdae6f5a494a08c9a753 |
IEDL.DBID | DR2 |
ISSN | 1093-9687 |
IngestDate | Fri May 09 12:19:59 EDT 2025 Fri Jul 25 04:19:53 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Tue Jul 01 03:36:32 EDT 2025 Wed Jan 22 16:25:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Electric road network Charging stations Electric vehicles Linear programming Dynamic traffic assignment problem Cell transmission model System of systems Resilience |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3716-fea438f0341ede48314d7d547d7fb0741d64168458f37cdae6f5a494a08c9a753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4645-0640 0000-0002-7108-637X 0000-0003-0096-3539 |
OpenAccessLink | https://hal.science/hal-03266227 |
PQID | 2626287359 |
PQPubID | 2045171 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_03266227v1 proquest_journals_2626287359 crossref_citationtrail_10_1111_mice_12736 crossref_primary_10_1111_mice_12736 wiley_primary_10_1111_mice_12736_MICE12736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 1 March 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Computer-aided civil and infrastructure engineering |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2002; 36 2017; 3 2019; 5 2021; 22 2017; 48 2019; 11 2019; 55 2019; 34 2018; 169 2019; 39 2020; 269 2019; 124 2014; 68 2020; 35 2014; 29 1994; 28 2006; 2 2011; 39 2019; 2673 2019; 185 2019; 100 2020; 746 2016; 6 2014; 4 2013; 36 2019; 20 2021 2000; 34 2020 2017; 32 2019; 67 2020; 193 2015; 65 2019 2016; 156 1984; 18 2011; 45 2020; 113 1995; 29 2012; 46 2018; 33 2021; 41 2017; 367 2014; 34 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 169 start-page: 364 year: 2018 end-page: 379 article-title: Resilience‐based network design under uncertainty publication-title: Reliability Engineering & System Safety – volume: 100 start-page: 318 year: 2019 end-page: 329 article-title: Resilience in intelligent transportation systems (ITS) publication-title: Transportation Research Part C: Emerging Technologies – volume: 46 start-page: 1218 issue: 9 year: 2012 end-page: 1238 article-title: On the holding‐back problem in the cell transmission based dynamic traffic assignment models publication-title: Transportation Research Part B: Methodological – volume: 22 start-page: 142 issue: 1 year: 2021 end-page: 155 article-title: Risk assessment of an electrical power system considering the influence of traffic congestion on a hypothetical scenario of electrified transportation system in New York state publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 113 year: 2020 article-title: Optimal charging facility location and capacity for electric vehicles considering route choice and charging time equilibrium publication-title: Computers & Operations Research – volume: 20 start-page: 4262 issue: 12 year: 2019 end-page: 4276 article-title: Resilience of transportation systems: Concepts and comprehensive review publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 18 start-page: 185 issue: 2 year: 1984 end-page: 202 article-title: An efficient method for computing traffic equilibria in networks with asymmetric transportation costs publication-title: Transportation Science – volume: 39 start-page: 6308 issue: 10 year: 2011 end-page: 6320 article-title: Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them? publication-title: Energy Policy – year: 2021 – volume: 36 start-page: 367 year: 2013 end-page: 380 article-title: A cell based dynamic system optimum model with non‐holding back flows publication-title: Transportation Research Part C: Emerging Technologies – volume: 3 issue: 12 year: 2017 article-title: Resilience and efficiency in transportation networks publication-title: Science Advances – volume: 35 start-page: 1387 issue: 12 year: 2020 end-page: 1402 article-title: A multilabel classification approach to identify hurricane‐induced infrastructure disruptions using social media data publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 2 start-page: 31 issue: 1 year: 2006 end-page: 52 article-title: Dynamic traffic assignment: Properties and extensions publication-title: Transportmetrica – volume: 39 start-page: 2054 issue: 9 year: 2019 end-page: 2075 article-title: Network reconfiguration for increasing transportation system resilience under extreme events publication-title: Risk Analysis – volume: 746 year: 2020 article-title: Monitoring of transport infrastructure exposed to multiple hazards: A roadmap for building resilience publication-title: Science of the Total Environment – volume: 36 start-page: 421 issue: 5 year: 2002 end-page: 443 article-title: A cell‐based variational inequality formulation of the dynamic user optimal assignment problem publication-title: Transportation Research Part B: Methodological – start-page: 1 year: 2019 end-page: 13 article-title: A congestion‐aware tabu search heuristic to solve the shared autonomous vehicle routing problem publication-title: Journal of Intelligent Transportation Systems – volume: 124 start-page: 180 year: 2019 end-page: 192 article-title: Expressway crash risk prediction using back propagation neural network: A brief investigation on safety resilience publication-title: Accident Analysis & Prevention – volume: 33 start-page: 1041 issue: 12 year: 2018 end-page: 1055 article-title: A Boolean networks approach to modeling and resilience analysis of interdependent critical infrastructures publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 34 start-page: 37 issue: 1 year: 2000 end-page: 49 article-title: A linear programming model for the single destination system optimum dynamic traffic assignment problem publication-title: Transportation Science – volume: 65 start-page: 5900 issue: 8 year: 2015 end-page: 5917 article-title: An integrated simulation framework to model electric vehicle operations and services publication-title: IEEE Transactions on Vehicular Technology – volume: 35 start-page: 1331 issue: 12 year: 2020 end-page: 1348 article-title: Semiautomated social media analytics for sensing societal impacts due to community disruptions during disasters publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 5 start-page: 1124 issue: 4 year: 2019 end-page: 1133 article-title: Online prediction for transmission cascading outages induced by ultrafast PEV charging publication-title: IEEE Transactions on Transportation Electrification – volume: 34 start-page: 340 issue: 2 year: 2014 end-page: 355 article-title: Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making publication-title: Risk Analysis – volume: 68 start-page: 98 year: 2014 end-page: 122 article-title: Continuous‐time dynamic system optimum for single‐destination traffic networks with queue spillbacks publication-title: Transportation Research Part B: Methodological – year: 2019 – volume: 32 start-page: 379 issue: 5 year: 2017 end-page: 396 article-title: Highway and road probabilistic safety assessment based on Bayesian network models publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 45 start-page: 1749 issue: 10 year: 2011 end-page: 1767 article-title: Complementarity formulations for the cell transmission model based dynamic user equilibrium with departure time choice, elastic demand and user heterogeneity publication-title: Transportation Research Part B: Methodological – volume: 29 start-page: 79 issue: 2 year: 1995 end-page: 93 article-title: The cell transmission model, part II: Network traffic publication-title: Transportation Research Part B: Methodological – volume: 269 year: 2020 article-title: The optimal planning of smart multi‐energy systems incorporating transportation, natural gas and active distribution networks publication-title: Applied Energy – volume: 35 start-page: 668 issue: 7 year: 2020 end-page: 684 article-title: Bayesian modeling of flood control networks for failure cascade characterization and vulnerability assessment publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 6 start-page: 1 issue: 1 year: 2016 end-page: 12 article-title: Operational resilience: Concepts, design and analysis publication-title: Scientific Reports – volume: 67 start-page: 167 issue: 1 year: 2019 end-page: 182 article-title: Link‐based system optimum dynamic traffic assignment problems in general networks publication-title: Operations Research – volume: 35 start-page: 1315 issue: 12 year: 2020 end-page: 1330 article-title: Regional resilience analysis: A multiscale approach to optimize the resilience of interdependent infrastructure publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 156 start-page: 84 year: 2016 end-page: 96 article-title: Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model publication-title: Reliability Engineering & System Safety – volume: 34 start-page: 915 issue: 10 year: 2019 end-page: 931 article-title: A decomposition scheme for parallelization of system optimal dynamic traffic assignment on urban networks with multiple origins and destinations publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 46 start-page: 1657 issue: 10 year: 2012 end-page: 1684 article-title: Dynamic user equilibrium with a path based cell transmission model for general traffic networks publication-title: Transportation Research Part B: Methodological – volume: 28 start-page: 269 issue: 4 year: 1994 end-page: 287 article-title: The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory publication-title: Transportation Research Part B: Methodological – volume: 29 start-page: 572 issue: 8 year: 2014 end-page: 589 article-title: A mathematical framework for quantifying and optimizing protective actions for civil infrastructure systems publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 4 start-page: 407 issue: 6 year: 2014 end-page: 409 article-title: Changing the resilience paradigm publication-title: Nature Climate Change – volume: 193 year: 2020 article-title: Review of studies on the resilience of urban critical infrastructure networks publication-title: Reliability Engineering & System Safety – volume: 11 start-page: 1854 issue: 3 year: 2019 end-page: 1865 article-title: Optimal power and semi‐dynamic traffic flow in urban electrified transportation networks publication-title: IEEE Transactions on Smart Grid – volume: 32 start-page: 909 issue: 11 year: 2017 end-page: 929 article-title: A mathematical framework to optimize critical infrastructure resilience against intentional attacks publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 185 start-page: 72 year: 2019 end-page: 83 article-title: Assessment of road traffic resilience assuming stochastic user behaviour publication-title: Reliability Engineering & System Safety – volume: 33 start-page: 262 issue: 4 year: 2018 end-page: 281 article-title: Modeling the proactive driving behavior of connected vehicles: A cell‐based simulation approach publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2020 – volume: 48 start-page: 1304 issue: 4 year: 2017 end-page: 1315 article-title: A bio‐inspired approach to traffic network equilibrium assignment problem publication-title: IEEE Transactions on Cybernetics – volume: 367 start-page: 237 year: 2017 end-page: 249 article-title: Enabling fast charging‐infrastructure and economic considerations publication-title: Journal of Power Sources – volume: 41 start-page: 3 issue: 1 year: 2021 end-page: 15 article-title: The need to reconcile concepts that characterize systems facing threats publication-title: Risk Analysis – volume: 55 start-page: 6603 issue: 6 year: 2019 end-page: 6612 article-title: Electrical safety considerations in large‐scale electric vehicle charging stations publication-title: IEEE Transactions on Industry Applications – volume: 2673 start-page: 217 issue: 4 year: 2019 end-page: 228 article-title: Time series association state analysis method for attacks on the smart internet of electric vehicle charging network publication-title: Transportation Research Record – ident: e_1_2_7_51_1 doi: 10.1016/j.ress.2017.09.009 – ident: e_1_2_7_34_1 doi: 10.1111/mice.12252 – ident: e_1_2_7_24_1 doi: 10.1016/j.ress.2019.106617 – ident: e_1_2_7_29_1 doi: 10.1109/TTE.2019.2957098 – ident: e_1_2_7_10_1 doi: 10.1111/mice.12527 – ident: e_1_2_7_11_1 – ident: e_1_2_7_36_1 doi: 10.1111/mice.12606 – ident: e_1_2_7_50_1 doi: 10.1111/risa.13320 – ident: e_1_2_7_17_1 doi: 10.1038/srep19540 – ident: e_1_2_7_30_1 doi: 10.1111/mice.12455 – ident: e_1_2_7_6_1 doi: 10.1016/j.cor.2019.104776 – ident: e_1_2_7_9_1 doi: 10.1016/j.trb.2012.05.001 – ident: e_1_2_7_15_1 doi: 10.1111/mice.12371 – ident: e_1_2_7_45_1 doi: 10.1109/TITS.2019.2955359 – ident: e_1_2_7_3_1 doi: 10.1111/risa.12093 – ident: e_1_2_7_7_1 doi: 10.1016/0191-2615(94)90002-7 – ident: e_1_2_7_12_1 doi: 10.1111/mice.12027 – ident: e_1_2_7_55_1 doi: 10.1287/trsc.34.1.37.12281 – ident: e_1_2_7_32_1 doi: 10.1016/j.ress.2018.12.013 – ident: e_1_2_7_5_1 doi: 10.1016/j.jpowsour.2017.06.079 – ident: e_1_2_7_14_1 doi: 10.1111/risa.13577 – ident: e_1_2_7_41_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_16_1 doi: 10.1126/sciadv.1701079 – ident: e_1_2_7_35_1 doi: 10.1111/mice.12573 – ident: e_1_2_7_8_1 doi: 10.1016/0191-2615(94)00022-R – ident: e_1_2_7_38_1 – ident: e_1_2_7_47_1 doi: 10.1016/j.apenergy.2020.115006 – ident: e_1_2_7_23_1 doi: 10.1007/978-3-030-04565-4 – ident: e_1_2_7_28_1 doi: 10.1016/j.trb.2014.06.003 – ident: e_1_2_7_27_1 doi: 10.1109/TSG.2019.2943912 – ident: e_1_2_7_56_1 doi: 10.1016/j.enpol.2011.07.030 – ident: e_1_2_7_43_1 doi: 10.1109/TIA.2019.2936474 – ident: e_1_2_7_39_1 doi: 10.1016/j.trb.2012.07.010 – ident: e_1_2_7_49_1 doi: 10.1109/TCYB.2017.2691666 – ident: e_1_2_7_52_1 doi: 10.1109/TITS.2018.2883766 – ident: e_1_2_7_46_1 doi: 10.1016/j.aap.2019.01.007 – ident: e_1_2_7_40_1 – ident: e_1_2_7_54_1 doi: 10.1111/mice.12289 – ident: e_1_2_7_37_1 doi: 10.1080/18128600608685654 – ident: e_1_2_7_48_1 doi: 10.1111/mice.12576 – ident: e_1_2_7_21_1 doi: 10.1177/0361198119837180 – ident: e_1_2_7_33_1 doi: 10.1016/j.ress.2016.07.020 – ident: e_1_2_7_44_1 – ident: e_1_2_7_53_1 doi: 10.1016/j.trc.2013.09.003 – ident: e_1_2_7_18_1 doi: 10.1016/j.trc.2019.01.014 – ident: e_1_2_7_2_1 doi: 10.1016/j.scitotenv.2020.141001 – ident: e_1_2_7_19_1 doi: 10.1111/mice.12248 – ident: e_1_2_7_22_1 doi: 10.1038/nclimate2227 – ident: e_1_2_7_26_1 doi: 10.1287/opre.2018.1775 – ident: e_1_2_7_31_1 doi: 10.1287/trsc.18.2.185 – ident: e_1_2_7_4_1 doi: 10.1109/TVT.2015.2453125 – ident: e_1_2_7_20_1 doi: 10.1016/j.trb.2011.07.007 – ident: e_1_2_7_25_1 doi: 10.1016/S0191-2615(01)00011-X – ident: e_1_2_7_42_1 doi: 10.1080/15472450.2019.1665521 |
SSID | ssj0000443 |
Score | 2.4262598 |
Snippet | The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing... The number of EVs and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 300 |
SubjectTerms | Electric power Electric vehicle charging Engineering Sciences Failure Operations research Operators (mathematics) Optimization Resilience Roads State of charge System of systems Traffic assignment Traffic models Transportation networks Transportation systems Travel time |
Title | Resilience assessment of electrified road networks subject to charging station failures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12736 https://www.proquest.com/docview/2626287359 https://hal.science/hal-03266227 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcoFD-WrVbRdk0V5AyipxnNiWellaVisEPaAiuKDIjm11VbRbkd0e-uvrcZJtQFUluEXO5Mv2ZN5Yz28APuYxp8wKGWmnfYLCrYk0dTxiKqdGayZ0WIe8_JpPrtn5bXa7Bp_avTC1PsRqwQ09I_yv0cGVrjpOjtXah4mPvqi3jWQtRERXHe0o1rDrZRrJXPBGmxRpPH8vfRSN1r8jF7IDNLtwNcSb8TbctW9a00x-DJcLPSx_PxFxfOmn7MCrBoiSUT1zdmHNzvZguwGlpHH5yje1dR_atj3Y6ogY7sPNla2m9-EUUSudTzJ3pC6xM3V4w4e5MmRWc84rUi01rv-QxZwEqSZ_I1LVpADi1BSp8tVruB6fffs8iZpyDVGZ-qwrclaxVLjYx0VrLBNpwgw3GeOGO43IxeQe_QmWCZfy0iibu0wxyVQsSql82vQGerP5zL4FYmNJlZNcJc4noM6IuNSGSUrLhHHtaB-O22ErykbLHEtq3BdtToNdWoQu7cOHle3PWsHjn1ZHfvRXBii6PRldFNgWe4SbU8p_JX0YtJOjaFy9KqhPCX3amWayDydhlP_zmML71lk4evcc4_ewSXHbReC-DaC3eFjaAw-GFvoQNkanX07Hh2Hy_wETOQaq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xcSgcSkupWEpbq-2lSFkljhPbR9SCtu3CAYHKLbJjW6yKdhHZ5cCvr8dxtmlVIcEtciaOYnviN6PnNwCfypRTZoVMtNM-QOHWJJo6njBVUqM1EzrkIU9Oy9EF-35ZXEZuDp6FafUhlgk39Izwv0YHx4R0z8uxXPsw89tvuQrrWNIbpfO_nvXUo1jk18s8kaXgUZ0UiTx_nv1rP1q9QjZkD2r2AWvYcY632rKqTRAqRKLJr-Firof1_T8yjk_-mBfwPGJRctgunpewYqfbsBVxKYle3_imrvRD17YNmz0dw1fw88w2k-twi6il1CeZOdJW2Zk47PB2pgyZtrTzhjQLjSkgMp-RoNbkOyJNywsgTk2QLd_swMXx0fmXURIrNiR17gOvxFnFcuFSvzVaY5nIM2a4KRg33GkEL6b0AFCwQric10bZ0hWKSaZSUUvlI6fXsDadTe0uEJtKqpzkKnM-BnVGpLU2TFJaZ4xrRwfwuZu3qo5y5lhV47rqwhoc0ioM6QA-Lm1vWhGP_1p98NO_NEDd7dHhuMK21IPcklJ-lw1gv1sdVfT2pqI-KvSRZ17IARyEaX7gNZV3r6NwtfcY4_fwbHR-Mq7G305_vIENiqcwAhVuH9bmtwv71mOjuX4XPOA3LNUJVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD54gaIP3qq4XkPblxZmmclkcgFfRF221UqRSn0pQzJJcFF2xdn1wV9vkpnZjiIFfRsyZ25JzpzvhC_fAfhCY4aJ4SJSVrkEhRkdKWxZRCTFWinCVViH_HlO-5fkx1V2NQMHzV6YSh9iuuDmPSP8r72D32nbcnJfrb2buOhLZ2Ge0Fj4wg3HFy3xKFLT60UaCcpZLU7qeTz_rn0WjmavPRmyhTTbeDUEnN4y_G1eteKZ3HQnY9UtHl-oOL73W1ZgqUai6LCaOqswY4ZrsFyjUlT7fOmamsIPTdsaLLZUDD_CnwtTDm7DKSSnQp9oZFFVY2dg_Q3vR1KjYUU6L1E5UX4BCI1HKGg1uRuhsmIFICsHnitfrsNl7-T3UT-q6zVERerSrsgaSVJuYxcYjTaEpwnRTGeEaWaVhy6aOvjHScZtygotDbWZJILImBdCurxpA-aGo6HZBGRigaUVTCbWZaBW87hQmgiMi4QwZXEHvjbDlhe1mLmvqXGbN0mN79I8dGkHPk9t7yoJj1etPrnRnxp41e3-4Vnu22IHcSnG7CHpwE4zOfLa18scu5zQ5Z1pJjrwLYzyfx6TO-c6CUdbbzHehw-_jnv52ffz021YwH4LRuDB7cDc-H5idh0wGqu9MP-fAA5cCAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+assessment+of+electrified+road+networks+subject+to+charging+station+failures&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Wang%2C+Hongping&rft.au=Abdin%2C+Adam+F.&rft.au=Fang%2C+Yi%E2%80%90Ping&rft.au=Zio%2C+Enrico&rft.date=2022-03-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=37&rft.issue=3&rft.spage=300&rft.epage=316&rft_id=info:doi/10.1111%2Fmice.12736&rft.externalDBID=10.1111%252Fmice.12736&rft.externalDocID=MICE12736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |