Resilience assessment of electrified road networks subject to charging station failures

The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical fra...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 37; no. 3; pp. 300 - 316
Main Authors Wang, Hongping, Abdin, Adam F., Fang, Yi‐Ping, Zio, Enrico
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast‐charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time, and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first‐stage model to assign the traffic under normal FCS operations. A second‐stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, that is, in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience‐critical FCSs for system resilience improvement.
AbstractList The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast‐charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time, and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first‐stage model to assign the traffic under normal FCS operations. A second‐stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, that is, in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience‐critical FCSs for system resilience improvement.
The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such a system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast‐charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time, and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first‐stage model to assign the traffic under normal FCS operations. A second‐stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, that is, in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience‐critical FCSs for system resilience improvement.
The number of EVs and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with the power system. This may bring new stresses and risks to such system of systems. This paper presents a mathematical framework to analyze the resilience of an electrified road network (ERN) subject to potential failures of its supporting fast-charging stations (FCSs). Within this framework, a novel linear optimization model is proposed for the first time to solve the system optimal dynamic traffic assignment problem of ERN. The characteristics considered in the modeling framework include the location, capacity, and charging speed of FCSs, as well as the driving range, charging time and state of charge (SoC) of EVs. The linear model is proposed based on the cell transmission model. It is used as the first stage model to assign the traffic under normal FCS operations. A second stage model is, then, extended to minimize the total travel time after the stochastic occurrence of FCS failures, i.e., in the failure and recovery phases. Two metrics are considered to quantify the ERN performance and the impacts of FCS failures. A numerical example is studied to illustrate the usefulness of the proposed framework for analyzing ERN resilience. The results show that deploying FCSs near the highway entrances and maintaining their operation are relevant factors to enhance the system's resilience. The analysis can provide guidelines to the system operators for effective management of the ERN operation and identify resilience-critical FCSs for system resilience improvement.
Author Wang, Hongping
Abdin, Adam F.
Fang, Yi‐Ping
Zio, Enrico
Author_xml – sequence: 1
  givenname: Hongping
  surname: Wang
  fullname: Wang, Hongping
  organization: Laboratoire Génie Industriel
– sequence: 2
  givenname: Adam F.
  surname: Abdin
  fullname: Abdin, Adam F.
  organization: Laboratoire Génie Industriel
– sequence: 3
  givenname: Yi‐Ping
  surname: Fang
  fullname: Fang, Yi‐Ping
  email: yiping.fang@centralesupelec.fr
  organization: Laboratoire Génie Industriel
– sequence: 4
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: Kyung Hee University
BackLink https://hal.science/hal-03266227$$DView record in HAL
BookMark eNp9kE9LAzEQxYNU8O_FTxDwpLA12WST3aOUagsVQRSPIc1ONHW70WTX4rc3dfUi4uSQIfm9Yd47QKPWt4DQCSVjmupi7QyMaS6Z2EH7lAuZlULIUepJxbJKlHIPHcS4Iqk4Z_vo8Q6iaxy0BrCOEWJcQ9thbzE0YLrgrIMaB69r3EK38eEl4tgvV-kPdx6bZx2eXPuEY6c751tstWv6APEI7VrdRDj-vg_Rw9X0fjLLFrfX88nlIjNMUpFZ0JyVljBOoQZeMsprWRdc1tIuieS0FpyKkhelZdLUGoQtNK-4JqWptCzYITob5j7rRr0Gt9bhQ3nt1OxyobZvhOVC5Ll8p4k9HdjX4N96iJ1a-T60aT2Vi3RKyYoqUWSgTPAxBrDKuMFcF5I5RYnaRq22UauvqJPk_JfkZ5M_YTrAG9fAxz-kuplPpoPmEyngkQc
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106339
crossref_primary_10_1016_j_tra_2023_103605
crossref_primary_10_1016_j_ress_2023_109381
crossref_primary_10_1111_mice_13088
crossref_primary_10_1016_j_cstp_2025_101401
crossref_primary_10_1002_int_22863
crossref_primary_10_1016_j_ins_2022_05_012
crossref_primary_10_1007_s10489_021_02850_0
crossref_primary_10_1016_j_trd_2025_104709
crossref_primary_10_1080_03610926_2022_2037646
crossref_primary_10_1111_mice_12999
crossref_primary_10_3390_app122211656
crossref_primary_10_1111_mice_12853
crossref_primary_10_1016_j_trd_2024_104379
crossref_primary_10_1016_j_cor_2023_106513
crossref_primary_10_23919_CHAIN_2024_000009
crossref_primary_10_1007_s00500_022_07351_x
crossref_primary_10_1109_TTE_2022_3175499
crossref_primary_10_1007_s10489_022_03768_x
crossref_primary_10_1016_j_prime_2024_100818
crossref_primary_10_3389_fenrg_2023_1112169
Cites_doi 10.1016/j.ress.2017.09.009
10.1111/mice.12252
10.1016/j.ress.2019.106617
10.1109/TTE.2019.2957098
10.1111/mice.12527
10.1111/mice.12606
10.1111/risa.13320
10.1038/srep19540
10.1111/mice.12455
10.1016/j.cor.2019.104776
10.1016/j.trb.2012.05.001
10.1111/mice.12371
10.1109/TITS.2019.2955359
10.1111/risa.12093
10.1016/0191-2615(94)90002-7
10.1111/mice.12027
10.1287/trsc.34.1.37.12281
10.1016/j.ress.2018.12.013
10.1016/j.jpowsour.2017.06.079
10.1111/risa.13577
10.1126/sciadv.1701079
10.1111/mice.12573
10.1016/0191-2615(94)00022-R
10.1016/j.apenergy.2020.115006
10.1007/978-3-030-04565-4
10.1016/j.trb.2014.06.003
10.1109/TSG.2019.2943912
10.1016/j.enpol.2011.07.030
10.1109/TIA.2019.2936474
10.1016/j.trb.2012.07.010
10.1109/TCYB.2017.2691666
10.1109/TITS.2018.2883766
10.1016/j.aap.2019.01.007
10.1111/mice.12289
10.1080/18128600608685654
10.1111/mice.12576
10.1177/0361198119837180
10.1016/j.ress.2016.07.020
10.1016/j.trc.2013.09.003
10.1016/j.trc.2019.01.014
10.1016/j.scitotenv.2020.141001
10.1111/mice.12248
10.1038/nclimate2227
10.1287/opre.2018.1775
10.1287/trsc.18.2.185
10.1109/TVT.2015.2453125
10.1016/j.trb.2011.07.007
10.1016/S0191-2615(01)00011-X
10.1080/15472450.2019.1665521
ContentType Journal Article
Copyright 2021
2022 Computer‐Aided Civil and Infrastructure Engineering
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: 2022 Computer‐Aided Civil and Infrastructure Engineering
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1111/mice.12736
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 316
ExternalDocumentID oai_HAL_hal_03266227v1
10_1111_mice_12736
MICE12736
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBS
EDO
EMK
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
31~
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AHEFC
AI.
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EJD
FEDTE
HF~
HVGLF
LW6
PALCI
RJQFR
SAMSI
VH1
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c3716-fea438f0341ede48314d7d547d7fb0741d64168458f37cdae6f5a494a08c9a753
IEDL.DBID DR2
ISSN 1093-9687
IngestDate Fri May 09 12:19:59 EDT 2025
Fri Jul 25 04:19:53 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Jul 01 03:36:32 EDT 2025
Wed Jan 22 16:25:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Electric road network
Charging stations
Electric vehicles
Linear programming
Dynamic traffic assignment problem
Cell transmission model
System of systems
Resilience
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3716-fea438f0341ede48314d7d547d7fb0741d64168458f37cdae6f5a494a08c9a753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4645-0640
0000-0002-7108-637X
0000-0003-0096-3539
OpenAccessLink https://hal.science/hal-03266227
PQID 2626287359
PQPubID 2045171
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_03266227v1
proquest_journals_2626287359
crossref_citationtrail_10_1111_mice_12736
crossref_primary_10_1111_mice_12736
wiley_primary_10_1111_mice_12736_MICE12736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 1 March 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2002; 36
2017; 3
2019; 5
2021; 22
2017; 48
2019; 11
2019; 55
2019; 34
2018; 169
2019; 39
2020; 269
2019; 124
2014; 68
2020; 35
2014; 29
1994; 28
2006; 2
2011; 39
2019; 2673
2019; 185
2019; 100
2020; 746
2016; 6
2014; 4
2013; 36
2019; 20
2021
2000; 34
2020
2017; 32
2019; 67
2020; 193
2015; 65
2019
2016; 156
1984; 18
2011; 45
2020; 113
1995; 29
2012; 46
2018; 33
2021; 41
2017; 367
2014; 34
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 169
  start-page: 364
  year: 2018
  end-page: 379
  article-title: Resilience‐based network design under uncertainty
  publication-title: Reliability Engineering & System Safety
– volume: 100
  start-page: 318
  year: 2019
  end-page: 329
  article-title: Resilience in intelligent transportation systems (ITS)
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 46
  start-page: 1218
  issue: 9
  year: 2012
  end-page: 1238
  article-title: On the holding‐back problem in the cell transmission based dynamic traffic assignment models
  publication-title: Transportation Research Part B: Methodological
– volume: 22
  start-page: 142
  issue: 1
  year: 2021
  end-page: 155
  article-title: Risk assessment of an electrical power system considering the influence of traffic congestion on a hypothetical scenario of electrified transportation system in New York state
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 113
  year: 2020
  article-title: Optimal charging facility location and capacity for electric vehicles considering route choice and charging time equilibrium
  publication-title: Computers & Operations Research
– volume: 20
  start-page: 4262
  issue: 12
  year: 2019
  end-page: 4276
  article-title: Resilience of transportation systems: Concepts and comprehensive review
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 18
  start-page: 185
  issue: 2
  year: 1984
  end-page: 202
  article-title: An efficient method for computing traffic equilibria in networks with asymmetric transportation costs
  publication-title: Transportation Science
– volume: 39
  start-page: 6308
  issue: 10
  year: 2011
  end-page: 6320
  article-title: Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?
  publication-title: Energy Policy
– year: 2021
– volume: 36
  start-page: 367
  year: 2013
  end-page: 380
  article-title: A cell based dynamic system optimum model with non‐holding back flows
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 3
  issue: 12
  year: 2017
  article-title: Resilience and efficiency in transportation networks
  publication-title: Science Advances
– volume: 35
  start-page: 1387
  issue: 12
  year: 2020
  end-page: 1402
  article-title: A multilabel classification approach to identify hurricane‐induced infrastructure disruptions using social media data
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 2
  start-page: 31
  issue: 1
  year: 2006
  end-page: 52
  article-title: Dynamic traffic assignment: Properties and extensions
  publication-title: Transportmetrica
– volume: 39
  start-page: 2054
  issue: 9
  year: 2019
  end-page: 2075
  article-title: Network reconfiguration for increasing transportation system resilience under extreme events
  publication-title: Risk Analysis
– volume: 746
  year: 2020
  article-title: Monitoring of transport infrastructure exposed to multiple hazards: A roadmap for building resilience
  publication-title: Science of the Total Environment
– volume: 36
  start-page: 421
  issue: 5
  year: 2002
  end-page: 443
  article-title: A cell‐based variational inequality formulation of the dynamic user optimal assignment problem
  publication-title: Transportation Research Part B: Methodological
– start-page: 1
  year: 2019
  end-page: 13
  article-title: A congestion‐aware tabu search heuristic to solve the shared autonomous vehicle routing problem
  publication-title: Journal of Intelligent Transportation Systems
– volume: 124
  start-page: 180
  year: 2019
  end-page: 192
  article-title: Expressway crash risk prediction using back propagation neural network: A brief investigation on safety resilience
  publication-title: Accident Analysis & Prevention
– volume: 33
  start-page: 1041
  issue: 12
  year: 2018
  end-page: 1055
  article-title: A Boolean networks approach to modeling and resilience analysis of interdependent critical infrastructures
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 37
  issue: 1
  year: 2000
  end-page: 49
  article-title: A linear programming model for the single destination system optimum dynamic traffic assignment problem
  publication-title: Transportation Science
– volume: 65
  start-page: 5900
  issue: 8
  year: 2015
  end-page: 5917
  article-title: An integrated simulation framework to model electric vehicle operations and services
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 35
  start-page: 1331
  issue: 12
  year: 2020
  end-page: 1348
  article-title: Semiautomated social media analytics for sensing societal impacts due to community disruptions during disasters
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 5
  start-page: 1124
  issue: 4
  year: 2019
  end-page: 1133
  article-title: Online prediction for transmission cascading outages induced by ultrafast PEV charging
  publication-title: IEEE Transactions on Transportation Electrification
– volume: 34
  start-page: 340
  issue: 2
  year: 2014
  end-page: 355
  article-title: Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making
  publication-title: Risk Analysis
– volume: 68
  start-page: 98
  year: 2014
  end-page: 122
  article-title: Continuous‐time dynamic system optimum for single‐destination traffic networks with queue spillbacks
  publication-title: Transportation Research Part B: Methodological
– year: 2019
– volume: 32
  start-page: 379
  issue: 5
  year: 2017
  end-page: 396
  article-title: Highway and road probabilistic safety assessment based on Bayesian network models
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 45
  start-page: 1749
  issue: 10
  year: 2011
  end-page: 1767
  article-title: Complementarity formulations for the cell transmission model based dynamic user equilibrium with departure time choice, elastic demand and user heterogeneity
  publication-title: Transportation Research Part B: Methodological
– volume: 29
  start-page: 79
  issue: 2
  year: 1995
  end-page: 93
  article-title: The cell transmission model, part II: Network traffic
  publication-title: Transportation Research Part B: Methodological
– volume: 269
  year: 2020
  article-title: The optimal planning of smart multi‐energy systems incorporating transportation, natural gas and active distribution networks
  publication-title: Applied Energy
– volume: 35
  start-page: 668
  issue: 7
  year: 2020
  end-page: 684
  article-title: Bayesian modeling of flood control networks for failure cascade characterization and vulnerability assessment
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  end-page: 12
  article-title: Operational resilience: Concepts, design and analysis
  publication-title: Scientific Reports
– volume: 67
  start-page: 167
  issue: 1
  year: 2019
  end-page: 182
  article-title: Link‐based system optimum dynamic traffic assignment problems in general networks
  publication-title: Operations Research
– volume: 35
  start-page: 1315
  issue: 12
  year: 2020
  end-page: 1330
  article-title: Regional resilience analysis: A multiscale approach to optimize the resilience of interdependent infrastructure
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 156
  start-page: 84
  year: 2016
  end-page: 96
  article-title: Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model
  publication-title: Reliability Engineering & System Safety
– volume: 34
  start-page: 915
  issue: 10
  year: 2019
  end-page: 931
  article-title: A decomposition scheme for parallelization of system optimal dynamic traffic assignment on urban networks with multiple origins and destinations
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 46
  start-page: 1657
  issue: 10
  year: 2012
  end-page: 1684
  article-title: Dynamic user equilibrium with a path based cell transmission model for general traffic networks
  publication-title: Transportation Research Part B: Methodological
– volume: 28
  start-page: 269
  issue: 4
  year: 1994
  end-page: 287
  article-title: The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory
  publication-title: Transportation Research Part B: Methodological
– volume: 29
  start-page: 572
  issue: 8
  year: 2014
  end-page: 589
  article-title: A mathematical framework for quantifying and optimizing protective actions for civil infrastructure systems
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 4
  start-page: 407
  issue: 6
  year: 2014
  end-page: 409
  article-title: Changing the resilience paradigm
  publication-title: Nature Climate Change
– volume: 193
  year: 2020
  article-title: Review of studies on the resilience of urban critical infrastructure networks
  publication-title: Reliability Engineering & System Safety
– volume: 11
  start-page: 1854
  issue: 3
  year: 2019
  end-page: 1865
  article-title: Optimal power and semi‐dynamic traffic flow in urban electrified transportation networks
  publication-title: IEEE Transactions on Smart Grid
– volume: 32
  start-page: 909
  issue: 11
  year: 2017
  end-page: 929
  article-title: A mathematical framework to optimize critical infrastructure resilience against intentional attacks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 185
  start-page: 72
  year: 2019
  end-page: 83
  article-title: Assessment of road traffic resilience assuming stochastic user behaviour
  publication-title: Reliability Engineering & System Safety
– volume: 33
  start-page: 262
  issue: 4
  year: 2018
  end-page: 281
  article-title: Modeling the proactive driving behavior of connected vehicles: A cell‐based simulation approach
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2020
– volume: 48
  start-page: 1304
  issue: 4
  year: 2017
  end-page: 1315
  article-title: A bio‐inspired approach to traffic network equilibrium assignment problem
  publication-title: IEEE Transactions on Cybernetics
– volume: 367
  start-page: 237
  year: 2017
  end-page: 249
  article-title: Enabling fast charging‐infrastructure and economic considerations
  publication-title: Journal of Power Sources
– volume: 41
  start-page: 3
  issue: 1
  year: 2021
  end-page: 15
  article-title: The need to reconcile concepts that characterize systems facing threats
  publication-title: Risk Analysis
– volume: 55
  start-page: 6603
  issue: 6
  year: 2019
  end-page: 6612
  article-title: Electrical safety considerations in large‐scale electric vehicle charging stations
  publication-title: IEEE Transactions on Industry Applications
– volume: 2673
  start-page: 217
  issue: 4
  year: 2019
  end-page: 228
  article-title: Time series association state analysis method for attacks on the smart internet of electric vehicle charging network
  publication-title: Transportation Research Record
– ident: e_1_2_7_51_1
  doi: 10.1016/j.ress.2017.09.009
– ident: e_1_2_7_34_1
  doi: 10.1111/mice.12252
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ress.2019.106617
– ident: e_1_2_7_29_1
  doi: 10.1109/TTE.2019.2957098
– ident: e_1_2_7_10_1
  doi: 10.1111/mice.12527
– ident: e_1_2_7_11_1
– ident: e_1_2_7_36_1
  doi: 10.1111/mice.12606
– ident: e_1_2_7_50_1
  doi: 10.1111/risa.13320
– ident: e_1_2_7_17_1
  doi: 10.1038/srep19540
– ident: e_1_2_7_30_1
  doi: 10.1111/mice.12455
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cor.2019.104776
– ident: e_1_2_7_9_1
  doi: 10.1016/j.trb.2012.05.001
– ident: e_1_2_7_15_1
  doi: 10.1111/mice.12371
– ident: e_1_2_7_45_1
  doi: 10.1109/TITS.2019.2955359
– ident: e_1_2_7_3_1
  doi: 10.1111/risa.12093
– ident: e_1_2_7_7_1
  doi: 10.1016/0191-2615(94)90002-7
– ident: e_1_2_7_12_1
  doi: 10.1111/mice.12027
– ident: e_1_2_7_55_1
  doi: 10.1287/trsc.34.1.37.12281
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ress.2018.12.013
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jpowsour.2017.06.079
– ident: e_1_2_7_14_1
  doi: 10.1111/risa.13577
– ident: e_1_2_7_41_1
– ident: e_1_2_7_13_1
– ident: e_1_2_7_16_1
  doi: 10.1126/sciadv.1701079
– ident: e_1_2_7_35_1
  doi: 10.1111/mice.12573
– ident: e_1_2_7_8_1
  doi: 10.1016/0191-2615(94)00022-R
– ident: e_1_2_7_38_1
– ident: e_1_2_7_47_1
  doi: 10.1016/j.apenergy.2020.115006
– ident: e_1_2_7_23_1
  doi: 10.1007/978-3-030-04565-4
– ident: e_1_2_7_28_1
  doi: 10.1016/j.trb.2014.06.003
– ident: e_1_2_7_27_1
  doi: 10.1109/TSG.2019.2943912
– ident: e_1_2_7_56_1
  doi: 10.1016/j.enpol.2011.07.030
– ident: e_1_2_7_43_1
  doi: 10.1109/TIA.2019.2936474
– ident: e_1_2_7_39_1
  doi: 10.1016/j.trb.2012.07.010
– ident: e_1_2_7_49_1
  doi: 10.1109/TCYB.2017.2691666
– ident: e_1_2_7_52_1
  doi: 10.1109/TITS.2018.2883766
– ident: e_1_2_7_46_1
  doi: 10.1016/j.aap.2019.01.007
– ident: e_1_2_7_40_1
– ident: e_1_2_7_54_1
  doi: 10.1111/mice.12289
– ident: e_1_2_7_37_1
  doi: 10.1080/18128600608685654
– ident: e_1_2_7_48_1
  doi: 10.1111/mice.12576
– ident: e_1_2_7_21_1
  doi: 10.1177/0361198119837180
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ress.2016.07.020
– ident: e_1_2_7_44_1
– ident: e_1_2_7_53_1
  doi: 10.1016/j.trc.2013.09.003
– ident: e_1_2_7_18_1
  doi: 10.1016/j.trc.2019.01.014
– ident: e_1_2_7_2_1
  doi: 10.1016/j.scitotenv.2020.141001
– ident: e_1_2_7_19_1
  doi: 10.1111/mice.12248
– ident: e_1_2_7_22_1
  doi: 10.1038/nclimate2227
– ident: e_1_2_7_26_1
  doi: 10.1287/opre.2018.1775
– ident: e_1_2_7_31_1
  doi: 10.1287/trsc.18.2.185
– ident: e_1_2_7_4_1
  doi: 10.1109/TVT.2015.2453125
– ident: e_1_2_7_20_1
  doi: 10.1016/j.trb.2011.07.007
– ident: e_1_2_7_25_1
  doi: 10.1016/S0191-2615(01)00011-X
– ident: e_1_2_7_42_1
  doi: 10.1080/15472450.2019.1665521
SSID ssj0000443
Score 2.4262598
Snippet The number of electric vehicles (EVs) and charging facilities is expected to increase significantly in the near future, further coupling the existing...
The number of EVs and charging facilities is expected to increase significantly in the near future, further coupling the existing transportation system with...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 300
SubjectTerms Electric power
Electric vehicle charging
Engineering Sciences
Failure
Operations research
Operators (mathematics)
Optimization
Resilience
Roads
State of charge
System of systems
Traffic assignment
Traffic models
Transportation networks
Transportation systems
Travel time
Title Resilience assessment of electrified road networks subject to charging station failures
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12736
https://www.proquest.com/docview/2626287359
https://hal.science/hal-03266227
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcoFD-WrVbRdk0V5AyipxnNiWellaVisEPaAiuKDIjm11VbRbkd0e-uvrcZJtQFUluEXO5Mv2ZN5Yz28APuYxp8wKGWmnfYLCrYk0dTxiKqdGayZ0WIe8_JpPrtn5bXa7Bp_avTC1PsRqwQ09I_yv0cGVrjpOjtXah4mPvqi3jWQtRERXHe0o1rDrZRrJXPBGmxRpPH8vfRSN1r8jF7IDNLtwNcSb8TbctW9a00x-DJcLPSx_PxFxfOmn7MCrBoiSUT1zdmHNzvZguwGlpHH5yje1dR_atj3Y6ogY7sPNla2m9-EUUSudTzJ3pC6xM3V4w4e5MmRWc84rUi01rv-QxZwEqSZ_I1LVpADi1BSp8tVruB6fffs8iZpyDVGZ-qwrclaxVLjYx0VrLBNpwgw3GeOGO43IxeQe_QmWCZfy0iibu0wxyVQsSql82vQGerP5zL4FYmNJlZNcJc4noM6IuNSGSUrLhHHtaB-O22ErykbLHEtq3BdtToNdWoQu7cOHle3PWsHjn1ZHfvRXBii6PRldFNgWe4SbU8p_JX0YtJOjaFy9KqhPCX3amWayDydhlP_zmML71lk4evcc4_ewSXHbReC-DaC3eFjaAw-GFvoQNkanX07Hh2Hy_wETOQaq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xcSgcSkupWEpbq-2lSFkljhPbR9SCtu3CAYHKLbJjW6yKdhHZ5cCvr8dxtmlVIcEtciaOYnviN6PnNwCfypRTZoVMtNM-QOHWJJo6njBVUqM1EzrkIU9Oy9EF-35ZXEZuDp6FafUhlgk39Izwv0YHx4R0z8uxXPsw89tvuQrrWNIbpfO_nvXUo1jk18s8kaXgUZ0UiTx_nv1rP1q9QjZkD2r2AWvYcY632rKqTRAqRKLJr-Firof1_T8yjk_-mBfwPGJRctgunpewYqfbsBVxKYle3_imrvRD17YNmz0dw1fw88w2k-twi6il1CeZOdJW2Zk47PB2pgyZtrTzhjQLjSkgMp-RoNbkOyJNywsgTk2QLd_swMXx0fmXURIrNiR17gOvxFnFcuFSvzVaY5nIM2a4KRg33GkEL6b0AFCwQric10bZ0hWKSaZSUUvlI6fXsDadTe0uEJtKqpzkKnM-BnVGpLU2TFJaZ4xrRwfwuZu3qo5y5lhV47rqwhoc0ioM6QA-Lm1vWhGP_1p98NO_NEDd7dHhuMK21IPcklJ-lw1gv1sdVfT2pqI-KvSRZ17IARyEaX7gNZV3r6NwtfcY4_fwbHR-Mq7G305_vIENiqcwAhVuH9bmtwv71mOjuX4XPOA3LNUJVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD54gaIP3qq4XkPblxZmmclkcgFfRF221UqRSn0pQzJJcFF2xdn1wV9vkpnZjiIFfRsyZ25JzpzvhC_fAfhCY4aJ4SJSVrkEhRkdKWxZRCTFWinCVViH_HlO-5fkx1V2NQMHzV6YSh9iuuDmPSP8r72D32nbcnJfrb2buOhLZ2Ge0Fj4wg3HFy3xKFLT60UaCcpZLU7qeTz_rn0WjmavPRmyhTTbeDUEnN4y_G1eteKZ3HQnY9UtHl-oOL73W1ZgqUai6LCaOqswY4ZrsFyjUlT7fOmamsIPTdsaLLZUDD_CnwtTDm7DKSSnQp9oZFFVY2dg_Q3vR1KjYUU6L1E5UX4BCI1HKGg1uRuhsmIFICsHnitfrsNl7-T3UT-q6zVERerSrsgaSVJuYxcYjTaEpwnRTGeEaWaVhy6aOvjHScZtygotDbWZJILImBdCurxpA-aGo6HZBGRigaUVTCbWZaBW87hQmgiMi4QwZXEHvjbDlhe1mLmvqXGbN0mN79I8dGkHPk9t7yoJj1etPrnRnxp41e3-4Vnu22IHcSnG7CHpwE4zOfLa18scu5zQ5Z1pJjrwLYzyfx6TO-c6CUdbbzHehw-_jnv52ffz021YwH4LRuDB7cDc-H5idh0wGqu9MP-fAA5cCAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+assessment+of+electrified+road+networks+subject+to+charging+station+failures&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Wang%2C+Hongping&rft.au=Abdin%2C+Adam+F.&rft.au=Fang%2C+Yi%E2%80%90Ping&rft.au=Zio%2C+Enrico&rft.date=2022-03-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=37&rft.issue=3&rft.spage=300&rft.epage=316&rft_id=info:doi/10.1111%2Fmice.12736&rft.externalDBID=10.1111%252Fmice.12736&rft.externalDocID=MICE12736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon