Interfacial Energy Level Alignment and Defect Passivation by Using a Multifunctional Molecular for Efficient and Stable Perovskite Solar Cells
Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is bu...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs .
A multifunctional molecular bridging layer using 2,5‐dichloroterephthalic acid as a pre‐buried additive on the tin oxide (SnO2) electron transport layer enables interfacial energy level alignment and defect passivation. As a result of the method, the high power conversion efficiencies of 23.25% and 20.23% for the active area of 0.15 cm2 device and 17.52 cm2 mini‐module are achieved, respectively. |
---|---|
AbstractList | Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs .
A multifunctional molecular bridging layer using 2,5‐dichloroterephthalic acid as a pre‐buried additive on the tin oxide (SnO2) electron transport layer enables interfacial energy level alignment and defect passivation. As a result of the method, the high power conversion efficiencies of 23.25% and 20.23% for the active area of 0.15 cm2 device and 17.52 cm2 mini‐module are achieved, respectively. Tin oxide (SnO 2 ) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO 2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO 2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm 2 device and 17.52 cm 2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO 2 and perovskite to improve the performance of PSCs . Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs . |
Author | Ye, Yong‐Chun Ma, Chun‐Ying Lv, Bing‐Hao Ma, Ting‐Li Dou, Wei‐Dong Wang, Jiang‐Ying Tang, Jian‐Xin Chen, Li Zhang, Chu Chen, Xian‐Min |
Author_xml | – sequence: 1 givenname: Yong‐Chun orcidid: 0009-0005-4183-3900 surname: Ye fullname: Ye, Yong‐Chun email: yongchunye@cjlu.edu.cn organization: China Jiliang University – sequence: 2 givenname: Li surname: Chen fullname: Chen, Li organization: Soochow University – sequence: 3 givenname: Xian‐Min surname: Chen fullname: Chen, Xian‐Min organization: China Jiliang University – sequence: 4 givenname: Chun‐Ying surname: Ma fullname: Ma, Chun‐Ying organization: China Jiliang University – sequence: 5 givenname: Bing‐Hao surname: Lv fullname: Lv, Bing‐Hao organization: Shaoxing University – sequence: 6 givenname: Jiang‐Ying surname: Wang fullname: Wang, Jiang‐Ying organization: China Jiliang University – sequence: 7 givenname: Wei‐Dong surname: Dou fullname: Dou, Wei‐Dong organization: Shaoxing University – sequence: 8 givenname: Chu surname: Zhang fullname: Zhang, Chu organization: China Jiliang University – sequence: 9 givenname: Ting‐Li surname: Ma fullname: Ma, Ting‐Li email: matingli123@cjlu.edu.cn organization: China Jiliang University – sequence: 10 givenname: Jian‐Xin surname: Tang fullname: Tang, Jian‐Xin email: jxtang@suda.edu.cn organization: Macau University of Science and Technology |
BookMark | eNqFkE9rGzEQxUVIoU6aa8-Cnu3qz1q7PhrbaQM2DTiB3JZZ7cgokSVX0jr4S_Qzd123CRRCTjMw7_dm5l2Qcx88EvKZsxFnTHyF1mxHggnJGZfqjAy44moomajOX3r-8JFcpPTIGC9LWQzIrxufMRrQFhxdeIybA13iHh2dOrvxW_SZgm_pHA3qTG8hJbuHbIOnzYHeJ-s3FOiqc9mazuvjoDdaBYe6cxCpCZEujLHa_nNaZ2gc0luMYZ-ebEa6DkflDJ1Ln8gHAy7h1d96Se6vF3ez78Plj283s-lyqGXZP9IUxUSqqm0bBohSCqWwgaKAUjFpxhVg2Q8FlGOuQYuxxKZUqlGqrbSqeCEvyZeT7y6Gnx2mXD-GLvanp1pMRMWVqqpJrxqdVDqGlCKaehftFuKh5qw-Zl4fM69fMu-B4j9A2_wnrRzBurexyQl7tg4P7yypp_Pr1Sv7G88Mmpg |
CitedBy_id | crossref_primary_10_1002_aenm_202405581 crossref_primary_10_1002_smll_202312067 crossref_primary_10_1002_anie_202412601 crossref_primary_10_1002_smll_202401834 crossref_primary_10_1016_j_solener_2025_113444 crossref_primary_10_1021_acsenergylett_4c01118 crossref_primary_10_1016_j_rineng_2025_103954 crossref_primary_10_1002_smll_202311755 crossref_primary_10_1002_sstr_202400374 crossref_primary_10_1016_j_cej_2024_157154 crossref_primary_10_1016_j_cej_2024_159035 crossref_primary_10_1016_j_cej_2024_158910 crossref_primary_10_1016_j_nexres_2024_100055 crossref_primary_10_1002_ange_202412601 crossref_primary_10_1021_acs_jpclett_4c02099 crossref_primary_10_1002_smll_202404272 crossref_primary_10_1021_acs_jpclett_4c01473 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1039_D4TA02884H |
Cites_doi | 10.1002/adfm.202214788 10.1038/s41586-023-06208-z 10.1002/adma.202109879 10.1002/adma.202201681 10.1002/aenm.201903083 10.1002/adfm.202300128 10.1002/adma.202103394 10.1002/aenm.202200417 10.1016/j.nanoen.2017.08.041 10.1021/acsenergylett.2c01661 10.1021/acsenergylett.0c01566 10.1021/acs.jpclett.1c03002 10.1002/smll.202207817 10.1021/acs.nanolett.7b05469 10.1016/j.nanoen.2023.108281 10.1002/solr.202300101 10.1002/adfm.202302336 10.1038/s41467-021-21292-3 10.1002/aenm.202301161 10.1002/adma.202106118 10.1021/acsnano.7b04070 10.1002/adfm.202204725 10.1038/s41586-023-05847-6 10.1126/science.ade3126 10.1002/adfm.202101438 10.1038/s41570-023-00510-0 10.1002/adom.202300684 10.1038/s41586-021-03964-8 10.1002/anie.202302507 10.1002/adfm.202010385 10.1002/aenm.202104030 10.1002/ange.202304568 10.1038/s41586-022-05346-0 10.1002/smll.201801154 10.1021/acsenergylett.2c02378 10.1002/smll.201601769 10.1002/aenm.202204372 10.1002/adma.202102947 10.1039/C6TA01839D 10.1002/anie.201904945 10.1002/adfm.201905883 10.1021/acsami.6b13362 10.1039/D2EE02649J 10.1038/s41586-023-05792-4 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202310136 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202310136 ADFM202310136 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province funderid: LY19F040005 – fundername: National Key R&D Program of China funderid: 2022YFE0108900 – fundername: Science and Technology Development Fund funderid: 0018/2022/A1 – fundername: China Jiliang University funderid: 220971 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3716-b449368ddb0aee33266eba44a7603f58ae78dd2a751cac253eb766b66d8c68143 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:11:57 EDT 2025 Tue Jul 01 00:30:51 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Wed Jan 22 16:14:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3716-b449368ddb0aee33266eba44a7603f58ae78dd2a751cac253eb766b66d8c68143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-4183-3900 |
PQID | 2928166889 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2928166889 crossref_primary_10_1002_adfm_202310136 crossref_citationtrail_10_1002_adfm_202310136 wiley_primary_10_1002_adfm_202310136_ADFM202310136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2023; 13 2023; 11 2023; 33 2023; 7 2023; 8 2023; 19 2019; 58 2023; 620 2023; 109 2020; 10 2022; 612 2017; 9 2016; 4 2018; 18 2023; 62 2020; 5 2021; 31 2021; 12 2021; 33 2021; 598 2017; 11 2023; 135 2022; 7 2017; 13 2022; 12 2022; 34 2023; 379 2019; 29 2022; 15 2023; 616 2023; 615 2022; 32 2018; 14 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 7 start-page: 632 year: 2023 publication-title: Nat. Rev. Chem. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 973 year: 2021 publication-title: Nat. Commun. – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2796 year: 2020 publication-title: ACS Energy Lett. – volume: 14 year: 2018 publication-title: Small – volume: 9 start-page: 2421 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 12 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 620 start-page: 323 year: 2023 publication-title: Nature – volume: 4 start-page: 8374 year: 2016 publication-title: J. Mater. Chem. A – volume: 109 year: 2023 publication-title: Nano Energy – volume: 40 start-page: 336 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 9176 year: 2017 publication-title: ACS Nano – volume: 598 start-page: 444 year: 2021 publication-title: Nature – volume: 18 start-page: 2428 year: 2018 publication-title: Nano Lett. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 379 start-page: 683 year: 2023 publication-title: Science – volume: 7 year: 2023 publication-title: Sol. RRL – volume: 8 start-page: 666 year: 2023 publication-title: ACS Energy Lett. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 616 start-page: 712 year: 2023 publication-title: Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 135 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 612 start-page: 266 year: 2022 publication-title: Nature – volume: 19 year: 2023 publication-title: Small – volume: 15 start-page: 4836 year: 2022 publication-title: Energy Environ. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 7 start-page: 3685 year: 2022 publication-title: ACS Energy Lett. – volume: 615 start-page: 830 year: 2023 publication-title: Nature – volume: 13 year: 2017 publication-title: Small – ident: e_1_2_7_38_1 doi: 10.1002/adfm.202214788 – ident: e_1_2_7_1_1 doi: 10.1038/s41586-023-06208-z – ident: e_1_2_7_19_1 doi: 10.1002/adma.202109879 – ident: e_1_2_7_43_1 doi: 10.1002/adma.202201681 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201903083 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.202300128 – ident: e_1_2_7_26_1 doi: 10.1002/adma.202103394 – ident: e_1_2_7_39_1 doi: 10.1002/aenm.202200417 – ident: e_1_2_7_13_1 doi: 10.1016/j.nanoen.2017.08.041 – ident: e_1_2_7_40_1 doi: 10.1021/acsenergylett.2c01661 – ident: e_1_2_7_22_1 doi: 10.1021/acsenergylett.0c01566 – ident: e_1_2_7_42_1 doi: 10.1021/acs.jpclett.1c03002 – ident: e_1_2_7_8_1 doi: 10.1002/smll.202207817 – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.7b05469 – ident: e_1_2_7_12_1 doi: 10.1016/j.nanoen.2023.108281 – ident: e_1_2_7_9_1 doi: 10.1002/solr.202300101 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.202302336 – ident: e_1_2_7_25_1 doi: 10.1038/s41467-021-21292-3 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.202301161 – ident: e_1_2_7_37_1 doi: 10.1002/adma.202106118 – ident: e_1_2_7_23_1 doi: 10.1021/acsnano.7b04070 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.202204725 – ident: e_1_2_7_5_1 doi: 10.1038/s41586-023-05847-6 – ident: e_1_2_7_2_1 doi: 10.1126/science.ade3126 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.202101438 – ident: e_1_2_7_6_1 doi: 10.1038/s41570-023-00510-0 – ident: e_1_2_7_20_1 doi: 10.1002/adom.202300684 – ident: e_1_2_7_27_1 doi: 10.1038/s41586-021-03964-8 – ident: e_1_2_7_33_1 doi: 10.1002/anie.202302507 – ident: e_1_2_7_41_1 doi: 10.1002/adfm.202010385 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.202104030 – ident: e_1_2_7_30_1 doi: 10.1002/ange.202304568 – ident: e_1_2_7_3_1 doi: 10.1038/s41586-022-05346-0 – ident: e_1_2_7_7_1 doi: 10.1002/smll.201801154 – ident: e_1_2_7_11_1 doi: 10.1021/acsenergylett.2c02378 – ident: e_1_2_7_17_1 doi: 10.1002/smll.201601769 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.202204372 – ident: e_1_2_7_28_1 doi: 10.1002/adma.202102947 – ident: e_1_2_7_16_1 doi: 10.1039/C6TA01839D – ident: e_1_2_7_21_1 doi: 10.1002/anie.201904945 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201905883 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.6b13362 – ident: e_1_2_7_44_1 doi: 10.1039/D2EE02649J – ident: e_1_2_7_4_1 doi: 10.1038/s41586-023-05792-4 |
SSID | ssj0017734 |
Score | 2.553731 |
Snippet | Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are... Tin oxide (SnO 2 ) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alignment Crystal defects Crystal growth defect passivation Electron transport Energy conversion efficiency energy level alignment Energy levels Interfacial energy molecular bridging layer Performance enhancement perovskite solar cells Perovskites Photovoltaic cells Solar cells Tin dioxide Tin oxides |
Title | Interfacial Energy Level Alignment and Defect Passivation by Using a Multifunctional Molecular for Efficient and Stable Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202310136 https://www.proquest.com/docview/2928166889 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhuSSHPtKUbvNgDoGcnKwlWZaPS3aXULIlJA3szUjyqJSaTcluCu2PyG-uRn5kUyiF9mZjSdiSxvPNaOYbxo51UJHOC0xsUdlEeoOJFk4kBoN9gV4WOKRE4dlHdXErP8yz-VoWf8MP0TvcSDLi_5oE3Njl2RNpqKk8ZZITPkkFcW5TwBahouuePyrN8-ZYWaUU4JXOO9bGIT973v25VnqCmuuANWqc6UtmundtAk2-nj6s7Kn7-RuN4_98zCv2ooWjMGr2z2u2gYtdtrNGUviGPUanoTfkW4dJTBWESwo1glH95XMMJgCzqGCMFBkCVwGNtxXTwP6AGJIABmKiLynRxvcIs64sLwTUDJNIZNGNFACwrRGu8P7u-5K8y3BDBjicY10v99jtdPLp_CJpqzgkTgRjLLFSFkLpqrJDgygCXFRojZQmV0PhM20wDw-5ybPUGcczgTZXyipVaad0gHNv2ebiboHvGOS59toIhYX0UnmjM66ECyZj0KmOWzNgSbeKpWspzqnSRl025My8pHku-3kesJO-_beG3OOPLQ-6TVG2Qr4secHp1FXrYsB4XN2_jFKOxtNZf_f-Xzrts-1wLZu48QO2ubp_wMMAi1b2iG2NxrPLm6MoAr8AwYsHjA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIADlJdYKGUOlXpKu7Edxzmu2l0t7W5V9SH1FtnOuEJEW9TdIsGP4DfjcR5tkRASHJPYVmJ7Mt-MZ75hbEsHFem8wMQWlU2kN5ho4URiMNgX6GWBQ0oUnh-p6bk8uMi6aELKhWn4IXqHG0lG_F-TgJNDeveWNdRUnlLJCaCkQj1kj6isd7SqTnoGqTTPm4NllVKIV3rR8TYO-e79_vf10i3YvAtZo86ZPGe2e9sm1OTLzs3K7rgfvxE5_tfnrLNnLSKFUbOFXrAHuHjJnt7hKXzFfka_oTfkXodxzBaEGUUbwaj-fBnjCcAsKthHCg6B4wDI26JpYL9DjEoAAzHXl_Ro436EeVeZFwJwhnHksuhGChjY1gjHeH31bUkOZjglGxz2sK6Xr9n5ZHy2N03aQg6JE8EeS6yUhVC6quzQIIqAGBVaI6XJ1VD4TBvMw0Nu8ix1xvFMoM2VskpV2ikdEN0btra4WuBbBnmuvTZCYSG9VN7ojCvhgtUY1Krj1gxY0i1j6VqWcyq2UZcNPzMvaZ7Lfp4HbLtv_7Xh9_hjy41uV5StnC9LXnA6eNW6GDAel_cvo5Sj_cm8v3r3L50-ssfTs_msnH06OnzPnoT7sgkj32Brq-sb_BBQ0spuRjn4BebuChM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceCMWCswBiVPaxHYc57jq7qpAt1oBlfYW2c64QkTbqrtFgh_Bb8Z2Ht0iISQ4JrGtxPZkvhnPfAPwRnkVaR2nxJS1SYTTlChueaLJ2xfkRElpSBSeH8vDE_F-mS-3svhbfojB4RYkI_6vg4Cf127_ijRU1y5kkgd8knF5E24JmaqwrycfBwKprCjac2WZhQivbNnTNqZs_3r_62rpCmtuI9aocmb3Qfcv20aafN273Jg9--M3Hsf_-ZoHcK_DozhuN9BDuEGrR3B3i6XwMfyMXkOng3MdpzFXEI9CrBGOmy-nMZoA9arGCYXQEFx4ON6VTEPzHWNMAmqMmb5Bi7bOR5z3dXnRw2acRiaLfiSPgE1DuKCLs2_r4F7GT8ECxwNqmvUTOJlNPx8cJl0Zh8Ryb40lRoiSS1XXJtVE3ONFSUYLoQuZcpcrTYV_yHSRZ1ZblnMyhZRGylpZqTyeewo7q7MVPQMsCuWU5pJK4YR0WuVMcuttRq9ULTN6BEm_ipXtOM5DqY2matmZWRXmuRrmeQRvh_bnLbvHH1vu9pui6qR8XbGShWNXpcoRsLi6fxmlGk9m8-Hq-b90eg23F5NZdfTu-MMLuONvizaGfBd2NheX9NJDpI15FaXgF9kRCMs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Energy+Level+Alignment+and+Defect+Passivation+by+Using+a+Multifunctional+Molecular+for+Efficient+and+Stable+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Ye%2C+Yong%E2%80%90Chun&rft.au=Chen%2C+Li&rft.au=Chen%2C+Xian%E2%80%90Min&rft.au=Ma%2C+Chun%E2%80%90Ying&rft.date=2024-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202310136&rft.externalDBID=10.1002%252Fadfm.202310136&rft.externalDocID=ADFM202310136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |