Interfacial Energy Level Alignment and Defect Passivation by Using a Multifunctional Molecular for Efficient and Stable Perovskite Solar Cells

Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is bu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 8
Main Authors Ye, Yong‐Chun, Chen, Li, Chen, Xian‐Min, Ma, Chun‐Ying, Lv, Bing‐Hao, Wang, Jiang‐Ying, Dou, Wei‐Dong, Zhang, Chu, Ma, Ting‐Li, Tang, Jian‐Xin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs . A multifunctional molecular bridging layer using 2,5‐dichloroterephthalic acid as a pre‐buried additive on the tin oxide (SnO2) electron transport layer enables interfacial energy level alignment and defect passivation. As a result of the method, the high power conversion efficiencies of 23.25% and 20.23% for the active area of 0.15 cm2 device and 17.52 cm2 mini‐module are achieved, respectively.
AbstractList Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs . A multifunctional molecular bridging layer using 2,5‐dichloroterephthalic acid as a pre‐buried additive on the tin oxide (SnO2) electron transport layer enables interfacial energy level alignment and defect passivation. As a result of the method, the high power conversion efficiencies of 23.25% and 20.23% for the active area of 0.15 cm2 device and 17.52 cm2 mini‐module are achieved, respectively.
Tin oxide (SnO 2 ) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO 2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO 2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm 2 device and 17.52 cm 2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO 2 and perovskite to improve the performance of PSCs .
Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5‐dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect‐assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA‐modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini‐module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long‐term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs .
Author Ye, Yong‐Chun
Ma, Chun‐Ying
Lv, Bing‐Hao
Ma, Ting‐Li
Dou, Wei‐Dong
Wang, Jiang‐Ying
Tang, Jian‐Xin
Chen, Li
Zhang, Chu
Chen, Xian‐Min
Author_xml – sequence: 1
  givenname: Yong‐Chun
  orcidid: 0009-0005-4183-3900
  surname: Ye
  fullname: Ye, Yong‐Chun
  email: yongchunye@cjlu.edu.cn
  organization: China Jiliang University
– sequence: 2
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: Soochow University
– sequence: 3
  givenname: Xian‐Min
  surname: Chen
  fullname: Chen, Xian‐Min
  organization: China Jiliang University
– sequence: 4
  givenname: Chun‐Ying
  surname: Ma
  fullname: Ma, Chun‐Ying
  organization: China Jiliang University
– sequence: 5
  givenname: Bing‐Hao
  surname: Lv
  fullname: Lv, Bing‐Hao
  organization: Shaoxing University
– sequence: 6
  givenname: Jiang‐Ying
  surname: Wang
  fullname: Wang, Jiang‐Ying
  organization: China Jiliang University
– sequence: 7
  givenname: Wei‐Dong
  surname: Dou
  fullname: Dou, Wei‐Dong
  organization: Shaoxing University
– sequence: 8
  givenname: Chu
  surname: Zhang
  fullname: Zhang, Chu
  organization: China Jiliang University
– sequence: 9
  givenname: Ting‐Li
  surname: Ma
  fullname: Ma, Ting‐Li
  email: matingli123@cjlu.edu.cn
  organization: China Jiliang University
– sequence: 10
  givenname: Jian‐Xin
  surname: Tang
  fullname: Tang, Jian‐Xin
  email: jxtang@suda.edu.cn
  organization: Macau University of Science and Technology
BookMark eNqFkE9rGzEQxUVIoU6aa8-Cnu3qz1q7PhrbaQM2DTiB3JZZ7cgokSVX0jr4S_Qzd123CRRCTjMw7_dm5l2Qcx88EvKZsxFnTHyF1mxHggnJGZfqjAy44moomajOX3r-8JFcpPTIGC9LWQzIrxufMRrQFhxdeIybA13iHh2dOrvxW_SZgm_pHA3qTG8hJbuHbIOnzYHeJ-s3FOiqc9mazuvjoDdaBYe6cxCpCZEujLHa_nNaZ2gc0luMYZ-ebEa6DkflDJ1Ln8gHAy7h1d96Se6vF3ez78Plj283s-lyqGXZP9IUxUSqqm0bBohSCqWwgaKAUjFpxhVg2Q8FlGOuQYuxxKZUqlGqrbSqeCEvyZeT7y6Gnx2mXD-GLvanp1pMRMWVqqpJrxqdVDqGlCKaehftFuKh5qw-Zl4fM69fMu-B4j9A2_wnrRzBurexyQl7tg4P7yypp_Pr1Sv7G88Mmpg
CitedBy_id crossref_primary_10_1002_aenm_202405581
crossref_primary_10_1002_smll_202312067
crossref_primary_10_1002_anie_202412601
crossref_primary_10_1002_smll_202401834
crossref_primary_10_1016_j_solener_2025_113444
crossref_primary_10_1021_acsenergylett_4c01118
crossref_primary_10_1016_j_rineng_2025_103954
crossref_primary_10_1002_smll_202311755
crossref_primary_10_1002_sstr_202400374
crossref_primary_10_1016_j_cej_2024_157154
crossref_primary_10_1016_j_cej_2024_159035
crossref_primary_10_1016_j_cej_2024_158910
crossref_primary_10_1016_j_nexres_2024_100055
crossref_primary_10_1002_ange_202412601
crossref_primary_10_1021_acs_jpclett_4c02099
crossref_primary_10_1002_smll_202404272
crossref_primary_10_1021_acs_jpclett_4c01473
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1039_D4TA02884H
Cites_doi 10.1002/adfm.202214788
10.1038/s41586-023-06208-z
10.1002/adma.202109879
10.1002/adma.202201681
10.1002/aenm.201903083
10.1002/adfm.202300128
10.1002/adma.202103394
10.1002/aenm.202200417
10.1016/j.nanoen.2017.08.041
10.1021/acsenergylett.2c01661
10.1021/acsenergylett.0c01566
10.1021/acs.jpclett.1c03002
10.1002/smll.202207817
10.1021/acs.nanolett.7b05469
10.1016/j.nanoen.2023.108281
10.1002/solr.202300101
10.1002/adfm.202302336
10.1038/s41467-021-21292-3
10.1002/aenm.202301161
10.1002/adma.202106118
10.1021/acsnano.7b04070
10.1002/adfm.202204725
10.1038/s41586-023-05847-6
10.1126/science.ade3126
10.1002/adfm.202101438
10.1038/s41570-023-00510-0
10.1002/adom.202300684
10.1038/s41586-021-03964-8
10.1002/anie.202302507
10.1002/adfm.202010385
10.1002/aenm.202104030
10.1002/ange.202304568
10.1038/s41586-022-05346-0
10.1002/smll.201801154
10.1021/acsenergylett.2c02378
10.1002/smll.201601769
10.1002/aenm.202204372
10.1002/adma.202102947
10.1039/C6TA01839D
10.1002/anie.201904945
10.1002/adfm.201905883
10.1021/acsami.6b13362
10.1039/D2EE02649J
10.1038/s41586-023-05792-4
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202310136
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202310136
ADFM202310136
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  funderid: LY19F040005
– fundername: National Key R&D Program of China
  funderid: 2022YFE0108900
– fundername: Science and Technology Development Fund
  funderid: 0018/2022/A1
– fundername: China Jiliang University
  funderid: 220971
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3716-b449368ddb0aee33266eba44a7603f58ae78dd2a751cac253eb766b66d8c68143
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:11:57 EDT 2025
Tue Jul 01 00:30:51 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Wed Jan 22 16:14:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3716-b449368ddb0aee33266eba44a7603f58ae78dd2a751cac253eb766b66d8c68143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-4183-3900
PQID 2928166889
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2928166889
crossref_primary_10_1002_adfm_202310136
crossref_citationtrail_10_1002_adfm_202310136
wiley_primary_10_1002_adfm_202310136_ADFM202310136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2023; 13
2023; 11
2023; 33
2023; 7
2023; 8
2023; 19
2019; 58
2023; 620
2023; 109
2020; 10
2022; 612
2017; 9
2016; 4
2018; 18
2023; 62
2020; 5
2021; 31
2021; 12
2021; 33
2021; 598
2017; 11
2023; 135
2022; 7
2017; 13
2022; 12
2022; 34
2023; 379
2019; 29
2022; 15
2023; 616
2023; 615
2022; 32
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 7
  start-page: 632
  year: 2023
  publication-title: Nat. Rev. Chem.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 973
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2796
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 9
  start-page: 2421
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 620
  start-page: 323
  year: 2023
  publication-title: Nature
– volume: 4
  start-page: 8374
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 109
  year: 2023
  publication-title: Nano Energy
– volume: 40
  start-page: 336
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 9176
  year: 2017
  publication-title: ACS Nano
– volume: 598
  start-page: 444
  year: 2021
  publication-title: Nature
– volume: 18
  start-page: 2428
  year: 2018
  publication-title: Nano Lett.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 379
  start-page: 683
  year: 2023
  publication-title: Science
– volume: 7
  year: 2023
  publication-title: Sol. RRL
– volume: 8
  start-page: 666
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 616
  start-page: 712
  year: 2023
  publication-title: Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 612
  start-page: 266
  year: 2022
  publication-title: Nature
– volume: 19
  year: 2023
  publication-title: Small
– volume: 15
  start-page: 4836
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 3685
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 615
  start-page: 830
  year: 2023
  publication-title: Nature
– volume: 13
  year: 2017
  publication-title: Small
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.202214788
– ident: e_1_2_7_1_1
  doi: 10.1038/s41586-023-06208-z
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202109879
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.202201681
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201903083
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.202300128
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.202103394
– ident: e_1_2_7_39_1
  doi: 10.1002/aenm.202200417
– ident: e_1_2_7_13_1
  doi: 10.1016/j.nanoen.2017.08.041
– ident: e_1_2_7_40_1
  doi: 10.1021/acsenergylett.2c01661
– ident: e_1_2_7_22_1
  doi: 10.1021/acsenergylett.0c01566
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.jpclett.1c03002
– ident: e_1_2_7_8_1
  doi: 10.1002/smll.202207817
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.7b05469
– ident: e_1_2_7_12_1
  doi: 10.1016/j.nanoen.2023.108281
– ident: e_1_2_7_9_1
  doi: 10.1002/solr.202300101
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.202302336
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-021-21292-3
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.202301161
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.202106118
– ident: e_1_2_7_23_1
  doi: 10.1021/acsnano.7b04070
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.202204725
– ident: e_1_2_7_5_1
  doi: 10.1038/s41586-023-05847-6
– ident: e_1_2_7_2_1
  doi: 10.1126/science.ade3126
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.202101438
– ident: e_1_2_7_6_1
  doi: 10.1038/s41570-023-00510-0
– ident: e_1_2_7_20_1
  doi: 10.1002/adom.202300684
– ident: e_1_2_7_27_1
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.202302507
– ident: e_1_2_7_41_1
  doi: 10.1002/adfm.202010385
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.202104030
– ident: e_1_2_7_30_1
  doi: 10.1002/ange.202304568
– ident: e_1_2_7_3_1
  doi: 10.1038/s41586-022-05346-0
– ident: e_1_2_7_7_1
  doi: 10.1002/smll.201801154
– ident: e_1_2_7_11_1
  doi: 10.1021/acsenergylett.2c02378
– ident: e_1_2_7_17_1
  doi: 10.1002/smll.201601769
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.202204372
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.202102947
– ident: e_1_2_7_16_1
  doi: 10.1039/C6TA01839D
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201904945
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201905883
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.6b13362
– ident: e_1_2_7_44_1
  doi: 10.1039/D2EE02649J
– ident: e_1_2_7_4_1
  doi: 10.1038/s41586-023-05792-4
SSID ssj0017734
Score 2.553731
Snippet Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are...
Tin oxide (SnO 2 ) is currently the dominating electron transport material (ETL) used in state‐of‐the‐art perovskite solar cells (PSCs). However, there are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alignment
Crystal defects
Crystal growth
defect passivation
Electron transport
Energy conversion efficiency
energy level alignment
Energy levels
Interfacial energy
molecular bridging layer
Performance enhancement
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Tin dioxide
Tin oxides
Title Interfacial Energy Level Alignment and Defect Passivation by Using a Multifunctional Molecular for Efficient and Stable Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202310136
https://www.proquest.com/docview/2928166889
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhuSSHPtKUbvNgDoGcnKwlWZaPS3aXULIlJA3szUjyqJSaTcluCu2PyG-uRn5kUyiF9mZjSdiSxvPNaOYbxo51UJHOC0xsUdlEeoOJFk4kBoN9gV4WOKRE4dlHdXErP8yz-VoWf8MP0TvcSDLi_5oE3Njl2RNpqKk8ZZITPkkFcW5TwBahouuePyrN8-ZYWaUU4JXOO9bGIT973v25VnqCmuuANWqc6UtmundtAk2-nj6s7Kn7-RuN4_98zCv2ooWjMGr2z2u2gYtdtrNGUviGPUanoTfkW4dJTBWESwo1glH95XMMJgCzqGCMFBkCVwGNtxXTwP6AGJIABmKiLynRxvcIs64sLwTUDJNIZNGNFACwrRGu8P7u-5K8y3BDBjicY10v99jtdPLp_CJpqzgkTgRjLLFSFkLpqrJDgygCXFRojZQmV0PhM20wDw-5ybPUGcczgTZXyipVaad0gHNv2ebiboHvGOS59toIhYX0UnmjM66ECyZj0KmOWzNgSbeKpWspzqnSRl025My8pHku-3kesJO-_beG3OOPLQ-6TVG2Qr4secHp1FXrYsB4XN2_jFKOxtNZf_f-Xzrts-1wLZu48QO2ubp_wMMAi1b2iG2NxrPLm6MoAr8AwYsHjA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIADlJdYKGUOlXpKu7Edxzmu2l0t7W5V9SH1FtnOuEJEW9TdIsGP4DfjcR5tkRASHJPYVmJ7Mt-MZ75hbEsHFem8wMQWlU2kN5ho4URiMNgX6GWBQ0oUnh-p6bk8uMi6aELKhWn4IXqHG0lG_F-TgJNDeveWNdRUnlLJCaCkQj1kj6isd7SqTnoGqTTPm4NllVKIV3rR8TYO-e79_vf10i3YvAtZo86ZPGe2e9sm1OTLzs3K7rgfvxE5_tfnrLNnLSKFUbOFXrAHuHjJnt7hKXzFfka_oTfkXodxzBaEGUUbwaj-fBnjCcAsKthHCg6B4wDI26JpYL9DjEoAAzHXl_Ro436EeVeZFwJwhnHksuhGChjY1gjHeH31bUkOZjglGxz2sK6Xr9n5ZHy2N03aQg6JE8EeS6yUhVC6quzQIIqAGBVaI6XJ1VD4TBvMw0Nu8ix1xvFMoM2VskpV2ikdEN0btra4WuBbBnmuvTZCYSG9VN7ojCvhgtUY1Krj1gxY0i1j6VqWcyq2UZcNPzMvaZ7Lfp4HbLtv_7Xh9_hjy41uV5StnC9LXnA6eNW6GDAel_cvo5Sj_cm8v3r3L50-ssfTs_msnH06OnzPnoT7sgkj32Brq-sb_BBQ0spuRjn4BebuChM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceCMWCswBiVPaxHYc57jq7qpAt1oBlfYW2c64QkTbqrtFgh_Bb8Z2Ht0iISQ4JrGtxPZkvhnPfAPwRnkVaR2nxJS1SYTTlChueaLJ2xfkRElpSBSeH8vDE_F-mS-3svhbfojB4RYkI_6vg4Cf127_ijRU1y5kkgd8knF5E24JmaqwrycfBwKprCjac2WZhQivbNnTNqZs_3r_62rpCmtuI9aocmb3Qfcv20aafN273Jg9--M3Hsf_-ZoHcK_DozhuN9BDuEGrR3B3i6XwMfyMXkOng3MdpzFXEI9CrBGOmy-nMZoA9arGCYXQEFx4ON6VTEPzHWNMAmqMmb5Bi7bOR5z3dXnRw2acRiaLfiSPgE1DuKCLs2_r4F7GT8ECxwNqmvUTOJlNPx8cJl0Zh8Ryb40lRoiSS1XXJtVE3ONFSUYLoQuZcpcrTYV_yHSRZ1ZblnMyhZRGylpZqTyeewo7q7MVPQMsCuWU5pJK4YR0WuVMcuttRq9ULTN6BEm_ipXtOM5DqY2matmZWRXmuRrmeQRvh_bnLbvHH1vu9pui6qR8XbGShWNXpcoRsLi6fxmlGk9m8-Hq-b90eg23F5NZdfTu-MMLuONvizaGfBd2NheX9NJDpI15FaXgF9kRCMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Energy+Level+Alignment+and+Defect+Passivation+by+Using+a+Multifunctional+Molecular+for+Efficient+and+Stable+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Ye%2C+Yong%E2%80%90Chun&rft.au=Chen%2C+Li&rft.au=Chen%2C+Xian%E2%80%90Min&rft.au=Ma%2C+Chun%E2%80%90Ying&rft.date=2024-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202310136&rft.externalDBID=10.1002%252Fadfm.202310136&rft.externalDocID=ADFM202310136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon