Heterointerface Energetics Regulation Strategy Enabled Efficient Perovskite Solar Cells
In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiati...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 13 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA− exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells.
A heterointerface energetics regulation strategy by introducing potassium trifluoroacetate in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level, is proposed. Utilizing TOF‐SIMS, potassium is challenging to dope into the perovskite lattice but accumulates at both the upper surface and buried interface of the perovskite for reducing VOC losses of perovskite solar cells. |
---|---|
AbstractList | In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the
V
oc
losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K
+
but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA
−
exhibits strong electrostatic force with undercoordinated Pb
2+
in the buried contact of perovskite and Sn
4+
in the SnO
2
electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb
0.02
(Cs
0.05
FA
0.95
)
0.98
PbI
0.91
Br
0.03
Cl
0.06
and Cs
0.05
FA
0.95
PbI
3
based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells. In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA− exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells. In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA− exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells. A heterointerface energetics regulation strategy by introducing potassium trifluoroacetate in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level, is proposed. Utilizing TOF‐SIMS, potassium is challenging to dope into the perovskite lattice but accumulates at both the upper surface and buried interface of the perovskite for reducing VOC losses of perovskite solar cells. |
Author | Zhu, Yunfei Zhang, Shuliang Zhang, Zuolin Li, Mengjia Gao, Wenhuan Chen, Cong Chen, Jiangzhao Zhao, Xuefan Feng, Yinsu Tang, Jian‐Xin |
Author_xml | – sequence: 1 givenname: Yunfei surname: Zhu fullname: Zhu, Yunfei organization: Hebei University of Technology – sequence: 2 givenname: Zuolin surname: Zhang fullname: Zhang, Zuolin organization: Hebei University of Technology – sequence: 3 givenname: Xuefan surname: Zhao fullname: Zhao, Xuefan organization: Hebei University of Technology – sequence: 4 givenname: Mengjia surname: Li fullname: Li, Mengjia organization: Hebei University of Technology – sequence: 5 givenname: Yinsu surname: Feng fullname: Feng, Yinsu organization: Hebei University of Technology – sequence: 6 givenname: Shuliang surname: Zhang fullname: Zhang, Shuliang email: cdpc_zsl@cdpc.edu.cn organization: Hebei Petroleum University of Technology – sequence: 7 givenname: Wenhuan surname: Gao fullname: Gao, Wenhuan organization: Hebei University of Technology – sequence: 8 givenname: Jiangzhao surname: Chen fullname: Chen, Jiangzhao email: jzchen@kust.edu.cn organization: Kunming University of Science and Technology – sequence: 9 givenname: Jian‐Xin surname: Tang fullname: Tang, Jian‐Xin email: jxtang@suda.edu.cn organization: Soochow University – sequence: 10 givenname: Cong orcidid: 0000-0003-1000-6791 surname: Chen fullname: Chen, Cong email: chencong@hebut.edu.cn organization: Macau University of Science and Technology |
BookMark | eNqFkE1LAzEQhoNUsNZePS943ppk0zR7LGW1Qv3AKh5DNjspqdvdmqRK_72plQqCmMMkMPPMS55T1GnaBhA6J3hAMKaXCprVgGKa4Sxn_Ah1CScs5YLhzuGd0RPU936J42E5wVnWRS9TCOBa28RqlIakaMAtIFjtk0dYbGoVbNsk8-BUgMU2tlVZQ5UUxlhtoQnJQ8Tf_asNkMzbWrlkAnXtz9CxUbWH_vfdQ89XxdNkms7ur28m41mqsxHhqTCghB4yKBWrDDG4YkaUTFEGuhSYVDSniopc4fiVIaGEc8x1hkegiKg4zXroYr937dq3Dfggl-3GNTFSRhVUxBBB4tRgP6Vd670DI9fOrpTbSoLlzp_c-ZMHfxFgvwBtw5eKKMLWf2P5HvuwNWz_CZHj4u72h_0EO_-HdQ |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2025_110720 crossref_primary_10_1002_adma_202413304 crossref_primary_10_1002_adma_202412304 crossref_primary_10_1002_smll_202401877 crossref_primary_10_1002_anie_202410454 crossref_primary_10_1002_smll_202402759 crossref_primary_10_1038_s41467_025_56068_6 crossref_primary_10_1039_D4EE02017K crossref_primary_10_1039_D3NR04117D crossref_primary_10_1002_adfm_202416330 crossref_primary_10_1002_smll_202401136 crossref_primary_10_1039_D4TC04760E crossref_primary_10_1002_smll_202404334 crossref_primary_10_1002_adfm_202417293 crossref_primary_10_1002_smll_202402531 crossref_primary_10_1016_j_nanoen_2025_110681 crossref_primary_10_1021_acsphotonics_4c01281 crossref_primary_10_1021_acssuschemeng_4c04732 crossref_primary_10_1002_adfm_202409497 crossref_primary_10_1002_ange_202410454 crossref_primary_10_1002_solr_202400017 crossref_primary_10_1021_jacs_4c13866 |
Cites_doi | 10.1038/s41586-023-06637-w 10.1021/acs.nanolett.3c03655 10.1021/jacs.7b12860 10.1021/acs.jpclett.7b00446 10.1021/acsami.6b11011 10.1126/science.adk1633 10.1039/C8TA00769A 10.1039/C4TA05284F 10.1002/anie.202206914 10.1038/s41467-021-25937-1 10.1126/science.aay7044 10.1039/D2SC06499E 10.1126/sciadv.aaw2543 10.1002/aenm.201601575 10.1002/ange.202314270 10.1038/s41578-021-00286-z 10.1007/s40843-018-9395-y 10.1002/adfm.202108944 10.1038/s41467-022-34332-3 10.1038/nphoton.2014.284 10.1016/j.jpowsour.2021.229451 10.1039/D1TC02335G 10.1021/acs.jpclett.2c02414 10.1002/advs.201903368 10.1002/adma.202301028 10.1021/acsaem.1c03296 10.1186/s11671-016-1540-4 10.1126/science.abl5676 10.1038/s41586-022-04604-5 10.1038/s41467-019-08425-5 10.1126/science.aba0893 10.1002/adfm.201706923 10.1038/s41467-018-07099-9 10.1038/s41586-021-03406-5 10.1016/j.jechem.2021.07.011 10.1021/ja508758k 10.1002/anie.201406466 10.1039/D0CS01316A 10.1038/s41570-023-00510-0 10.1002/adfm.202107726 10.1021/acsaem.1c01893 10.1002/solr.202100352 10.1002/aenm.202200417 10.1126/science.aam5655 10.1002/sstr.202000050 10.1016/j.jechem.2020.06.019 10.1016/j.jechem.2022.02.016 10.1021/acsami.2c09926 10.1002/aenm.201502009 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303946 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303946 AENM202303946 |
Genre | article |
GrantInformation_xml | – fundername: S&T Program of Hebei funderid: 215676146H; 225676163GH – fundername: Macao Young Scholars Program funderid: AM2021013 – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: State Key Laboratory of Reliability and Intelligence of Electrical Equipment funderid: EERI_PI20200005; EERI_0Y2021001 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 62004058; U21A2076; 62274018 – fundername: Science and Technology Development Fund funderid: 0018/2022/A1 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3716-8fea8c54eba4df1f0d4f8b4a24ecb801d292a289a068451216606c307ea18d623 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 10:00:18 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Tue Jul 01 01:43:55 EDT 2025 Wed Jan 22 16:12:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3716-8fea8c54eba4df1f0d4f8b4a24ecb801d292a289a068451216606c307ea18d623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1000-6791 |
PQID | 3032871681 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3032871681 crossref_primary_10_1002_aenm_202303946 crossref_citationtrail_10_1002_aenm_202303946 wiley_primary_10_1002_aenm_202303946_AENM202303946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2017; 7 2017; 8 2023; 35 2023; 382 2023; 7 2019; 10 2021; 488 2023; 623 2022; 69 2019; 366 2020; 367 2014; 136 2017; 358 2020; 7 2018; 6 2018; 9 2021; 31 2019; 62 2023; 23 2018; 1 2023; 135 2021; 592 2022; 605 2022; 32 2014; 53 2021; 9 2018; 28 2021; 6 2021; 5 2023; 14 2021; 4 2018; 140 2021; 2 2019; 5 2015; 3 2021; 50 2015; 9 2016; 11 2016; 6 2021; 54 2021; 12 2023 2022; 61 2022; 12 2022; 13 2022; 14 2021; 63 2016; 8 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 Fischer M. (e_1_2_9_49_1) 2018; 1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 23 year: 2023 publication-title: Nano Lett. – volume: 9 start-page: 4609 year: 2018 publication-title: Nat. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 54 start-page: 493 year: 2021 publication-title: J. Energy Chem. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1745 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 531 year: 2021 publication-title: Nat. Rev. Mater. – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 9 start-page: 106 year: 2015 publication-title: Nat. Photonics – volume: 623 start-page: 531 year: 2023 publication-title: Nature – volume: 50 start-page: 2696 year: 2021 publication-title: Chem. Soc. Rev. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 3 start-page: 9067 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 4971 year: 2018 publication-title: J. Mater. Chem. A – volume: 11 start-page: 316 year: 2016 publication-title: Nanoscale Res. Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 13 start-page: 8573 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 135 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 6655 year: 2022 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 63 start-page: 452 year: 2021 publication-title: J. Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 366 start-page: 749 year: 2019 publication-title: Science – volume: 7 start-page: 632 year: 2023 publication-title: Nat. Rev. Chem. – volume: 10 start-page: 665 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 5566 year: 2021 publication-title: Nat. Commun. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 375 start-page: 434 year: 2022 publication-title: Science – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 140 start-page: 3345 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 69 start-page: 659 year: 2022 publication-title: J. Energy Chem. – volume: 62 start-page: 776 year: 2019 publication-title: Sci. China Mater. – volume: 1 start-page: 5129 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 592 start-page: 381 year: 2021 publication-title: Nature – volume: 488 year: 2021 publication-title: J. Power Sources – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 382 start-page: 810 year: 2023 publication-title: Science – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 358 start-page: 768 year: 2017 publication-title: Science – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – year: 2023 – volume: 605 start-page: 268 year: 2022 publication-title: Nature – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 14 start-page: 2877 year: 2023 publication-title: Chem. Sci. – volume: 9 year: 2021 publication-title: J. Mater. Chem. C – volume: 5 year: 2021 publication-title: Sol. RRL – ident: e_1_2_9_2_1 doi: 10.1038/s41586-023-06637-w – ident: e_1_2_9_10_1 doi: 10.1021/acs.nanolett.3c03655 – ident: e_1_2_9_16_1 doi: 10.1021/jacs.7b12860 – ident: e_1_2_9_44_1 doi: 10.1021/acs.jpclett.7b00446 – ident: e_1_2_9_41_1 doi: 10.1021/acsami.6b11011 – ident: e_1_2_9_3_1 doi: 10.1126/science.adk1633 – ident: e_1_2_9_47_1 doi: 10.1039/C8TA00769A – ident: e_1_2_9_22_1 doi: 10.1039/C4TA05284F – ident: e_1_2_9_6_1 doi: 10.1002/anie.202206914 – ident: e_1_2_9_43_1 doi: 10.1038/s41467-021-25937-1 – ident: e_1_2_9_18_1 doi: 10.1126/science.aay7044 – ident: e_1_2_9_11_1 doi: 10.1039/D2SC06499E – ident: e_1_2_9_15_1 doi: 10.1126/sciadv.aaw2543 – ident: e_1_2_9_13_1 doi: 10.1002/aenm.201601575 – ident: e_1_2_9_42_1 doi: 10.1002/ange.202314270 – ident: e_1_2_9_37_1 doi: 10.1038/s41578-021-00286-z – ident: e_1_2_9_39_1 doi: 10.1007/s40843-018-9395-y – ident: e_1_2_9_30_1 doi: 10.1002/adfm.202108944 – ident: e_1_2_9_46_1 doi: 10.1038/s41467-022-34332-3 – ident: e_1_2_9_48_1 doi: 10.1038/nphoton.2014.284 – ident: e_1_2_9_32_1 doi: 10.1016/j.jpowsour.2021.229451 – ident: e_1_2_9_28_1 doi: 10.1039/D1TC02335G – ident: e_1_2_9_36_1 doi: 10.1021/acs.jpclett.2c02414 – ident: e_1_2_9_40_1 doi: 10.1002/advs.201903368 – ident: e_1_2_9_7_1 doi: 10.1002/adma.202301028 – ident: e_1_2_9_19_1 doi: 10.1021/acsaem.1c03296 – ident: e_1_2_9_50_1 doi: 10.1186/s11671-016-1540-4 – ident: e_1_2_9_45_1 doi: 10.1126/science.abl5676 – ident: e_1_2_9_12_1 doi: 10.1038/s41586-022-04604-5 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-019-08425-5 – ident: e_1_2_9_4_1 doi: 10.1126/science.aba0893 – ident: e_1_2_9_1_1 – ident: e_1_2_9_17_1 doi: 10.1002/adfm.201706923 – ident: e_1_2_9_33_1 doi: 10.1038/s41467-018-07099-9 – ident: e_1_2_9_25_1 doi: 10.1038/s41586-021-03406-5 – ident: e_1_2_9_27_1 doi: 10.1016/j.jechem.2021.07.011 – ident: e_1_2_9_51_1 doi: 10.1021/ja508758k – ident: e_1_2_9_9_1 doi: 10.1002/anie.201406466 – ident: e_1_2_9_38_1 doi: 10.1039/D0CS01316A – ident: e_1_2_9_5_1 doi: 10.1038/s41570-023-00510-0 – ident: e_1_2_9_26_1 doi: 10.1002/adfm.202107726 – ident: e_1_2_9_34_1 doi: 10.1021/acsaem.1c01893 – ident: e_1_2_9_23_1 doi: 10.1002/solr.202100352 – ident: e_1_2_9_31_1 doi: 10.1002/aenm.202200417 – ident: e_1_2_9_24_1 doi: 10.1126/science.aam5655 – ident: e_1_2_9_8_1 doi: 10.1002/sstr.202000050 – ident: e_1_2_9_35_1 doi: 10.1016/j.jechem.2020.06.019 – ident: e_1_2_9_14_1 doi: 10.1016/j.jechem.2022.02.016 – ident: e_1_2_9_20_1 doi: 10.1021/acsami.2c09926 – volume: 1 start-page: 5129 year: 2018 ident: e_1_2_9_49_1 publication-title: ACS Appl. Energy Mater. – ident: e_1_2_9_21_1 doi: 10.1002/aenm.201502009 |
SSID | ssj0000491033 |
Score | 2.487679 |
Snippet | In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alignment bandgap alignment Carrier recombination defect passivation Defects Electron transport Energy dissipation Energy levels Fermi surfaces heterointerface energetics regulation perovskite solar cells Perovskites Photovoltaic cells potassium trifluoroacetate Radiative recombination Solar cells Tin dioxide vacuum flash evaporation |
Title | Heterointerface Energetics Regulation Strategy Enabled Efficient Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303946 https://www.proquest.com/docview/3032871681 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZ-rI9jH2ybN3QQ2EPxV0sy479GLqMMJo-rC0LfTGSLUFKcEoTF7q_fneSLStt99G-GCPLNtL9dLo77n4iZA8sfB6HZRaIWMuAI99nxosykCMtR1KnsANiNfLsOJme8e_zeN7r-VlL9UYeFL_urSt5jFShDeSKVbIPkKz7KDTAPcgXriBhuP6XjKeYy7JCxocrLWCBTrCQTxni5R_2jHmjDiwB7Q08xjqpEk9TXpg6SMx_X12vMYC7f4I-7v6hWi7XvsE6bnMElC0SBAPXjqyLONdGjdeVVos7YejzGg8F8ppNZHZeK-3lApmEAkyvvVgIPwrB_OQVqzhhmw-StIlVKr_N0jE5bct9VEXexuu2pTta3bLEClUhdQD4TFHG76HPdj3jv_e1bL-T45l7_oTsMPAyWJ_sjL_Ojk5ckA7cp3AYmSKNdnwt8eeQfdn-ybZh03krvs9jjJbTF-R5423QsYXOS9JT1SvyzOOgfE1-3gIR7UBEOxDRFkS0ARF1IKIdiKgBETUgekPOvk1OD6dBc9pGUETgNAepViItYq6k4KUO9bDkOpVcMK4KCXZMyTImwD0XQxApmIlhAr5vAVuEEmFaghX9lvSrVaXeEZrIEQfNMBIJy7iKtOChKJMErMsMXo6zAQnaqcqLhooeT0RZ5pZEm-U4tbmb2gH57PpfWhKWP_bcbWc-bxbqOo-QMxKGmIYDwow0_vGVfAsd7x_z0gfytFsmu6S_uarVRzBfN_JTA7Lf4qeUlw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterointerface+Energetics+Regulation+Strategy+Enabled+Efficient+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Zhu%2C+Yunfei&rft.au=Zhang%2C+Zuolin&rft.au=Zhao%2C+Xuefan&rft.au=Li%2C+Mengjia&rft.date=2024-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202303946&rft.externalDBID=10.1002%252Faenm.202303946&rft.externalDocID=AENM202303946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |