Heterointerface Energetics Regulation Strategy Enabled Efficient Perovskite Solar Cells

In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 13
Main Authors Zhu, Yunfei, Zhang, Zuolin, Zhao, Xuefan, Li, Mengjia, Feng, Yinsu, Zhang, Shuliang, Gao, Wenhuan, Chen, Jiangzhao, Tang, Jian‐Xin, Chen, Cong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA− exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells. A heterointerface energetics regulation strategy by introducing potassium trifluoroacetate in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level, is proposed. Utilizing TOF‐SIMS, potassium is challenging to dope into the perovskite lattice but accumulates at both the upper surface and buried interface of the perovskite for reducing VOC losses of perovskite solar cells.
AbstractList In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the V oc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K + but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA − exhibits strong electrostatic force with undercoordinated Pb 2+ in the buried contact of perovskite and Sn 4+ in the SnO 2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb 0.02 (Cs 0.05 FA 0.95 ) 0.98 PbI 0.91 Br 0.03 Cl 0.06 and Cs 0.05 FA 0.95 PbI 3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells.
In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA− exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells.
In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed to the energy offset, interface defects, and the roughness of the contact. This phenomenon at the heterointerfaces, where carrier non‐radiative recombination and energy dissipation occur due to defects and suboptimal energy level alignment, can be principally held accountable for the Voc losses. Herein, a heterointerface energetics regulation (HER) strategy is proposed by introducing potassium trifluoroacetate (KTFA) in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level. It is first demonstrated that non‐doping K+ but precipitating at the upper and buried perovskite will improve energy‐level alignment for charge extraction dynamics. In addition, the TFA− exhibits strong electrostatic force with undercoordinated Pb2+ in the buried contact of perovskite and Sn4+ in the SnO2 electron transporting layer. Based on the vacuum flash evaporation green treatment without anti‐solvent, the Rb0.02(Cs0.05FA0.95)0.98PbI0.91Br0.03Cl0.06 and Cs0.05FA0.95PbI3 based device can achieve maximum efficiency of 23.36% and 24.48%, respectively. Further, the modified devices exhibit 92% initial efficiency output after 1200 h of aging. HER strategy for addressing interface defects and bandgap alignment are poised to advance both the performance and stability of perovskite solar cells. A heterointerface energetics regulation strategy by introducing potassium trifluoroacetate in the perovskite precursor solution to eliminate the trap defects and optimize surface potential and Fermi level, is proposed. Utilizing TOF‐SIMS, potassium is challenging to dope into the perovskite lattice but accumulates at both the upper surface and buried interface of the perovskite for reducing VOC losses of perovskite solar cells.
Author Zhu, Yunfei
Zhang, Shuliang
Zhang, Zuolin
Li, Mengjia
Gao, Wenhuan
Chen, Cong
Chen, Jiangzhao
Zhao, Xuefan
Feng, Yinsu
Tang, Jian‐Xin
Author_xml – sequence: 1
  givenname: Yunfei
  surname: Zhu
  fullname: Zhu, Yunfei
  organization: Hebei University of Technology
– sequence: 2
  givenname: Zuolin
  surname: Zhang
  fullname: Zhang, Zuolin
  organization: Hebei University of Technology
– sequence: 3
  givenname: Xuefan
  surname: Zhao
  fullname: Zhao, Xuefan
  organization: Hebei University of Technology
– sequence: 4
  givenname: Mengjia
  surname: Li
  fullname: Li, Mengjia
  organization: Hebei University of Technology
– sequence: 5
  givenname: Yinsu
  surname: Feng
  fullname: Feng, Yinsu
  organization: Hebei University of Technology
– sequence: 6
  givenname: Shuliang
  surname: Zhang
  fullname: Zhang, Shuliang
  email: cdpc_zsl@cdpc.edu.cn
  organization: Hebei Petroleum University of Technology
– sequence: 7
  givenname: Wenhuan
  surname: Gao
  fullname: Gao, Wenhuan
  organization: Hebei University of Technology
– sequence: 8
  givenname: Jiangzhao
  surname: Chen
  fullname: Chen, Jiangzhao
  email: jzchen@kust.edu.cn
  organization: Kunming University of Science and Technology
– sequence: 9
  givenname: Jian‐Xin
  surname: Tang
  fullname: Tang, Jian‐Xin
  email: jxtang@suda.edu.cn
  organization: Soochow University
– sequence: 10
  givenname: Cong
  orcidid: 0000-0003-1000-6791
  surname: Chen
  fullname: Chen, Cong
  email: chencong@hebut.edu.cn
  organization: Macau University of Science and Technology
BookMark eNqFkE1LAzEQhoNUsNZePS943ppk0zR7LGW1Qv3AKh5DNjspqdvdmqRK_72plQqCmMMkMPPMS55T1GnaBhA6J3hAMKaXCprVgGKa4Sxn_Ah1CScs5YLhzuGd0RPU936J42E5wVnWRS9TCOBa28RqlIakaMAtIFjtk0dYbGoVbNsk8-BUgMU2tlVZQ5UUxlhtoQnJQ8Tf_asNkMzbWrlkAnXtz9CxUbWH_vfdQ89XxdNkms7ur28m41mqsxHhqTCghB4yKBWrDDG4YkaUTFEGuhSYVDSniopc4fiVIaGEc8x1hkegiKg4zXroYr937dq3Dfggl-3GNTFSRhVUxBBB4tRgP6Vd670DI9fOrpTbSoLlzp_c-ZMHfxFgvwBtw5eKKMLWf2P5HvuwNWz_CZHj4u72h_0EO_-HdQ
CitedBy_id crossref_primary_10_1016_j_nanoen_2025_110720
crossref_primary_10_1002_adma_202413304
crossref_primary_10_1002_adma_202412304
crossref_primary_10_1002_smll_202401877
crossref_primary_10_1002_anie_202410454
crossref_primary_10_1002_smll_202402759
crossref_primary_10_1038_s41467_025_56068_6
crossref_primary_10_1039_D4EE02017K
crossref_primary_10_1039_D3NR04117D
crossref_primary_10_1002_adfm_202416330
crossref_primary_10_1002_smll_202401136
crossref_primary_10_1039_D4TC04760E
crossref_primary_10_1002_smll_202404334
crossref_primary_10_1002_adfm_202417293
crossref_primary_10_1002_smll_202402531
crossref_primary_10_1016_j_nanoen_2025_110681
crossref_primary_10_1021_acsphotonics_4c01281
crossref_primary_10_1021_acssuschemeng_4c04732
crossref_primary_10_1002_adfm_202409497
crossref_primary_10_1002_ange_202410454
crossref_primary_10_1002_solr_202400017
crossref_primary_10_1021_jacs_4c13866
Cites_doi 10.1038/s41586-023-06637-w
10.1021/acs.nanolett.3c03655
10.1021/jacs.7b12860
10.1021/acs.jpclett.7b00446
10.1021/acsami.6b11011
10.1126/science.adk1633
10.1039/C8TA00769A
10.1039/C4TA05284F
10.1002/anie.202206914
10.1038/s41467-021-25937-1
10.1126/science.aay7044
10.1039/D2SC06499E
10.1126/sciadv.aaw2543
10.1002/aenm.201601575
10.1002/ange.202314270
10.1038/s41578-021-00286-z
10.1007/s40843-018-9395-y
10.1002/adfm.202108944
10.1038/s41467-022-34332-3
10.1038/nphoton.2014.284
10.1016/j.jpowsour.2021.229451
10.1039/D1TC02335G
10.1021/acs.jpclett.2c02414
10.1002/advs.201903368
10.1002/adma.202301028
10.1021/acsaem.1c03296
10.1186/s11671-016-1540-4
10.1126/science.abl5676
10.1038/s41586-022-04604-5
10.1038/s41467-019-08425-5
10.1126/science.aba0893
10.1002/adfm.201706923
10.1038/s41467-018-07099-9
10.1038/s41586-021-03406-5
10.1016/j.jechem.2021.07.011
10.1021/ja508758k
10.1002/anie.201406466
10.1039/D0CS01316A
10.1038/s41570-023-00510-0
10.1002/adfm.202107726
10.1021/acsaem.1c01893
10.1002/solr.202100352
10.1002/aenm.202200417
10.1126/science.aam5655
10.1002/sstr.202000050
10.1016/j.jechem.2020.06.019
10.1016/j.jechem.2022.02.016
10.1021/acsami.2c09926
10.1002/aenm.201502009
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303946
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303946
AENM202303946
Genre article
GrantInformation_xml – fundername: S&T Program of Hebei
  funderid: 215676146H; 225676163GH
– fundername: Macao Young Scholars Program
  funderid: AM2021013
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: State Key Laboratory of Reliability and Intelligence of Electrical Equipment
  funderid: EERI_PI20200005; EERI_0Y2021001
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 62004058; U21A2076; 62274018
– fundername: Science and Technology Development Fund
  funderid: 0018/2022/A1
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3716-8fea8c54eba4df1f0d4f8b4a24ecb801d292a289a068451216606c307ea18d623
ISSN 1614-6832
IngestDate Fri Jul 25 10:00:18 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 01:43:55 EDT 2025
Wed Jan 22 16:12:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3716-8fea8c54eba4df1f0d4f8b4a24ecb801d292a289a068451216606c307ea18d623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1000-6791
PQID 3032871681
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_3032871681
crossref_primary_10_1002_aenm_202303946
crossref_citationtrail_10_1002_aenm_202303946
wiley_primary_10_1002_aenm_202303946_AENM202303946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2017; 7
2017; 8
2023; 35
2023; 382
2023; 7
2019; 10
2021; 488
2023; 623
2022; 69
2019; 366
2020; 367
2014; 136
2017; 358
2020; 7
2018; 6
2018; 9
2021; 31
2019; 62
2023; 23
2018; 1
2023; 135
2021; 592
2022; 605
2022; 32
2014; 53
2021; 9
2018; 28
2021; 6
2021; 5
2023; 14
2021; 4
2018; 140
2021; 2
2019; 5
2015; 3
2021; 50
2015; 9
2016; 11
2016; 6
2021; 54
2021; 12
2023
2022; 61
2022; 12
2022; 13
2022; 14
2021; 63
2016; 8
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
Fischer M. (e_1_2_9_49_1) 2018; 1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 23
  year: 2023
  publication-title: Nano Lett.
– volume: 9
  start-page: 4609
  year: 2018
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 493
  year: 2021
  publication-title: J. Energy Chem.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1745
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 531
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 9
  start-page: 106
  year: 2015
  publication-title: Nat. Photonics
– volume: 623
  start-page: 531
  year: 2023
  publication-title: Nature
– volume: 50
  start-page: 2696
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 3
  start-page: 9067
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4971
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 316
  year: 2016
  publication-title: Nanoscale Res. Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 8573
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 135
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 6655
  year: 2022
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 63
  start-page: 452
  year: 2021
  publication-title: J. Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 366
  start-page: 749
  year: 2019
  publication-title: Science
– volume: 7
  start-page: 632
  year: 2023
  publication-title: Nat. Rev. Chem.
– volume: 10
  start-page: 665
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 5566
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 375
  start-page: 434
  year: 2022
  publication-title: Science
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 140
  start-page: 3345
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 69
  start-page: 659
  year: 2022
  publication-title: J. Energy Chem.
– volume: 62
  start-page: 776
  year: 2019
  publication-title: Sci. China Mater.
– volume: 1
  start-page: 5129
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 592
  start-page: 381
  year: 2021
  publication-title: Nature
– volume: 488
  year: 2021
  publication-title: J. Power Sources
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 382
  start-page: 810
  year: 2023
  publication-title: Science
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 358
  start-page: 768
  year: 2017
  publication-title: Science
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– year: 2023
– volume: 605
  start-page: 268
  year: 2022
  publication-title: Nature
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 14
  start-page: 2877
  year: 2023
  publication-title: Chem. Sci.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2021
  publication-title: Sol. RRL
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586-023-06637-w
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.nanolett.3c03655
– ident: e_1_2_9_16_1
  doi: 10.1021/jacs.7b12860
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.jpclett.7b00446
– ident: e_1_2_9_41_1
  doi: 10.1021/acsami.6b11011
– ident: e_1_2_9_3_1
  doi: 10.1126/science.adk1633
– ident: e_1_2_9_47_1
  doi: 10.1039/C8TA00769A
– ident: e_1_2_9_22_1
  doi: 10.1039/C4TA05284F
– ident: e_1_2_9_6_1
  doi: 10.1002/anie.202206914
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-021-25937-1
– ident: e_1_2_9_18_1
  doi: 10.1126/science.aay7044
– ident: e_1_2_9_11_1
  doi: 10.1039/D2SC06499E
– ident: e_1_2_9_15_1
  doi: 10.1126/sciadv.aaw2543
– ident: e_1_2_9_13_1
  doi: 10.1002/aenm.201601575
– ident: e_1_2_9_42_1
  doi: 10.1002/ange.202314270
– ident: e_1_2_9_37_1
  doi: 10.1038/s41578-021-00286-z
– ident: e_1_2_9_39_1
  doi: 10.1007/s40843-018-9395-y
– ident: e_1_2_9_30_1
  doi: 10.1002/adfm.202108944
– ident: e_1_2_9_46_1
  doi: 10.1038/s41467-022-34332-3
– ident: e_1_2_9_48_1
  doi: 10.1038/nphoton.2014.284
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jpowsour.2021.229451
– ident: e_1_2_9_28_1
  doi: 10.1039/D1TC02335G
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.jpclett.2c02414
– ident: e_1_2_9_40_1
  doi: 10.1002/advs.201903368
– ident: e_1_2_9_7_1
  doi: 10.1002/adma.202301028
– ident: e_1_2_9_19_1
  doi: 10.1021/acsaem.1c03296
– ident: e_1_2_9_50_1
  doi: 10.1186/s11671-016-1540-4
– ident: e_1_2_9_45_1
  doi: 10.1126/science.abl5676
– ident: e_1_2_9_12_1
  doi: 10.1038/s41586-022-04604-5
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-019-08425-5
– ident: e_1_2_9_4_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_9_1_1
– ident: e_1_2_9_17_1
  doi: 10.1002/adfm.201706923
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467-018-07099-9
– ident: e_1_2_9_25_1
  doi: 10.1038/s41586-021-03406-5
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jechem.2021.07.011
– ident: e_1_2_9_51_1
  doi: 10.1021/ja508758k
– ident: e_1_2_9_9_1
  doi: 10.1002/anie.201406466
– ident: e_1_2_9_38_1
  doi: 10.1039/D0CS01316A
– ident: e_1_2_9_5_1
  doi: 10.1038/s41570-023-00510-0
– ident: e_1_2_9_26_1
  doi: 10.1002/adfm.202107726
– ident: e_1_2_9_34_1
  doi: 10.1021/acsaem.1c01893
– ident: e_1_2_9_23_1
  doi: 10.1002/solr.202100352
– ident: e_1_2_9_31_1
  doi: 10.1002/aenm.202200417
– ident: e_1_2_9_24_1
  doi: 10.1126/science.aam5655
– ident: e_1_2_9_8_1
  doi: 10.1002/sstr.202000050
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jechem.2020.06.019
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jechem.2022.02.016
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.2c09926
– volume: 1
  start-page: 5129
  year: 2018
  ident: e_1_2_9_49_1
  publication-title: ACS Appl. Energy Mater.
– ident: e_1_2_9_21_1
  doi: 10.1002/aenm.201502009
SSID ssj0000491033
Score 2.487679
Snippet In the domain of perovskite photovoltaics, the heterointerfaces are subject to substantial trap‐assisted non‐radiative recombination, predominantly attributed...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alignment
bandgap alignment
Carrier recombination
defect passivation
Defects
Electron transport
Energy dissipation
Energy levels
Fermi surfaces
heterointerface energetics regulation
perovskite solar cells
Perovskites
Photovoltaic cells
potassium trifluoroacetate
Radiative recombination
Solar cells
Tin dioxide
vacuum flash evaporation
Title Heterointerface Energetics Regulation Strategy Enabled Efficient Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303946
https://www.proquest.com/docview/3032871681
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZ-rI9jH2ybN3QQ2EPxV0sy479GLqMMJo-rC0LfTGSLUFKcEoTF7q_fneSLStt99G-GCPLNtL9dLo77n4iZA8sfB6HZRaIWMuAI99nxosykCMtR1KnsANiNfLsOJme8e_zeN7r-VlL9UYeFL_urSt5jFShDeSKVbIPkKz7KDTAPcgXriBhuP6XjKeYy7JCxocrLWCBTrCQTxni5R_2jHmjDiwB7Q08xjqpEk9TXpg6SMx_X12vMYC7f4I-7v6hWi7XvsE6bnMElC0SBAPXjqyLONdGjdeVVos7YejzGg8F8ppNZHZeK-3lApmEAkyvvVgIPwrB_OQVqzhhmw-StIlVKr_N0jE5bct9VEXexuu2pTta3bLEClUhdQD4TFHG76HPdj3jv_e1bL-T45l7_oTsMPAyWJ_sjL_Ojk5ckA7cp3AYmSKNdnwt8eeQfdn-ybZh03krvs9jjJbTF-R5423QsYXOS9JT1SvyzOOgfE1-3gIR7UBEOxDRFkS0ARF1IKIdiKgBETUgekPOvk1OD6dBc9pGUETgNAepViItYq6k4KUO9bDkOpVcMK4KCXZMyTImwD0XQxApmIlhAr5vAVuEEmFaghX9lvSrVaXeEZrIEQfNMBIJy7iKtOChKJMErMsMXo6zAQnaqcqLhooeT0RZ5pZEm-U4tbmb2gH57PpfWhKWP_bcbWc-bxbqOo-QMxKGmIYDwow0_vGVfAsd7x_z0gfytFsmu6S_uarVRzBfN_JTA7Lf4qeUlw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterointerface+Energetics+Regulation+Strategy+Enabled+Efficient+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Zhu%2C+Yunfei&rft.au=Zhang%2C+Zuolin&rft.au=Zhao%2C+Xuefan&rft.au=Li%2C+Mengjia&rft.date=2024-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202303946&rft.externalDBID=10.1002%252Faenm.202303946&rft.externalDocID=AENM202303946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon