The Origin of Strain Effects on Sulfur Redox Electrocatalyst for Lithium Sulfur Batteries
Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future.
Tensile strain are introduced into MoS2 through a simple physical method to investigate the origin of strain effect in LSB. The elongated lattice accelerates the conversion of LiPSs and the antibonding are tuned for tight anchoring to LiPSs. |
---|---|
AbstractList | Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future. Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS 2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS 2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g −1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future. Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future. Tensile strain are introduced into MoS2 through a simple physical method to investigate the origin of strain effect in LSB. The elongated lattice accelerates the conversion of LiPSs and the antibonding are tuned for tight anchoring to LiPSs. |
Author | Yu, Xianbo Zhou, Hao Zhang, Naiqing Huang, Yang Chen, Zhaoyu Zhao, Chenghao Zhang, Yu Jiang, Bo Sun, Xun |
Author_xml | – sequence: 1 givenname: Chenghao surname: Zhao fullname: Zhao, Chenghao organization: Harbin Institute of Technology – sequence: 2 givenname: Yang surname: Huang fullname: Huang, Yang organization: Harbin Institute of Technology – sequence: 3 givenname: Bo surname: Jiang fullname: Jiang, Bo organization: Harbin Institute of Technology – sequence: 4 givenname: Zhaoyu surname: Chen fullname: Chen, Zhaoyu organization: Harbin Institute of Technology – sequence: 5 givenname: Xianbo surname: Yu fullname: Yu, Xianbo organization: Harbin Normal University – sequence: 6 givenname: Xun surname: Sun fullname: Sun, Xun organization: Harbin Institute of Technology – sequence: 7 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Harbin Institute of Technology – sequence: 8 givenname: Yu orcidid: 0000-0001-8869-9167 surname: Zhang fullname: Zhang, Yu email: zhangchemistry@hit.edu.cn organization: Harbin Institute of Technology – sequence: 9 givenname: Naiqing orcidid: 0000-0002-9528-9673 surname: Zhang fullname: Zhang, Naiqing email: zhangnq@hit.edu.cn organization: Harbin Institute of Technology |
BookMark | eNqFkMtLAzEQxoMoWGuvngOet-a1r2Mt6wOqBVsPnpY0O7Ep201Nsmj_e7dUKwjiXOZj-H4zzHeGjhvbAEIXlAwpIexKQrMeMsI4YXGWHKEeTaiIkkyQ44Pm7BQNvF-RrkROCec99DJfAp4682oabDWeBSc7VWgNKnhsGzxra906_ASV_cBF3Y2dVTLIeusD1tbhiQlL066_jdcyBHAG_Dk60bL2MPjqffR8U8zHd9Fkens_Hk0ixVOaRGkGIuUiE0pnQHOuoEoSHfOKkSpWMgGZZiqFmKSKSAqVWqhFLuWCViLXmkreR5f7vRtn31rwoVzZ1jXdyZLljOSC8CTtXGLvUs5670CXygQZjG12H9clJeUux3KXY3nIscOGv7CNM2vptn8D-R54NzVs_3GXo-Lx4Yf9BHrRiNs |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103652 crossref_primary_10_1039_D4TA08542F crossref_primary_10_1002_adma_202418856 crossref_primary_10_1007_s12598_024_02975_4 crossref_primary_10_1021_acsnano_4c17087 crossref_primary_10_1039_D4TA05343E crossref_primary_10_1021_acsnano_4c03315 crossref_primary_10_1021_acs_nanolett_4c04139 crossref_primary_10_1002_smll_202407865 crossref_primary_10_1016_j_fuel_2025_135083 crossref_primary_10_1016_j_jallcom_2024_175064 crossref_primary_10_1021_acsami_4c15270 crossref_primary_10_1016_j_ensm_2025_104157 crossref_primary_10_1021_acsanm_4c02142 crossref_primary_10_1002_adfm_202422689 crossref_primary_10_1002_adfm_202417750 crossref_primary_10_1021_acs_accounts_4c00244 crossref_primary_10_1016_j_cej_2024_151990 crossref_primary_10_1002_adfm_202418680 crossref_primary_10_1021_acs_energyfuels_4c04659 crossref_primary_10_1016_j_cej_2024_152791 crossref_primary_10_1007_s40820_024_01482_6 crossref_primary_10_1016_j_cej_2025_159329 crossref_primary_10_1039_D4CS00584H crossref_primary_10_1039_D4TA05849F crossref_primary_10_1021_acsanm_4c02936 crossref_primary_10_1021_acs_energyfuels_4c00549 crossref_primary_10_1016_j_jcis_2024_05_026 crossref_primary_10_1039_D4TA03372H crossref_primary_10_1007_s12274_024_6546_0 crossref_primary_10_1021_acssuschemeng_4c10189 crossref_primary_10_1002_smll_202406863 crossref_primary_10_1002_smll_202409423 crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1016_j_cej_2024_158205 crossref_primary_10_1021_acssuschemeng_4c02312 crossref_primary_10_1007_s42864_025_00316_1 crossref_primary_10_1002_adfm_202417776 crossref_primary_10_1016_j_cej_2024_154966 crossref_primary_10_1039_D4NA00068D crossref_primary_10_1007_s11426_024_2219_x crossref_primary_10_1016_j_cej_2025_161970 crossref_primary_10_1007_s12598_024_03033_9 crossref_primary_10_1002_adfm_202421930 crossref_primary_10_1002_aenm_202401630 crossref_primary_10_1016_j_jpowsour_2024_235562 crossref_primary_10_1016_j_cej_2024_154997 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1002_aic_18522 crossref_primary_10_1016_j_mtchem_2024_102437 |
Cites_doi | 10.1002/anie.202305828 10.1016/j.ensm.2023.103026 10.1016/j.cej.2022.135679 10.1038/s41467-022-35736-x 10.1002/anie.202011493 10.1021/acsenergylett.0c01564 10.1038/nmat4465 10.1021/acsnano.1c00270 10.1038/s41929-023-00912-9 10.1002/anie.202211448 10.1002/adma.202000231 10.1002/adfm.202311136 10.1016/j.ensm.2022.12.002 10.1038/s41563-018-0187-1 10.1002/adma.202003955 10.1002/sstr.202100170 10.1002/aenm.202202094 10.1103/PhysRevLett.120.055902 10.1021/acsnano.2c00515 10.1016/j.nanoms.2020.10.006 10.1038/s41929-020-0498-x 10.1002/aenm.202003314 10.1038/nmat4564 10.1002/adma.202202195 10.1002/aenm.201901940 10.1038/s41560-022-01175-7 10.1002/adma.202212116 10.1002/aenm.202300611 10.1039/D1EE00074H 10.1002/adma.201601759 10.1021/acs.nanolett.1c02037 10.1016/0039-6028(96)80007-0 10.1021/jacs.2c04176 10.1002/adma.202101006 10.1002/aenm.202200160 10.1002/adfm.202104286 10.1038/s41467-020-19070-8 10.1002/adma.202212172 10.1039/D1CP04655A 10.1002/adfm.202100919 10.1038/s41929-022-00804-4 10.1016/j.chempr.2020.06.032 10.1038/s41929-019-0400-x 10.1016/j.ensm.2023.102842 10.1021/acsnano.2c08581 10.1002/adma.202204403 10.1038/s41467-017-00516-5 10.1016/j.partic.2023.04.010 10.1016/j.cej.2021.128546 10.1002/adma.201902518 10.1039/D3EE01774E 10.1016/j.joule.2021.06.009 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202302586 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202302586 AENM202302586 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22078078; 22379036 – fundername: Harbin Institute of Technology funderid: 2022TS20 – fundername: State Key Laboratory of Urban Water Resource and Environment – fundername: Natural Science Foundation of Heilongjiang Province funderid: JQ2021B001 – fundername: Heilongjiang Postdoctoral Science Foundation funderid: LBH‐Z21051 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3716-78e473484cf8e193ced66f53d20d5ca6ea78c7e507c0a1edcbcb9aab1d49ff1a3 |
ISSN | 1614-6832 |
IngestDate | Tue Aug 12 18:14:26 EDT 2025 Tue Jul 01 01:43:54 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:14:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3716-78e473484cf8e193ced66f53d20d5ca6ea78c7e507c0a1edcbcb9aab1d49ff1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8869-9167 0000-0002-9528-9673 |
PQID | 2920940367 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2920940367 crossref_citationtrail_10_1002_aenm_202302586 crossref_primary_10_1002_aenm_202302586 wiley_primary_10_1002_aenm_202302586_AENM202302586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2021; 14 15 2017; 8 2019; 9 2022 2018; 24 120 2022 2023 2020 2023; 61 8 3 16 2023 2023 2022; 6 13 16 2017; 29 2020; 32 2020 2022 2023 2023; 6 16 55 63 2021 2022; 21 5 2018; 17 2020; 5 2023 2022 2021 2021; 35 12 5 33 2021; 31 2022; 3 2019 2023; 31 2021; 411 2020 2022 2023 2021; 11 144 62 3 2016 2021 2020; 15 14 3 2022; 34 2024; 86 1995; 343 2023 2022; 60 439 2021; 60 2021 2021 2021 2022; 33 11 31 12 2016 2022 2023; 15 34 35 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_20_4 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 15 14 3 start-page: 364 3717 55 year: 2016 2021 2020 publication-title: Nat. Mater. Energy Environ. Sci. Nat. Catal. – volume: 6 13 16 start-page: 174 6414 year: 2023 2023 2022 publication-title: Nat. Catal. Adv. Energy Mater. ACS Nano – volume: 11 144 62 3 start-page: 5215 124 year: 2020 2022 2023 2021 publication-title: Nat. Commun. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Nano Mater. Sci. – volume: 31 year: 2019 2023 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 24 120 start-page: 156 year: 2022 2018 publication-title: PCCP Phys. Rev. Lett. – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 21 5 start-page: 8579 555 year: 2021 2022 publication-title: Nano Lett Nat. Catal. – volume: 86 start-page: 86 year: 2024 publication-title: Particuology – volume: 15 34 35 start-page: 48 year: 2016 2022 2023 publication-title: Nat. Mater. Adv. Mater. Adv. Mater. – volume: 61 8 3 16 start-page: 84 762 5490 year: 2022 2023 2020 2023 publication-title: Angew. Chem., Int. Ed. Nat. Energy Nat. Catal. Energy Environ. Sci. – volume: 6 16 55 63 start-page: 2533 322 year: 2020 2022 2023 2023 publication-title: Chem ACS Nano Energy Storage Mater. Energy Storage Mater. – volume: 5 start-page: 3041 year: 2020 publication-title: ACS Energy Lett – volume: 14 15 start-page: 291 7114 year: 2023 2021 publication-title: Nat. Commun. ACS Nano – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 608 year: 2017 publication-title: Nat. Commun. – volume: 33 11 31 12 year: 2021 2021 2021 2022 publication-title: Adv. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Energy Mater. – volume: 17 start-page: 1108 year: 2018 publication-title: Nat. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 3 year: 2022 publication-title: Small Struct – volume: 60 start-page: 2371 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 343 start-page: 211 year: 1995 publication-title: Surf. Sci. – volume: 60 439 year: 2023 2022 publication-title: Energy Storage Mater Chem. Eng. J. – volume: 35 12 5 33 start-page: 2323 year: 2023 2022 2021 2021 publication-title: Adv. Mater. Adv. Energy Mater. Joule Adv. Mater. – ident: e_1_2_7_2_3 doi: 10.1002/anie.202305828 – ident: e_1_2_7_4_4 doi: 10.1016/j.ensm.2023.103026 – ident: e_1_2_7_8_2 doi: 10.1016/j.cej.2022.135679 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-022-35736-x – ident: e_1_2_7_9_1 doi: 10.1002/anie.202011493 – ident: e_1_2_7_23_1 doi: 10.1021/acsenergylett.0c01564 – ident: e_1_2_7_13_1 doi: 10.1038/nmat4465 – ident: e_1_2_7_26_2 doi: 10.1021/acsnano.1c00270 – ident: e_1_2_7_5_1 doi: 10.1038/s41929-023-00912-9 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202211448 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202000231 – ident: e_1_2_7_1_2 doi: 10.1002/adfm.202311136 – ident: e_1_2_7_4_3 doi: 10.1016/j.ensm.2022.12.002 – ident: e_1_2_7_18_1 doi: 10.1038/s41563-018-0187-1 – ident: e_1_2_7_3_4 doi: 10.1002/adma.202003955 – ident: e_1_2_7_25_1 doi: 10.1002/sstr.202100170 – ident: e_1_2_7_3_2 doi: 10.1002/aenm.202202094 – ident: e_1_2_7_15_2 doi: 10.1103/PhysRevLett.120.055902 – ident: e_1_2_7_5_3 doi: 10.1021/acsnano.2c00515 – ident: e_1_2_7_2_4 doi: 10.1016/j.nanoms.2020.10.006 – ident: e_1_2_7_6_3 doi: 10.1038/s41929-020-0498-x – ident: e_1_2_7_20_2 doi: 10.1002/aenm.202003314 – ident: e_1_2_7_7_1 doi: 10.1038/nmat4564 – ident: e_1_2_7_13_2 doi: 10.1002/adma.202202195 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201901940 – ident: e_1_2_7_6_2 doi: 10.1038/s41560-022-01175-7 – ident: e_1_2_7_3_1 doi: 10.1002/adma.202212116 – ident: e_1_2_7_5_2 doi: 10.1002/aenm.202300611 – ident: e_1_2_7_7_2 doi: 10.1039/D1EE00074H – ident: e_1_2_7_11_1 doi: 10.1002/adma.201601759 – ident: e_1_2_7_24_1 doi: 10.1021/acs.nanolett.1c02037 – ident: e_1_2_7_21_1 doi: 10.1016/0039-6028(96)80007-0 – ident: e_1_2_7_2_2 doi: 10.1021/jacs.2c04176 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202101006 – ident: e_1_2_7_20_4 doi: 10.1002/aenm.202200160 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.202104286 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-020-19070-8 – ident: e_1_2_7_13_3 doi: 10.1002/adma.202212172 – ident: e_1_2_7_15_1 doi: 10.1039/D1CP04655A – ident: e_1_2_7_20_3 doi: 10.1002/adfm.202100919 – ident: e_1_2_7_24_2 doi: 10.1038/s41929-022-00804-4 – ident: e_1_2_7_4_1 doi: 10.1016/j.chempr.2020.06.032 – ident: e_1_2_7_7_3 doi: 10.1038/s41929-019-0400-x – ident: e_1_2_7_8_1 doi: 10.1016/j.ensm.2023.102842 – ident: e_1_2_7_4_2 doi: 10.1021/acsnano.2c08581 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202204403 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-017-00516-5 – ident: e_1_2_7_12_1 doi: 10.1016/j.partic.2023.04.010 – ident: e_1_2_7_19_1 doi: 10.1016/j.cej.2021.128546 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201902518 – ident: e_1_2_7_6_4 doi: 10.1039/D3EE01774E – ident: e_1_2_7_3_3 doi: 10.1016/j.joule.2021.06.009 |
SSID | ssj0000491033 |
Score | 2.639534 |
Snippet | Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bonding strength Catalytic activity Chemical composition electrocatalysis Electrocatalysts Heat treatment Lithium Lithium sulfur batteries Li‐S battery mechanism Molybdenum disulfide MoS2 Solid phases strain Sulfur |
Title | The Origin of Strain Effects on Sulfur Redox Electrocatalyst for Lithium Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202302586 https://www.proquest.com/docview/2920940367 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKdYKMgHJA5VIHHex1IWVahbDrRSe4oce0xXKlnUJhLl1zN-bhbKq5co8s46suezPTOa-UzISyFrwFNKRAmLK3RQBESVSmUkRVUpKeqkVToOuTgs9o-zDyf5yWQyzloa-va1-H5tXclNtIptqFddJfsfmg2dYgO-o37xiRrG5z_r-KO52crUnpjrHnbmPkMDF-5wroYLnEK5-rYztxfemHjN1WVv8gsPlv3ZcvjiBS3Zpk8r9Ny0PksAbJkgmrh2bKOYs423nkH3Gd_XSHGx6FPujkedqbN0jW-D3J4rENH9XA3jMATLfOZy2DnxnI-KygUrYdxm-ZjCdpuNYJWPDt5wLP2yq1uWWA6dpg5An4nl19FnB8n8z7KW7Xd-uAi_3yJbDL0MNiVbu-8WB59CkA7dpyROTZGGH54n_ozZm82PbBo2a29l7PMYo-XoHrnrvA26a6Fzn0yge0DujDgoH5JTBBG1IKIrRS2IqAMRXXXUYoMaENGfQEQRRNSByAsGED0ix-_nR3v7kbtvIxIpus1RWUGmyY4yoSpAwx6hVRQqTyWLZS54AbysRAnoQYiYJyBFK9qa8zaRWa1UwtPHZNqtOnhCaCtZ2Qq0VhWHLCkTjpZkDIWQwLhSqZqRyE9WIxwZvR7feWNptFmjJ7cJkzsjr4L8V0vD8lvJbT_3jVuql42-kq3O0FgrZ4QZffyll2YDH09v8qdn5PZ6nWyTaX8xwHM0YPv2hYPZD_qHlsA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Origin+of+Strain+Effects+on+Sulfur+Redox+Electrocatalyst+for+Lithium+Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Chenghao&rft.au=Huang%2C+Yang&rft.au=Jiang%2C+Bo&rft.au=Chen%2C+Zhaoyu&rft.date=2024-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202302586&rft.externalDBID=10.1002%252Faenm.202302586&rft.externalDocID=AENM202302586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |