The Origin of Strain Effects on Sulfur Redox Electrocatalyst for Lithium Sulfur Batteries

Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 5
Main Authors Zhao, Chenghao, Huang, Yang, Jiang, Bo, Chen, Zhaoyu, Yu, Xianbo, Sun, Xun, Zhou, Hao, Zhang, Yu, Zhang, Naiqing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future. Tensile strain are introduced into MoS2 through a simple physical method to investigate the origin of strain effect in LSB. The elongated lattice accelerates the conversion of LiPSs and the antibonding are tuned for tight anchoring to LiPSs.
AbstractList Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future.
Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS 2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS 2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g −1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future.
Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high‐performance catalytic materials in the future. Tensile strain are introduced into MoS2 through a simple physical method to investigate the origin of strain effect in LSB. The elongated lattice accelerates the conversion of LiPSs and the antibonding are tuned for tight anchoring to LiPSs.
Author Yu, Xianbo
Zhou, Hao
Zhang, Naiqing
Huang, Yang
Chen, Zhaoyu
Zhao, Chenghao
Zhang, Yu
Jiang, Bo
Sun, Xun
Author_xml – sequence: 1
  givenname: Chenghao
  surname: Zhao
  fullname: Zhao, Chenghao
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Yang
  surname: Huang
  fullname: Huang, Yang
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Bo
  surname: Jiang
  fullname: Jiang, Bo
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Zhaoyu
  surname: Chen
  fullname: Chen, Zhaoyu
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Xianbo
  surname: Yu
  fullname: Yu, Xianbo
  organization: Harbin Normal University
– sequence: 6
  givenname: Xun
  surname: Sun
  fullname: Sun, Xun
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Yu
  orcidid: 0000-0001-8869-9167
  surname: Zhang
  fullname: Zhang, Yu
  email: zhangchemistry@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Naiqing
  orcidid: 0000-0002-9528-9673
  surname: Zhang
  fullname: Zhang, Naiqing
  email: zhangnq@hit.edu.cn
  organization: Harbin Institute of Technology
BookMark eNqFkMtLAzEQxoMoWGuvngOet-a1r2Mt6wOqBVsPnpY0O7Ep201Nsmj_e7dUKwjiXOZj-H4zzHeGjhvbAEIXlAwpIexKQrMeMsI4YXGWHKEeTaiIkkyQ44Pm7BQNvF-RrkROCec99DJfAp4682oabDWeBSc7VWgNKnhsGzxra906_ASV_cBF3Y2dVTLIeusD1tbhiQlL066_jdcyBHAG_Dk60bL2MPjqffR8U8zHd9Fkens_Hk0ixVOaRGkGIuUiE0pnQHOuoEoSHfOKkSpWMgGZZiqFmKSKSAqVWqhFLuWCViLXmkreR5f7vRtn31rwoVzZ1jXdyZLljOSC8CTtXGLvUs5670CXygQZjG12H9clJeUux3KXY3nIscOGv7CNM2vptn8D-R54NzVs_3GXo-Lx4Yf9BHrRiNs
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103652
crossref_primary_10_1039_D4TA08542F
crossref_primary_10_1002_adma_202418856
crossref_primary_10_1007_s12598_024_02975_4
crossref_primary_10_1021_acsnano_4c17087
crossref_primary_10_1039_D4TA05343E
crossref_primary_10_1021_acsnano_4c03315
crossref_primary_10_1021_acs_nanolett_4c04139
crossref_primary_10_1002_smll_202407865
crossref_primary_10_1016_j_fuel_2025_135083
crossref_primary_10_1016_j_jallcom_2024_175064
crossref_primary_10_1021_acsami_4c15270
crossref_primary_10_1016_j_ensm_2025_104157
crossref_primary_10_1021_acsanm_4c02142
crossref_primary_10_1002_adfm_202422689
crossref_primary_10_1002_adfm_202417750
crossref_primary_10_1021_acs_accounts_4c00244
crossref_primary_10_1016_j_cej_2024_151990
crossref_primary_10_1002_adfm_202418680
crossref_primary_10_1021_acs_energyfuels_4c04659
crossref_primary_10_1016_j_cej_2024_152791
crossref_primary_10_1007_s40820_024_01482_6
crossref_primary_10_1016_j_cej_2025_159329
crossref_primary_10_1039_D4CS00584H
crossref_primary_10_1039_D4TA05849F
crossref_primary_10_1021_acsanm_4c02936
crossref_primary_10_1021_acs_energyfuels_4c00549
crossref_primary_10_1016_j_jcis_2024_05_026
crossref_primary_10_1039_D4TA03372H
crossref_primary_10_1007_s12274_024_6546_0
crossref_primary_10_1021_acssuschemeng_4c10189
crossref_primary_10_1002_smll_202406863
crossref_primary_10_1002_smll_202409423
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1016_j_cej_2024_158205
crossref_primary_10_1021_acssuschemeng_4c02312
crossref_primary_10_1007_s42864_025_00316_1
crossref_primary_10_1002_adfm_202417776
crossref_primary_10_1016_j_cej_2024_154966
crossref_primary_10_1039_D4NA00068D
crossref_primary_10_1007_s11426_024_2219_x
crossref_primary_10_1016_j_cej_2025_161970
crossref_primary_10_1007_s12598_024_03033_9
crossref_primary_10_1002_adfm_202421930
crossref_primary_10_1002_aenm_202401630
crossref_primary_10_1016_j_jpowsour_2024_235562
crossref_primary_10_1016_j_cej_2024_154997
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1002_aic_18522
crossref_primary_10_1016_j_mtchem_2024_102437
Cites_doi 10.1002/anie.202305828
10.1016/j.ensm.2023.103026
10.1016/j.cej.2022.135679
10.1038/s41467-022-35736-x
10.1002/anie.202011493
10.1021/acsenergylett.0c01564
10.1038/nmat4465
10.1021/acsnano.1c00270
10.1038/s41929-023-00912-9
10.1002/anie.202211448
10.1002/adma.202000231
10.1002/adfm.202311136
10.1016/j.ensm.2022.12.002
10.1038/s41563-018-0187-1
10.1002/adma.202003955
10.1002/sstr.202100170
10.1002/aenm.202202094
10.1103/PhysRevLett.120.055902
10.1021/acsnano.2c00515
10.1016/j.nanoms.2020.10.006
10.1038/s41929-020-0498-x
10.1002/aenm.202003314
10.1038/nmat4564
10.1002/adma.202202195
10.1002/aenm.201901940
10.1038/s41560-022-01175-7
10.1002/adma.202212116
10.1002/aenm.202300611
10.1039/D1EE00074H
10.1002/adma.201601759
10.1021/acs.nanolett.1c02037
10.1016/0039-6028(96)80007-0
10.1021/jacs.2c04176
10.1002/adma.202101006
10.1002/aenm.202200160
10.1002/adfm.202104286
10.1038/s41467-020-19070-8
10.1002/adma.202212172
10.1039/D1CP04655A
10.1002/adfm.202100919
10.1038/s41929-022-00804-4
10.1016/j.chempr.2020.06.032
10.1038/s41929-019-0400-x
10.1016/j.ensm.2023.102842
10.1021/acsnano.2c08581
10.1002/adma.202204403
10.1038/s41467-017-00516-5
10.1016/j.partic.2023.04.010
10.1016/j.cej.2021.128546
10.1002/adma.201902518
10.1039/D3EE01774E
10.1016/j.joule.2021.06.009
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202302586
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202302586
AENM202302586
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22078078; 22379036
– fundername: Harbin Institute of Technology
  funderid: 2022TS20
– fundername: State Key Laboratory of Urban Water Resource and Environment
– fundername: Natural Science Foundation of Heilongjiang Province
  funderid: JQ2021B001
– fundername: Heilongjiang Postdoctoral Science Foundation
  funderid: LBH‐Z21051
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3716-78e473484cf8e193ced66f53d20d5ca6ea78c7e507c0a1edcbcb9aab1d49ff1a3
ISSN 1614-6832
IngestDate Tue Aug 12 18:14:26 EDT 2025
Tue Jul 01 01:43:54 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:14:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3716-78e473484cf8e193ced66f53d20d5ca6ea78c7e507c0a1edcbcb9aab1d49ff1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8869-9167
0000-0002-9528-9673
PQID 2920940367
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2920940367
crossref_citationtrail_10_1002_aenm_202302586
crossref_primary_10_1002_aenm_202302586
wiley_primary_10_1002_aenm_202302586_AENM202302586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2021; 14 15
2017; 8
2019; 9
2022 2018; 24 120
2022 2023 2020 2023; 61 8 3 16
2023 2023 2022; 6 13 16
2017; 29
2020; 32
2020 2022 2023 2023; 6 16 55 63
2021 2022; 21 5
2018; 17
2020; 5
2023 2022 2021 2021; 35 12 5 33
2021; 31
2022; 3
2019 2023; 31
2021; 411
2020 2022 2023 2021; 11 144 62 3
2016 2021 2020; 15 14 3
2022; 34
2024; 86
1995; 343
2023 2022; 60 439
2021; 60
2021 2021 2021 2022; 33 11 31 12
2016 2022 2023; 15 34 35
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_20_4
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 15 14 3
  start-page: 364 3717 55
  year: 2016 2021 2020
  publication-title: Nat. Mater. Energy Environ. Sci. Nat. Catal.
– volume: 6 13 16
  start-page: 174 6414
  year: 2023 2023 2022
  publication-title: Nat. Catal. Adv. Energy Mater. ACS Nano
– volume: 11 144 62 3
  start-page: 5215 124
  year: 2020 2022 2023 2021
  publication-title: Nat. Commun. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Nano Mater. Sci.
– volume: 31
  year: 2019 2023
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 24 120
  start-page: 156
  year: 2022 2018
  publication-title: PCCP Phys. Rev. Lett.
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 21 5
  start-page: 8579 555
  year: 2021 2022
  publication-title: Nano Lett Nat. Catal.
– volume: 86
  start-page: 86
  year: 2024
  publication-title: Particuology
– volume: 15 34 35
  start-page: 48
  year: 2016 2022 2023
  publication-title: Nat. Mater. Adv. Mater. Adv. Mater.
– volume: 61 8 3 16
  start-page: 84 762 5490
  year: 2022 2023 2020 2023
  publication-title: Angew. Chem., Int. Ed. Nat. Energy Nat. Catal. Energy Environ. Sci.
– volume: 6 16 55 63
  start-page: 2533 322
  year: 2020 2022 2023 2023
  publication-title: Chem ACS Nano Energy Storage Mater. Energy Storage Mater.
– volume: 5
  start-page: 3041
  year: 2020
  publication-title: ACS Energy Lett
– volume: 14 15
  start-page: 291 7114
  year: 2023 2021
  publication-title: Nat. Commun. ACS Nano
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 608
  year: 2017
  publication-title: Nat. Commun.
– volume: 33 11 31 12
  year: 2021 2021 2021 2022
  publication-title: Adv. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Energy Mater.
– volume: 17
  start-page: 1108
  year: 2018
  publication-title: Nat. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2022
  publication-title: Small Struct
– volume: 60
  start-page: 2371
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 343
  start-page: 211
  year: 1995
  publication-title: Surf. Sci.
– volume: 60 439
  year: 2023 2022
  publication-title: Energy Storage Mater Chem. Eng. J.
– volume: 35 12 5 33
  start-page: 2323
  year: 2023 2022 2021 2021
  publication-title: Adv. Mater. Adv. Energy Mater. Joule Adv. Mater.
– ident: e_1_2_7_2_3
  doi: 10.1002/anie.202305828
– ident: e_1_2_7_4_4
  doi: 10.1016/j.ensm.2023.103026
– ident: e_1_2_7_8_2
  doi: 10.1016/j.cej.2022.135679
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-022-35736-x
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202011493
– ident: e_1_2_7_23_1
  doi: 10.1021/acsenergylett.0c01564
– ident: e_1_2_7_13_1
  doi: 10.1038/nmat4465
– ident: e_1_2_7_26_2
  doi: 10.1021/acsnano.1c00270
– ident: e_1_2_7_5_1
  doi: 10.1038/s41929-023-00912-9
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202211448
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202000231
– ident: e_1_2_7_1_2
  doi: 10.1002/adfm.202311136
– ident: e_1_2_7_4_3
  doi: 10.1016/j.ensm.2022.12.002
– ident: e_1_2_7_18_1
  doi: 10.1038/s41563-018-0187-1
– ident: e_1_2_7_3_4
  doi: 10.1002/adma.202003955
– ident: e_1_2_7_25_1
  doi: 10.1002/sstr.202100170
– ident: e_1_2_7_3_2
  doi: 10.1002/aenm.202202094
– ident: e_1_2_7_15_2
  doi: 10.1103/PhysRevLett.120.055902
– ident: e_1_2_7_5_3
  doi: 10.1021/acsnano.2c00515
– ident: e_1_2_7_2_4
  doi: 10.1016/j.nanoms.2020.10.006
– ident: e_1_2_7_6_3
  doi: 10.1038/s41929-020-0498-x
– ident: e_1_2_7_20_2
  doi: 10.1002/aenm.202003314
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat4564
– ident: e_1_2_7_13_2
  doi: 10.1002/adma.202202195
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201901940
– ident: e_1_2_7_6_2
  doi: 10.1038/s41560-022-01175-7
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.202212116
– ident: e_1_2_7_5_2
  doi: 10.1002/aenm.202300611
– ident: e_1_2_7_7_2
  doi: 10.1039/D1EE00074H
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201601759
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.nanolett.1c02037
– ident: e_1_2_7_21_1
  doi: 10.1016/0039-6028(96)80007-0
– ident: e_1_2_7_2_2
  doi: 10.1021/jacs.2c04176
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202101006
– ident: e_1_2_7_20_4
  doi: 10.1002/aenm.202200160
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.202104286
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-020-19070-8
– ident: e_1_2_7_13_3
  doi: 10.1002/adma.202212172
– ident: e_1_2_7_15_1
  doi: 10.1039/D1CP04655A
– ident: e_1_2_7_20_3
  doi: 10.1002/adfm.202100919
– ident: e_1_2_7_24_2
  doi: 10.1038/s41929-022-00804-4
– ident: e_1_2_7_4_1
  doi: 10.1016/j.chempr.2020.06.032
– ident: e_1_2_7_7_3
  doi: 10.1038/s41929-019-0400-x
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ensm.2023.102842
– ident: e_1_2_7_4_2
  doi: 10.1021/acsnano.2c08581
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202204403
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-017-00516-5
– ident: e_1_2_7_12_1
  doi: 10.1016/j.partic.2023.04.010
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cej.2021.128546
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201902518
– ident: e_1_2_7_6_4
  doi: 10.1039/D3EE01774E
– ident: e_1_2_7_3_3
  doi: 10.1016/j.joule.2021.06.009
SSID ssj0000491033
Score 2.639534
Snippet Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium‐sulfur batteries (LSB). However, the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bonding strength
Catalytic activity
Chemical composition
electrocatalysis
Electrocatalysts
Heat treatment
Lithium
Lithium sulfur batteries
Li‐S battery
mechanism
Molybdenum disulfide
MoS2
Solid phases
strain
Sulfur
Title The Origin of Strain Effects on Sulfur Redox Electrocatalyst for Lithium Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202302586
https://www.proquest.com/docview/2920940367
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKdYKMgHJA5VIHHex1IWVahbDrRSe4oce0xXKlnUJhLl1zN-bhbKq5co8s46suezPTOa-UzISyFrwFNKRAmLK3RQBESVSmUkRVUpKeqkVToOuTgs9o-zDyf5yWQyzloa-va1-H5tXclNtIptqFddJfsfmg2dYgO-o37xiRrG5z_r-KO52crUnpjrHnbmPkMDF-5wroYLnEK5-rYztxfemHjN1WVv8gsPlv3ZcvjiBS3Zpk8r9Ny0PksAbJkgmrh2bKOYs423nkH3Gd_XSHGx6FPujkedqbN0jW-D3J4rENH9XA3jMATLfOZy2DnxnI-KygUrYdxm-ZjCdpuNYJWPDt5wLP2yq1uWWA6dpg5An4nl19FnB8n8z7KW7Xd-uAi_3yJbDL0MNiVbu-8WB59CkA7dpyROTZGGH54n_ozZm82PbBo2a29l7PMYo-XoHrnrvA26a6Fzn0yge0DujDgoH5JTBBG1IKIrRS2IqAMRXXXUYoMaENGfQEQRRNSByAsGED0ix-_nR3v7kbtvIxIpus1RWUGmyY4yoSpAwx6hVRQqTyWLZS54AbysRAnoQYiYJyBFK9qa8zaRWa1UwtPHZNqtOnhCaCtZ2Qq0VhWHLCkTjpZkDIWQwLhSqZqRyE9WIxwZvR7feWNptFmjJ7cJkzsjr4L8V0vD8lvJbT_3jVuql42-kq3O0FgrZ4QZffyll2YDH09v8qdn5PZ6nWyTaX8xwHM0YPv2hYPZD_qHlsA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Origin+of+Strain+Effects+on+Sulfur+Redox+Electrocatalyst+for+Lithium+Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Chenghao&rft.au=Huang%2C+Yang&rft.au=Jiang%2C+Bo&rft.au=Chen%2C+Zhaoyu&rft.date=2024-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202302586&rft.externalDBID=10.1002%252Faenm.202302586&rft.externalDocID=AENM202302586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon