Toward catchment hydro‐biogeochemical theories
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental...
Saved in:
Published in | Wiley interdisciplinary reviews. Water Vol. 8; no. 1; pp. e1495 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.
This article is categorized under:
Engineering Water > Methods
To develop hydro‐biogeochemical theories, we will need to acknowledge the challenge of data scarcity in the era of “big data”, to expand measurements beyond disciplinary boundaries, stream channels, and common places, and to fuse process‐based and data‐driven modeling tools, all within the framework of hypothesis testing. |
---|---|
AbstractList | Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.This article is categorized under:Engineering Water > Methods Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems. This article is categorized under: Engineering Water > Methods To develop hydro‐biogeochemical theories, we will need to acknowledge the challenge of data scarcity in the era of “big data”, to expand measurements beyond disciplinary boundaries, stream channels, and common places, and to fuse process‐based and data‐driven modeling tools, all within the framework of hypothesis testing. Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well-mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro-biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human- and climate-induced perturbations. Although integration has started and co-located measurements are well under way, tremendous challenges remain. In particular, even in this era of "big data," we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model-informed data collection strategies and to maximize data usage; (2) adopt a "simple but not simplistic," or fit-for-purpose approach to include essential processes in process-based models; (3) blend the use of process-based and data-driven models in the framework of "theory-guided data science." Within the framework of hypothesis testing, model-data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro-biogeochemistry, but also enable hind- and fore-casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.This article is categorized under:Science of Water > Methods Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems. This article is categorized under: Engineering Water > Methods |
Author | Brantley, Susan L. Knapp, Julia L. A. Li, Li Meerveld, Ilja Bishop, Kevin Sullivan, Pamela L. Wen, Hang Seibert, Jan Kirchner, James W. Cirpka, Olaf A. Benettin, Paolo Rinaldo, Andrea |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-1641-3710 surname: Li fullname: Li, Li email: lili@engr.psu.edu organization: The Pennsylvania State University – sequence: 2 givenname: Pamela L. orcidid: 0000-0001-8780-8501 surname: Sullivan fullname: Sullivan, Pamela L. organization: Oregon State University – sequence: 3 givenname: Paolo orcidid: 0000-0001-7556-1417 surname: Benettin fullname: Benettin, Paolo organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Olaf A. orcidid: 0000-0003-3509-4118 surname: Cirpka fullname: Cirpka, Olaf A. organization: University of Tübingen – sequence: 5 givenname: Kevin orcidid: 0000-0002-8057-1051 surname: Bishop fullname: Bishop, Kevin organization: Swedish University of Agricultural Sciences – sequence: 6 givenname: Susan L. orcidid: 0000-0002-9574-2693 surname: Brantley fullname: Brantley, Susan L. organization: The Pennsylvania State University – sequence: 7 givenname: Julia L. A. orcidid: 0000-0003-0885-7829 surname: Knapp fullname: Knapp, Julia L. A. organization: ETH Zürich – sequence: 8 givenname: Ilja orcidid: 0000-0002-7547-3270 surname: Meerveld fullname: Meerveld, Ilja organization: University of Zurich – sequence: 9 givenname: Andrea orcidid: 0000-0002-2546-9548 surname: Rinaldo fullname: Rinaldo, Andrea organization: University of Tübingen – sequence: 10 givenname: Jan surname: Seibert fullname: Seibert, Jan organization: University of Zurich – sequence: 11 givenname: Hang orcidid: 0000-0001-7358-1625 surname: Wen fullname: Wen, Hang organization: The Pennsylvania State University – sequence: 12 givenname: James W. orcidid: 0000-0001-6577-3619 surname: Kirchner fullname: Kirchner, James W. organization: ETH Zürich |
BackLink | https://res.slu.se/id/publ/109736$$DView record from Swedish Publication Index |
BookMark | eNp1kMtKAzEYhYNUsNYufIOCKxfT5jozWZbiDQpuKi5DJpNxUqaTmmQo3fkIPqNPYsZWENHVfxbnO5z_nINBa1sNwCWCUwQhnu1kwFNEOTsBQwwpTxCn-eCHPgNj79cQQoQgI5wNAVzZnXTlRMmg6o1uw6Tel85-vL0Xxr5oq2q9MUo2k1Br64z2F-C0ko3X4-Mdgafbm9XiPlk-3j0s5stEkQyxpCorUuIcE5imUJUphDkvZJYyQisiC04pwyTVDNIy1ZkqUQQ0YXmVRYnygozA9JDrd3rbFWLrzEa6vbDSCN90hXT9EV4LBHlG0ghcHYCts6-d9kGsbefa2FFgmsV_eU5hdM0OLuWs905XQpkgg7FtcNI0MUz0U4p-StFPGYnrX8R3lb-8x_SdafT-f6N4nq_wF_EJkSiFsw |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2025_132708 crossref_primary_10_1080_02626667_2023_2212167 crossref_primary_10_1029_2020WR029053 crossref_primary_10_1029_2023EF003971 crossref_primary_10_1029_2023WR034948 crossref_primary_10_1029_2023WR035719 crossref_primary_10_3390_ijms25031628 crossref_primary_10_1002_saj2_20705 crossref_primary_10_1029_2021GB007050 crossref_primary_10_1016_j_watres_2022_119490 crossref_primary_10_1002_wat2_1702 crossref_primary_10_1016_j_epsl_2024_119098 crossref_primary_10_1016_j_watres_2022_119295 crossref_primary_10_1029_2022WR033999 crossref_primary_10_1038_s43247_024_01732_w crossref_primary_10_1021_acs_est_4c02495 crossref_primary_10_1038_s43017_023_00450_9 crossref_primary_10_1002_hyp_14423 crossref_primary_10_1038_s41598_024_76675_5 crossref_primary_10_1021_acs_est_3c07576 crossref_primary_10_5194_hess_27_613_2023 crossref_primary_10_1021_acs_est_2c06675 crossref_primary_10_1029_2022GB007351 crossref_primary_10_5194_hess_25_6437_2021 crossref_primary_10_1016_j_ecolind_2023_110236 crossref_primary_10_1002_hyp_14540 crossref_primary_10_5194_hess_26_5085_2022 crossref_primary_10_1002_hyp_15231 crossref_primary_10_1029_2023CN000226 crossref_primary_10_1016_j_jhydrol_2023_129248 crossref_primary_10_1029_2020WR029528 crossref_primary_10_1038_s44221_024_00351_1 crossref_primary_10_1029_2022WR032314 crossref_primary_10_5194_gmd_15_315_2022 crossref_primary_10_1029_2020WR029207 crossref_primary_10_1029_2024MS004217 crossref_primary_10_1002_hyp_15324 crossref_primary_10_1029_2021GB007047 crossref_primary_10_1029_2022WR033096 crossref_primary_10_5194_bg_22_995_2025 crossref_primary_10_5194_essd_14_3715_2022 crossref_primary_10_1016_j_scitotenv_2023_163178 crossref_primary_10_1029_2022EF002966 crossref_primary_10_5194_bg_20_3353_2023 crossref_primary_10_1029_2023WR035292 crossref_primary_10_1002_hyp_14197 crossref_primary_10_1029_2021WR029931 crossref_primary_10_1088_1748_9326_ac4a9f crossref_primary_10_1007_s10533_024_01163_x crossref_primary_10_1029_2022JG007190 crossref_primary_10_1016_j_jhydrol_2023_130388 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126611 crossref_primary_10_1029_2021WR029890 crossref_primary_10_1029_2023JG007532 crossref_primary_10_5194_hess_27_2301_2023 crossref_primary_10_3389_frwa_2021_578608 crossref_primary_10_1002_hyp_14565 crossref_primary_10_1016_j_envsoft_2021_105166 crossref_primary_10_1029_2023WR035940 crossref_primary_10_1029_2024EF005681 crossref_primary_10_1002_hyp_14524 crossref_primary_10_3389_frwa_2022_1003968 crossref_primary_10_3389_frwa_2023_1147561 crossref_primary_10_1029_2024GL111310 crossref_primary_10_1002_hyp_14880 crossref_primary_10_1002_hyp_14683 crossref_primary_10_1088_2515_7620_ad0744 crossref_primary_10_3389_frwa_2024_1456647 crossref_primary_10_1021_acs_est_2c01432 crossref_primary_10_1029_2024GL109624 crossref_primary_10_1016_j_watres_2024_122118 crossref_primary_10_1029_2021WR031665 crossref_primary_10_1029_2021WR030698 crossref_primary_10_1029_2024GB008250 crossref_primary_10_1002_wat2_70015 crossref_primary_10_1016_j_jhydrol_2022_128390 crossref_primary_10_1029_2024WR038567 crossref_primary_10_1038_s44221_024_00202_z crossref_primary_10_1021_acs_est_0c06783 crossref_primary_10_1029_2023WR036513 crossref_primary_10_1016_j_earscirev_2021_103873 crossref_primary_10_1016_j_ecoleng_2021_106503 crossref_primary_10_5194_bg_18_55_2021 crossref_primary_10_1016_j_geoderma_2023_116569 crossref_primary_10_1038_s41467_024_49598_y crossref_primary_10_1016_j_scitotenv_2022_156524 crossref_primary_10_1029_2022EA002320 crossref_primary_10_1038_s41558_023_01923_x crossref_primary_10_1029_2021EF002603 |
Cites_doi | 10.1038/s41561-019-0387-6 10.1029/2009WR007803 10.1016/0016-7037(84)90294-1 10.1002/wat2.1155 10.1016/S0022-1694(99)00059-1 10.1016/0048-9697(95)04971-1 10.1038/ngeo2636 10.5194/hess-22-2881-2018 10.1002/hyp.7835 10.1038/nature13470 10.1038/35000537 10.1073/pnas.1614941114 10.1029/98WR02577 10.1029/2004WR003800 10.1016/j.gca.2013.01.010 10.1016/j.gca.2010.03.036 10.1111/j.1745-6584.2003.tb02434.x 10.1016/j.tree.2005.12.006 10.1126/science.aad1010 10.1016/j.advwatres.2015.09.026 10.1007/s13280-014-0558-z 10.1002/2016WR019080 10.1002/2013WR013670 10.1002/rcm.926 10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N 10.1029/95WR01806 10.1073/pnas.0812721106 10.1002/2017GL072630 10.1073/pnas.1404763111 10.1016/j.epsl.2011.09.040 10.1002/2017WR020709 10.1016/j.envsci.2012.06.004 10.1029/2018GL080005 10.5194/hess-17-1133-2013 10.1029/2007GB002952 10.5194/hess-22-5639-2018 10.1080/02626667.2015.1031761 10.1002/2017GL075619 10.1126/science.1160232 10.1002/2014MS000358 10.1002/hyp.11136 10.1016/S0022-1694(01)00381-X 10.1016/j.gca.2008.04.011 10.1021/es104322q 10.1038/315207a0 10.1002/2016WR020116 10.1016/j.jconhyd.2005.12.011 10.1002/esp.4052 10.1080/02626667.2013.803183 10.1029/WR026i011p02821 10.5194/esd-9-593-2018 10.2166/nh.2012.217 10.1029/97WR01881 10.5194/hess-13-883-2009 10.1021/es404880j 10.1016/0016-7037(68)90100-2 10.1016/B978-0-12-809665-9.09977-8 10.1016/j.gca.2007.10.027 10.1029/2018WR024257 10.1525/elementa.287 10.1016/j.jhydrol.2018.12.065 10.1029/2005WR004362 10.1111/j.1752-1688.2001.tb03630.x 10.1016/j.envsoft.2019.104521 10.1002/2015WR017273 10.1021/acs.est.7b04717 10.1038/nature04514 10.1002/wat2.1436 10.1029/2019GL082447 10.1029/2018WR023736 10.2136/vzj2018.03.0061 10.1111/j.1749-8198.2008.00180.x 10.1126/science.1259855 10.1007/s10661-007-9752-9 10.1002/wrcr.20156 10.1016/j.scitotenv.2015.12.025 10.1029/2000GB001278 10.1016/S0262-4079(16)31050-8 10.1002/2017WR021645 10.1016/j.jhydrol.2005.10.024 10.5194/hess-23-303-2019 10.1175/JHM-D-11-088.1 10.2475/ajs.278.9.1235 10.1126/sciadv.aau6635 10.1029/2019WR026577 10.1002/hyp.10082 10.1002/2015WR018247 10.1126/science.148.3671.754 10.1038/s41598-017-09049-9 10.1515/9781400864874 10.1002/2014WR015707 10.1007/s10021-015-9878-5 10.1016/S0009-2541(01)00314-X 10.1029/2012WR012583 10.1002/hyp.11488 10.1002/hyp.500 10.1029/2012GC004370 10.1016/j.apgeochem.2015.07.005 10.5194/hess-24-2561-2020 10.1002/hyp.9943 10.1016/S0009-2541(99)00031-5 10.1029/2004WR003778 10.1029/2011GL047666 10.1038/nature08930 10.5194/hess-23-405-2019 10.1016/j.gca.2018.04.024 10.1111/gcb.12341 10.1111/nph.16223 10.1002/hyp.7240 10.1002/2013WR015141 10.1016/S0360-1323(03)00080-5 10.1016/j.geomorph.2016.09.027 10.1002/9781119413332.ch10 10.1002/2016WR018935 10.1002/hyp.5108 10.1002/hyp.13753 10.1002/2017WR020835 10.1002/hyp.10310 10.1002/esp.4177 10.1007/s00442-007-0745-8 10.5194/hess-5-1-2001 10.1029/2009WR008818 10.1029/2018WR023665 10.2113/11.4.347 10.1007/s10021-003-0161-9 10.1029/WR026i012p03055 10.1016/j.gca.2014.07.006 10.1029/2004WR003657 10.1016/j.apgeochem.2012.07.008 10.1038/ngeo2943 10.1038/nclimate1419 10.1016/j.biocon.2010.02.013 10.1002/2017WR021654 10.1021/ac010088e 10.1002/esp.3415 10.1002/qj.2414 10.5194/hess-22-1665-2018 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2 10.1016/j.gca.2012.03.021 10.1126/science.1150195 10.1007/s10596-014-9443-x 10.1007/978-3-319-70766-2_6 10.5194/hess-19-3333-2015 10.1002/hyp.5741 10.1038/s41467-019-09922-3 10.1002/2015WR017552 10.1111/gcb.14626 10.1002/grl.50895 10.1016/j.gca.2015.01.035 10.1126/science.aab2210 10.5194/hess-21-3879-2017 10.1016/j.ppees.2017.05.003 10.1029/WR017i005p01419 10.1038/s41598-020-65094-x 10.1002/2017GL074962 10.1038/s43247-020-00039-w 10.1029/2018RG000627 10.1016/j.jconhyd.2016.06.002 10.1002/2015WR017018 10.1111/j.2153-3490.1976.tb00701.x 10.5194/esurf-5-841-2017 10.5194/bg-15-6399-2018 10.1017/S0033822200053078 10.1016/j.chemgeo.2018.06.019 10.1016/j.chemgeo.2016.02.012 10.1002/hyp.7576 10.1515/9781501509797-011 10.1016/j.gca.2005.09.001 10.1002/2016WR019635 10.1016/0016-7037(88)90063-4 10.1038/nature20150 10.1002/hyp.13385 10.1002/2017WR021689 10.1029/2018WR023703 10.1029/JB089iB06p04009 10.1016/0022-1694(85)90167-2 10.1007/s11252-012-0226-7 10.5194/hess-20-279-2016 10.1029/2018RG000633 10.1002/hyp.8201 10.1016/S0016-7037(03)00270-9 10.1002/2016WR019516 10.1146/annurev-arplant-042817-040256 10.1002/hyp.5209 10.3389/fmicb.2014.00480 10.1002/wat2.1348 10.1029/2010WR009827 10.1016/j.gca.2017.08.011 10.1029/2019WR025236 10.2475/10.2016.02 10.1073/pnas.1712381114 10.1002/2016WR019712 10.1038/ngeo2646 10.5194/hess-23-4367-2019 10.1016/j.chemgeo.2016.05.012 10.5194/hess-13-2287-2009 10.1017/S0021859614000021 10.1016/j.neunet.2014.09.003 10.1016/j.chemgeo.2016.08.008 10.1103/PhysRevLett.70.822 10.1021/acs.est.5b01869 10.1016/S0883-2927(02)00031-8 10.1002/2017WR021353 10.1002/2016WR018934 10.1515/9781501512001-014 10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2 10.1016/j.earscirev.2016.06.014 10.5194/hess-24-945-2020 10.1111/nph.13338 10.1007/s10750-011-0854-6 10.1029/2009WR008371 10.1016/j.epsl.2007.07.010 10.1016/j.scitotenv.2017.07.211 10.1007/s12665-013-2281-7 10.1016/j.chemgeo.2016.11.029 10.1016/j.chemgeo.2019.06.023 10.1016/j.chemgeo.2003.03.001 10.1029/2000WR900241 10.1515/9781501509650-009 10.1016/j.gca.2008.09.004 10.1016/j.jhydrol.2019.01.058 10.1002/hyp.7677 10.1016/j.jconhyd.2016.01.005 10.1016/j.earscirev.2013.09.002 10.1038/s41467-020-14411-z 10.1029/1999WR900013 10.1016/0016-7037(85)90140-1 10.1073/pnas.1322700111 10.1002/2015WR016937 10.1016/j.jconhyd.2009.10.006 10.1002/2017WR021902 10.1017/S0263593300011226 10.1029/WR005i006p01353 10.1029/WR019i001p00260 10.1002/hyp.13781 10.1029/2004WR003773 10.2113/gselements.3.5.307 10.1038/ngeo858 10.1007/BF00333714 10.1126/science.278.5341.1251 10.1007/s10040-014-1121-5 10.1093/acrefore/9780190228620.013.593 10.1016/j.jhydrol.2005.07.007 10.1021/bk-1979-0093.ch025 10.1002/hyp.13807 10.1016/j.soilbio.2009.02.031 10.1007/978-0-387-73563-4_5 10.1007/s10533-004-4322-5 10.5194/hess-23-4825-2019 10.1016/0022-1694(90)90114-D 10.1002/2014RG000465 10.5194/hess-20-299-2016 10.1016/j.chemgeo.2018.05.009 10.1029/1999WR900210 10.1016/j.envpol.2010.08.014 10.1038/ngeo722 10.1016/0167-8809(94)00558-V 10.1016/j.ecolind.2020.106321 10.1016/S0022-1694(01)00421-8 10.1002/2016WR019448 10.5194/hess-4-203-2000 10.1029/2018WR022643 10.1016/j.earscirev.2016.09.001 10.1002/9780470691854.ch12 10.1029/2001WR001118 10.1080/10643380801977966 10.1016/j.gca.2018.05.009 10.1021/acs.est.8b01123 10.1890/070062 10.1016/j.gca.2018.02.028 10.1016/j.advwatres.2016.07.003 10.1146/annurev.mi.03.100149.002103 10.1038/s41586-018-0463-x 10.2134/jeq2014.04.0163 10.1029/2019WR026695 10.3389/fevo.2019.00516 10.1021/ac020113w 10.1002/2013RG000443 10.1029/2008WR006912 10.1016/j.jhydrol.2016.03.026 10.1016/j.jhydrol.2006.04.020 10.1515/9781501508462-014 10.1146/annurev.earth.36.031207.124210 10.1073/pnas.1411723111 10.1038/s41561-019-0526-0 10.1029/WR026i007p01465 10.5194/hess-18-4751-2014 10.1029/2018JG004956 10.1002/2016GL069690 10.5194/hess-10-873-2006 10.1029/2018JG004981 10.1371/journal.pone.0106922 10.2136/vzj2018.08.0153 10.1029/2000WR900290 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1038/s41598-019-40819-9 10.1109/TKDE.2017.2720168 10.1073/pnas.1816892116 10.1021/es501060d 10.2475/ajs.299.1.1 10.1016/j.jhydrol.2015.02.013 10.1556/168.2015.16.2.11 10.1029/WR005i002p00438 10.1029/WR026i012p02949 10.1029/2005WR004387 10.1038/ngeo2947 10.1007/BF00329030 10.1038/nclimate2246 10.4319/lo.2002.47.5.1380 10.1128/mBio.01318-19 10.1016/0022-1694(90)90122-E 10.1016/j.gca.2017.04.019 10.1029/2018WR023903 10.1021/acs.est.0c01340 10.1038/s41586-019-0912-1 10.1038/s41467-018-04971-6 10.1029/2017GB005798 10.1002/esp.4434 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | 24P AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI ADTPV AOWAS D8T ZZAVC |
DOI | 10.1002/wat2.1495 |
DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology |
EISSN | 2049-1948 |
EndPage | n/a |
ExternalDocumentID | oai_slubar_slu_se_109736 10_1002_wat2_1495 WAT21495 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DE‐SC0020146; 1904527; 1911967; EAR–1331726; NSF EAR‐1911960; DE‐SC00020146; NSF EAR‐1331726 – fundername: NSF Critical Zone Observatory funderid: 1331726; EAR 12‐39285 – fundername: ETH Zurich Postdoctoral Fellowship – fundername: German Research Foundation funderid: SFB 1253/1 |
GroupedDBID | 0R~ 1OC 1VH 24P 31~ 33P 8-1 AAESR AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACPOU ACUHS ACXBN ACXQS ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AUFTA AZVAB BFHJK BMNLL BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- P2W R.K ROL SUPJJ WBKPD WIH WIK WMRSR WOHZO WSUWO WXSBR WYJ AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION HGLYW 7QH 7ST 7UA C1K F1W H97 L.G SOI ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c3715-fdf3d28230660cd60089ba76534f3ab9445236e504d6e7cd1fdfe358f7d1f18b3 |
IEDL.DBID | 24P |
ISSN | 2049-1948 |
IngestDate | Thu Aug 21 07:33:01 EDT 2025 Fri Aug 22 20:06:37 EDT 2025 Tue Jul 01 02:10:11 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Wed Jan 22 16:31:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3715-fdf3d28230660cd60089ba76534f3ab9445236e504d6e7cd1fdfe358f7d1f18b3 |
Notes | Funding information NSF Critical Zone Observatory, Grant/Award Numbers: 1331726, EAR 12‐39285; ETH Zurich Postdoctoral Fellowship; German Research Foundation, Grant/Award Number: SFB 1253/1; National Science Foundation, Grant/Award Numbers: DE‐SC0020146, 1904527, 1911967, EAR–1331726, NSF EAR‐1911960, DE‐SC00020146, NSF EAR‐1331726 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2546-9548 0000-0001-7556-1417 0000-0001-6577-3619 0000-0001-7358-1625 0000-0002-1641-3710 0000-0002-9574-2693 0000-0002-7547-3270 0000-0003-3509-4118 0000-0002-8057-1051 0000-0003-0885-7829 0000-0001-8780-8501 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1495 |
PQID | 2471059840 |
PQPubID | 2034617 |
PageCount | 31 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_109736 proquest_journals_2471059840 crossref_citationtrail_10_1002_wat2_1495 crossref_primary_10_1002_wat2_1495 wiley_primary_10_1002_wat2_1495_WAT21495 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January/February 2021 2021-01-00 20210101 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January/February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Wiley interdisciplinary reviews. Water |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | e_1_2_10_1_143_1 e_1_2_10_1_189_1 e_1_2_10_1_166_1 Armfield J. R. (e_1_2_10_1_6_1) 2019; 6 e_1_2_10_1_105_1 Rodhe A. (e_1_2_10_1_249_1) 1987 e_1_2_10_1_29_1 e_1_2_10_1_312_1 Drever J. (e_1_2_10_1_75_1) 1995; 31 e_1_2_10_1_120_1 e_1_2_10_1_67_1 e_1_2_10_1_287_1 e_1_2_10_1_21_1 e_1_2_10_1_44_1 e_1_2_10_1_128_1 White A. F. (e_1_2_10_1_322_1) 1995; 31 e_1_2_10_1_82_1 e_1_2_10_1_203_1 e_1_2_10_1_226_1 e_1_2_10_1_241_1 e_1_2_10_1_264_1 e_1_2_10_1_154_1 e_1_2_10_1_177_1 e_1_2_10_1_116_1 e_1_2_10_1_192_1 e_1_2_10_1_324_1 e_1_2_10_1_18_1 e_1_2_10_1_131_1 e_1_2_10_1_301_1 e_1_2_10_1_56_1 e_1_2_10_1_298_1 e_1_2_10_1_79_1 Velde Y. (e_1_2_10_1_306_1) 2012; 48 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_309_1 e_1_2_10_1_139_1 e_1_2_10_1_94_1 e_1_2_10_1_237_1 e_1_2_10_1_290_1 e_1_2_10_1_71_1 e_1_2_10_1_214_1 e_1_2_10_1_252_1 e_1_2_10_1_275_1 e_1_2_10_1_142_1 e_1_2_10_1_165_1 e_1_2_10_1_188_1 e_1_2_10_1_104_1 e_1_2_10_1_127_1 e_1_2_10_1_180_1 e_1_2_10_1_334_1 Arnold J. (e_1_2_10_1_7_1) 1994 e_1_2_10_1_311_1 e_1_2_10_1_240_1 e_1_2_10_1_286_1 e_1_2_10_1_68_1 e_1_2_10_1_22_1 e_1_2_10_1_319_1 e_1_2_10_1_83_1 e_1_2_10_1_248_1 e_1_2_10_1_225_1 Brunner I. (e_1_2_10_1_60_1) 2015; 6 e_1_2_10_1_263_1 e_1_2_10_1_130_1 e_1_2_10_1_153_1 e_1_2_10_1_176_1 e_1_2_10_1_199_1 e_1_2_10_1_138_1 e_1_2_10_1_191_1 e_1_2_10_1_115_1 e_1_2_10_1_8_1 e_1_2_10_1_300_1 e_1_2_10_1_323_1 e_1_2_10_1_19_1 e_1_2_10_1_34_1 e_1_2_10_1_251_1 e_1_2_10_1_297_1 e_1_2_10_1_57_1 Zarnetske J. P. (e_1_2_10_1_335_1) 2011; 116 Linsley R. K. (e_1_2_10_1_181_1) 1958 e_1_2_10_1_308_1 e_1_2_10_1_11_1 e_1_2_10_1_72_1 e_1_2_10_1_95_1 e_1_2_10_1_213_1 e_1_2_10_1_236_1 e_1_2_10_1_259_1 e_1_2_10_1_274_1 e_1_2_10_1_209_1 e_1_2_10_1_164_1 e_1_2_10_1_187_1 e_1_2_10_1_149_1 e_1_2_10_1_310_1 e_1_2_10_1_333_1 e_1_2_10_1_126_1 e_1_2_10_1_103_1 e_1_2_10_1_27_1 e_1_2_10_1_141_1 e_1_2_10_1_262_1 e_1_2_10_1_285_1 e_1_2_10_1_318_1 e_1_2_10_1_42_1 e_1_2_10_1_65_1 e_1_2_10_1_88_1 e_1_2_10_1_201_1 e_1_2_10_1_224_1 e_1_2_10_1_247_1 Wen H. (e_1_2_10_1_317_1) 2020 e_1_2_10_1_80_1 e_1_2_10_1_175_1 e_1_2_10_1_198_1 e_1_2_10_1_9_1 e_1_2_10_1_137_1 e_1_2_10_1_114_1 e_1_2_10_1_190_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_1_152_1 e_1_2_10_1_250_1 e_1_2_10_1_273_1 e_1_2_10_1_296_1 e_1_2_10_1_307_1 e_1_2_10_1_31_1 e_1_2_10_1_77_1 e_1_2_10_1_54_1 e_1_2_10_1_258_1 e_1_2_10_1_212_1 e_1_2_10_1_92_1 e_1_2_10_1_235_1 e_1_2_10_1_186_1 e_1_2_10_1_148_1 e_1_2_10_1_208_1 e_1_2_10_1_102_1 e_1_2_10_1_125_1 Suchet P. A. (e_1_2_10_1_289_1) 2003; 17 e_1_2_10_1_28_1 e_1_2_10_1_140_1 e_1_2_10_1_163_1 e_1_2_10_1_261_1 e_1_2_10_1_89_1 e_1_2_10_1_20_1 e_1_2_10_1_66_1 e_1_2_10_1_43_1 e_1_2_10_1_223_1 e_1_2_10_1_269_1 e_1_2_10_1_81_1 e_1_2_10_1_246_1 e_1_2_10_1_200_1 e_1_2_10_1_197_1 e_1_2_10_1_159_1 e_1_2_10_1_219_1 e_1_2_10_1_136_1 e_1_2_10_1_113_1 White A. F. (e_1_2_10_1_321_1) 1995; 31 e_1_2_10_1_17_1 e_1_2_10_1_151_1 e_1_2_10_1_174_1 e_1_2_10_1_2_1 e_1_2_10_1_329_1 Blum A. E. (e_1_2_10_1_45_1) 1995; 31 e_1_2_10_1_78_1 e_1_2_10_1_55_1 e_1_2_10_1_32_1 e_1_2_10_1_70_1 e_1_2_10_1_93_1 e_1_2_10_1_257_1 e_1_2_10_1_211_1 e_1_2_10_1_295_1 Michaelis L. (e_1_2_10_1_202_1) 1913; 49 e_1_2_10_1_147_1 e_1_2_10_1_207_1 e_1_2_10_1_124_1 e_1_2_10_1_101_1 e_1_2_10_1_185_1 e_1_2_10_1_331_1 e_1_2_10_1_162_1 e_1_2_10_1_25_1 e_1_2_10_1_48_1 e_1_2_10_1_260_1 e_1_2_10_1_316_1 e_1_2_10_1_109_1 e_1_2_10_1_63_1 e_1_2_10_1_86_1 e_1_2_10_1_339_1 Steefel C. I. (e_1_2_10_1_284_1) 2007 e_1_2_10_1_40_1 e_1_2_10_1_245_1 e_1_2_10_1_268_1 e_1_2_10_1_222_1 e_1_2_10_1_283_1 e_1_2_10_1_158_1 e_1_2_10_1_218_1 e_1_2_10_1_320_1 e_1_2_10_1_135_1 e_1_2_10_1_112_1 e_1_2_10_1_150_1 e_1_2_10_1_196_1 e_1_2_10_1_173_1 e_1_2_10_1_328_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_271_1 e_1_2_10_1_52_1 e_1_2_10_1_98_1 e_1_2_10_1_3_1 e_1_2_10_1_256_1 e_1_2_10_1_279_1 e_1_2_10_1_90_1 e_1_2_10_1_233_1 e_1_2_10_1_294_1 e_1_2_10_1_210_1 e_1_2_10_1_146_1 e_1_2_10_1_169_1 e_1_2_10_1_206_1 e_1_2_10_1_229_1 e_1_2_10_1_100_1 e_1_2_10_1_123_1 e_1_2_10_1_161_1 e_1_2_10_1_184_1 e_1_2_10_1_49_1 e_1_2_10_1_330_1 Yeh G.‐T. (e_1_2_10_1_332_1) 2006 Velde Y. (e_1_2_10_1_305_1) 2010; 46 e_1_2_10_1_26_1 e_1_2_10_1_315_1 e_1_2_10_1_108_1 e_1_2_10_1_41_1 e_1_2_10_1_87_1 e_1_2_10_1_338_1 e_1_2_10_1_64_1 e_1_2_10_1_267_1 e_1_2_10_1_244_1 e_1_2_10_1_282_1 e_1_2_10_1_221_1 e_1_2_10_1_157_1 e_1_2_10_1_217_1 e_1_2_10_1_111_1 e_1_2_10_1_134_1 e_1_2_10_1_172_1 e_1_2_10_1_195_1 e_1_2_10_1_38_1 e_1_2_10_1_342_1 e_1_2_10_1_304_1 e_1_2_10_1_327_1 e_1_2_10_1_15_1 e_1_2_10_1_270_1 e_1_2_10_1_53_1 e_1_2_10_1_76_1 e_1_2_10_1_99_1 e_1_2_10_1_30_1 e_1_2_10_1_119_1 e_1_2_10_1_4_1 e_1_2_10_1_278_1 e_1_2_10_1_91_1 e_1_2_10_1_232_1 e_1_2_10_1_255_1 e_1_2_10_1_293_1 e_1_2_10_1_145_1 e_1_2_10_1_205_1 e_1_2_10_1_228_1 e_1_2_10_1_168_1 e_1_2_10_1_314_1 e_1_2_10_1_122_1 e_1_2_10_1_160_1 e_1_2_10_1_183_1 e_1_2_10_1_23_1 e_1_2_10_1_46_1 e_1_2_10_1_69_1 e_1_2_10_1_337_1 e_1_2_10_1_107_1 e_1_2_10_1_61_1 e_1_2_10_1_84_1 e_1_2_10_1_220_1 e_1_2_10_1_243_1 e_1_2_10_1_266_1 e_1_2_10_1_281_1 Sherman L. K. (e_1_2_10_1_272_1) 1932; 108 e_1_2_10_1_156_1 e_1_2_10_1_179_1 e_1_2_10_1_216_1 e_1_2_10_1_239_1 e_1_2_10_1_133_1 e_1_2_10_1_171_1 e_1_2_10_1_303_1 e_1_2_10_1_341_1 Lasaga A. C. (e_1_2_10_1_170_1) 1998 e_1_2_10_1_110_1 e_1_2_10_1_194_1 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_58_1 e_1_2_10_1_326_1 e_1_2_10_1_5_1 e_1_2_10_1_118_1 e_1_2_10_1_96_1 e_1_2_10_1_73_1 e_1_2_10_1_50_1 e_1_2_10_1_231_1 e_1_2_10_1_254_1 e_1_2_10_1_277_1 e_1_2_10_1_292_1 e_1_2_10_1_144_1 e_1_2_10_1_167_1 e_1_2_10_1_227_1 e_1_2_10_1_336_1 e_1_2_10_1_313_1 e_1_2_10_1_121_1 e_1_2_10_1_182_1 e_1_2_10_1_24_1 e_1_2_10_1_47_1 e_1_2_10_1_288_1 e_1_2_10_1_106_1 e_1_2_10_1_129_1 e_1_2_10_1_85_1 e_1_2_10_1_62_1 e_1_2_10_1_204_1 e_1_2_10_1_280_1 e_1_2_10_1_265_1 e_1_2_10_1_242_1 e_1_2_10_1_155_1 e_1_2_10_1_178_1 e_1_2_10_1_238_1 e_1_2_10_1_302_1 e_1_2_10_1_325_1 e_1_2_10_1_340_1 e_1_2_10_1_132_1 e_1_2_10_1_193_1 e_1_2_10_1_13_1 e_1_2_10_1_59_1 e_1_2_10_1_36_1 e_1_2_10_1_299_1 e_1_2_10_1_74_1 e_1_2_10_1_97_1 Radke A. G. (e_1_2_10_1_234_1) 2019; 7 e_1_2_10_1_117_1 e_1_2_10_1_51_1 e_1_2_10_1_215_1 e_1_2_10_1_291_1 e_1_2_10_1_230_1 e_1_2_10_1_276_1 e_1_2_10_1_253_1 |
References_xml | – ident: e_1_2_10_1_231_1 doi: 10.1038/s41561-019-0387-6 – ident: e_1_2_10_1_15_1 doi: 10.1029/2009WR007803 – ident: e_1_2_10_1_111_1 doi: 10.1016/0016-7037(84)90294-1 – ident: e_1_2_10_1_120_1 doi: 10.1002/wat2.1155 – ident: e_1_2_10_1_150_1 doi: 10.1016/S0022-1694(99)00059-1 – ident: e_1_2_10_1_160_1 doi: 10.1016/0048-9697(95)04971-1 – ident: e_1_2_10_1_132_1 doi: 10.1038/ngeo2636 – ident: e_1_2_10_1_21_1 doi: 10.5194/hess-22-2881-2018 – ident: e_1_2_10_1_119_1 doi: 10.1002/hyp.7835 – ident: e_1_2_10_1_276_1 – ident: e_1_2_10_1_203_1 doi: 10.1038/nature13470 – volume: 108 start-page: 501 year: 1932 ident: e_1_2_10_1_272_1 article-title: Streamflow from rainfall by the unit‐graph method publication-title: Engineering News‐Record – ident: e_1_2_10_1_159_1 doi: 10.1038/35000537 – ident: e_1_2_10_1_106_1 doi: 10.1073/pnas.1614941114 – ident: e_1_2_10_1_325_1 doi: 10.1029/98WR02577 – ident: e_1_2_10_1_297_1 doi: 10.1029/2004WR003800 – year: 2020 ident: e_1_2_10_1_317_1 article-title: Deepening roots can enhance carbonate weathering via amplifying CO2‐rich recharge publication-title: Biogeosciences – ident: e_1_2_10_1_257_1 doi: 10.1016/j.gca.2013.01.010 – ident: e_1_2_10_1_136_1 doi: 10.1016/j.gca.2010.03.036 – ident: e_1_2_10_1_62_1 doi: 10.1111/j.1745-6584.2003.tb02434.x – ident: e_1_2_10_1_147_1 doi: 10.1016/j.tree.2005.12.006 – ident: e_1_2_10_1_129_1 doi: 10.1126/science.aad1010 – ident: e_1_2_10_1_214_1 doi: 10.1016/j.advwatres.2015.09.026 – ident: e_1_2_10_1_88_1 doi: 10.1007/s13280-014-0558-z – ident: e_1_2_10_1_184_1 doi: 10.1002/2016WR019080 – ident: e_1_2_10_1_265_1 doi: 10.1002/2013WR013670 – ident: e_1_2_10_1_288_1 doi: 10.1002/rcm.926 – ident: e_1_2_10_1_328_1 doi: 10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N – ident: e_1_2_10_1_250_1 doi: 10.1029/95WR01806 – ident: e_1_2_10_1_277_1 doi: 10.1073/pnas.0812721106 – ident: e_1_2_10_1_212_1 doi: 10.1002/2017GL072630 – volume: 46 issue: 11 year: 2010 ident: e_1_2_10_1_305_1 article-title: Nitrate response of a lowland catchment: On the relation between stream concentration and travel time distribution dynamics publication-title: Water Resources Research – ident: e_1_2_10_1_239_1 doi: 10.1073/pnas.1404763111 – ident: e_1_2_10_1_189_1 doi: 10.1016/j.epsl.2011.09.040 – ident: e_1_2_10_1_167_1 doi: 10.1002/2017WR020709 – ident: e_1_2_10_1_200_1 doi: 10.1016/j.envsci.2012.06.004 – volume-title: The origin of Streamwater traced by Oxygen‐18 year: 1987 ident: e_1_2_10_1_249_1 – ident: e_1_2_10_1_334_1 doi: 10.1029/2018GL080005 – ident: e_1_2_10_1_222_1 doi: 10.5194/hess-17-1133-2013 – ident: e_1_2_10_1_235_1 doi: 10.1029/2007GB002952 – ident: e_1_2_10_1_271_1 doi: 10.5194/hess-22-5639-2018 – volume: 31 start-page: 407 issue: 1 year: 1995 ident: e_1_2_10_1_321_1 article-title: Chemical weathering rates of silicate minerals in soils publication-title: Reviews in Mineralogy and Geochemistry – ident: e_1_2_10_1_31_1 doi: 10.1080/02626667.2015.1031761 – ident: e_1_2_10_1_84_1 doi: 10.1002/2017GL075619 – ident: e_1_2_10_1_299_1 doi: 10.1126/science.1160232 – ident: e_1_2_10_1_273_1 doi: 10.1002/2014MS000358 – ident: e_1_2_10_1_77_1 doi: 10.1002/hyp.11136 – ident: e_1_2_10_1_16_1 doi: 10.1016/S0022-1694(01)00381-X – ident: e_1_2_10_1_227_1 doi: 10.1016/j.gca.2008.04.011 – ident: e_1_2_10_1_320_1 doi: 10.1021/es104322q – ident: e_1_2_10_1_85_1 doi: 10.1038/315207a0 – ident: e_1_2_10_1_228_1 doi: 10.1002/2016WR020116 – ident: e_1_2_10_1_266_1 doi: 10.1016/j.jconhyd.2005.12.011 – ident: e_1_2_10_1_243_1 doi: 10.1002/esp.4052 – ident: e_1_2_10_1_121_1 doi: 10.1080/02626667.2013.803183 – ident: e_1_2_10_1_195_1 doi: 10.1029/WR026i011p02821 – ident: e_1_2_10_1_8_1 doi: 10.5194/esd-9-593-2018 – ident: e_1_2_10_1_211_1 doi: 10.2166/nh.2012.217 – ident: e_1_2_10_1_81_1 doi: 10.1029/97WR01881 – ident: e_1_2_10_1_268_1 doi: 10.5194/hess-13-883-2009 – ident: e_1_2_10_1_74_1 doi: 10.1021/es404880j – ident: e_1_2_10_1_112_1 doi: 10.1016/0016-7037(68)90100-2 – ident: e_1_2_10_1_179_1 doi: 10.1016/B978-0-12-809665-9.09977-8 – ident: e_1_2_10_1_177_1 doi: 10.1016/j.gca.2007.10.027 – ident: e_1_2_10_1_337_1 doi: 10.1029/2018WR024257 – ident: e_1_2_10_1_38_1 doi: 10.1525/elementa.287 – ident: e_1_2_10_1_144_1 doi: 10.1016/j.jhydrol.2018.12.065 – ident: e_1_2_10_1_154_1 doi: 10.1029/2005WR004362 – volume: 31 start-page: 291 issue: 1 year: 1995 ident: e_1_2_10_1_45_1 article-title: Feldspar dissolution kinetics publication-title: Reviews in Mineralogy and Geochemistry – ident: e_1_2_10_1_259_1 doi: 10.1111/j.1752-1688.2001.tb03630.x – ident: e_1_2_10_1_42_1 doi: 10.1016/j.envsoft.2019.104521 – ident: e_1_2_10_1_245_1 doi: 10.1002/2015WR017273 – ident: e_1_2_10_1_13_1 doi: 10.1021/acs.est.7b04717 – ident: e_1_2_10_1_161_1 – ident: e_1_2_10_1_73_1 doi: 10.1038/nature04514 – ident: e_1_2_10_1_342_1 doi: 10.1002/wat2.1436 – ident: e_1_2_10_1_67_1 doi: 10.1029/2019GL082447 – ident: e_1_2_10_1_330_1 doi: 10.1029/2018WR023736 – ident: e_1_2_10_1_125_1 doi: 10.2136/vzj2018.03.0061 – ident: e_1_2_10_1_3_1 doi: 10.1111/j.1749-8198.2008.00180.x – ident: e_1_2_10_1_286_1 doi: 10.1126/science.1259855 – ident: e_1_2_10_1_188_1 doi: 10.1007/s10661-007-9752-9 – ident: e_1_2_10_1_35_1 doi: 10.1002/wrcr.20156 – ident: e_1_2_10_1_223_1 doi: 10.1016/j.scitotenv.2015.12.025 – ident: e_1_2_10_1_5_1 doi: 10.1029/2000GB001278 – ident: e_1_2_10_1_215_1 doi: 10.1016/S0262-4079(16)31050-8 – ident: e_1_2_10_1_185_1 doi: 10.1002/2017WR021645 – ident: e_1_2_10_1_280_1 doi: 10.1016/j.jhydrol.2005.10.024 – ident: e_1_2_10_1_158_1 doi: 10.5194/hess-23-303-2019 – ident: e_1_2_10_1_183_1 doi: 10.1175/JHM-D-11-088.1 – ident: e_1_2_10_1_24_1 doi: 10.2475/ajs.278.9.1235 – ident: e_1_2_10_1_66_1 doi: 10.1126/sciadv.aau6635 – ident: e_1_2_10_1_241_1 doi: 10.1029/2019WR026577 – ident: e_1_2_10_1_33_1 doi: 10.1002/hyp.10082 – ident: e_1_2_10_1_18_1 doi: 10.1002/2015WR018247 – ident: e_1_2_10_1_69_1 doi: 10.1126/science.148.3671.754 – ident: e_1_2_10_1_64_1 doi: 10.1038/s41598-017-09049-9 – start-page: 811 volume-title: Kinetic theory in the earth sciences year: 1998 ident: e_1_2_10_1_170_1 doi: 10.1515/9781400864874 – ident: e_1_2_10_1_104_1 doi: 10.1002/2014WR015707 – ident: e_1_2_10_1_229_1 doi: 10.1007/s10021-015-9878-5 – ident: e_1_2_10_1_233_1 doi: 10.1016/S0009-2541(01)00314-X – ident: e_1_2_10_1_258_1 doi: 10.1029/2012WR012583 – ident: e_1_2_10_1_341_1 doi: 10.1002/hyp.11488 – ident: e_1_2_10_1_28_1 doi: 10.1002/hyp.500 – ident: e_1_2_10_1_108_1 doi: 10.1029/2012GC004370 – ident: e_1_2_10_1_109_1 doi: 10.1016/j.apgeochem.2015.07.005 – ident: e_1_2_10_1_163_1 doi: 10.5194/hess-24-2561-2020 – ident: e_1_2_10_1_98_1 doi: 10.1002/hyp.9943 – ident: e_1_2_10_1_91_1 doi: 10.1016/S0009-2541(99)00031-5 – ident: e_1_2_10_1_298_1 doi: 10.1029/2004WR003778 – ident: e_1_2_10_1_49_1 doi: 10.1029/2011GL047666 – ident: e_1_2_10_1_47_1 doi: 10.1038/nature08930 – ident: e_1_2_10_1_254_1 doi: 10.5194/hess-23-405-2019 – ident: e_1_2_10_1_315_1 doi: 10.1016/j.gca.2018.04.024 – ident: e_1_2_10_1_255_1 doi: 10.1111/gcb.12341 – ident: e_1_2_10_1_326_1 doi: 10.1111/nph.16223 – ident: e_1_2_10_1_296_1 doi: 10.1002/hyp.7240 – ident: e_1_2_10_1_196_1 doi: 10.1002/2013WR015141 – ident: e_1_2_10_1_210_1 doi: 10.1016/S0360-1323(03)00080-5 – ident: e_1_2_10_1_55_1 doi: 10.1016/j.geomorph.2016.09.027 – ident: e_1_2_10_1_290_1 doi: 10.1002/9781119413332.ch10 – ident: e_1_2_10_1_174_1 doi: 10.1002/2016WR018935 – ident: e_1_2_10_1_303_1 – ident: e_1_2_10_1_153_1 doi: 10.1002/hyp.5108 – ident: e_1_2_10_1_165_1 doi: 10.1002/hyp.13753 – volume: 48 issue: 6 year: 2012 ident: e_1_2_10_1_306_1 article-title: Quantifying catchment‐scale mixing and its effect on time‐varying travel time distributions publication-title: Water Resources Research – ident: e_1_2_10_1_100_1 doi: 10.1002/2017WR020835 – ident: e_1_2_10_1_97_1 doi: 10.1002/hyp.10310 – ident: e_1_2_10_1_172_1 doi: 10.1002/esp.4177 – ident: e_1_2_10_1_219_1 doi: 10.1007/s00442-007-0745-8 – ident: e_1_2_10_1_27_1 doi: 10.5194/hess-5-1-2001 – ident: e_1_2_10_1_134_1 doi: 10.1029/2009WR008818 – ident: e_1_2_10_1_310_1 doi: 10.1029/2018WR023665 – ident: e_1_2_10_1_9_1 doi: 10.2113/11.4.347 – ident: e_1_2_10_1_194_1 doi: 10.1007/s10021-003-0161-9 – ident: e_1_2_10_1_92_1 doi: 10.1029/WR026i012p03055 – ident: e_1_2_10_1_135_1 doi: 10.1016/j.gca.2014.07.006 – ident: e_1_2_10_1_198_1 doi: 10.1029/2004WR003657 – ident: e_1_2_10_1_300_1 doi: 10.1016/j.apgeochem.2012.07.008 – ident: e_1_2_10_1_133_1 doi: 10.1038/ngeo2943 – ident: e_1_2_10_1_17_1 doi: 10.1038/nclimate1419 – ident: e_1_2_10_1_180_1 doi: 10.1016/j.biocon.2010.02.013 – ident: e_1_2_10_1_204_1 doi: 10.1002/2017WR021654 – ident: e_1_2_10_1_274_1 doi: 10.1021/ac010088e – ident: e_1_2_10_1_54_1 doi: 10.1002/esp.3415 – ident: e_1_2_10_1_327_1 doi: 10.1002/qj.2414 – ident: e_1_2_10_1_275_1 doi: 10.5194/hess-22-1665-2018 – ident: e_1_2_10_1_76_1 doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2 – ident: e_1_2_10_1_209_1 doi: 10.1016/j.gca.2012.03.021 – ident: e_1_2_10_1_102_1 doi: 10.1126/science.1150195 – ident: e_1_2_10_1_285_1 doi: 10.1007/s10596-014-9443-x – ident: e_1_2_10_1_36_1 doi: 10.1007/978-3-319-70766-2_6 – ident: e_1_2_10_1_113_1 doi: 10.5194/hess-19-3333-2015 – ident: e_1_2_10_1_29_1 doi: 10.1002/hyp.5741 – ident: e_1_2_10_1_63_1 doi: 10.1038/s41467-019-09922-3 – ident: e_1_2_10_1_19_1 doi: 10.1002/2015WR017552 – ident: e_1_2_10_1_248_1 doi: 10.1111/gcb.14626 – ident: e_1_2_10_1_89_1 doi: 10.1002/grl.50895 – ident: e_1_2_10_1_256_1 doi: 10.1016/j.gca.2015.01.035 – ident: e_1_2_10_1_282_1 doi: 10.1126/science.aab2210 – ident: e_1_2_10_1_193_1 doi: 10.5194/hess-21-3879-2017 – ident: e_1_2_10_1_340_1 doi: 10.1016/j.ppees.2017.05.003 – ident: e_1_2_10_1_26_1 doi: 10.1029/WR017i005p01419 – ident: e_1_2_10_1_264_1 doi: 10.1038/s41598-020-65094-x – ident: e_1_2_10_1_22_1 doi: 10.1002/2017GL074962 – ident: e_1_2_10_1_338_1 doi: 10.1038/s43247-020-00039-w – ident: e_1_2_10_1_131_1 doi: 10.1029/2018RG000627 – ident: e_1_2_10_1_260_1 doi: 10.1016/j.jconhyd.2016.06.002 – ident: e_1_2_10_1_333_1 doi: 10.1002/2015WR017018 – ident: e_1_2_10_1_148_1 doi: 10.1111/j.2153-3490.1976.tb00701.x – ident: e_1_2_10_1_56_1 doi: 10.5194/esurf-5-841-2017 – ident: e_1_2_10_1_226_1 doi: 10.5194/bg-15-6399-2018 – ident: e_1_2_10_1_93_1 doi: 10.1017/S0033822200053078 – ident: e_1_2_10_1_114_1 doi: 10.1016/j.chemgeo.2018.06.019 – ident: e_1_2_10_1_130_1 doi: 10.1016/j.chemgeo.2016.02.012 – ident: e_1_2_10_1_287_1 doi: 10.1002/hyp.7576 – ident: e_1_2_10_1_304_1 doi: 10.1515/9781501509797-011 – ident: e_1_2_10_1_190_1 doi: 10.1016/j.gca.2005.09.001 – ident: e_1_2_10_1_205_1 doi: 10.1002/2016WR019635 – ident: e_1_2_10_1_178_1 doi: 10.1016/0016-7037(88)90063-4 – volume: 116 issue: 1 year: 2011 ident: e_1_2_10_1_335_1 article-title: Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone publication-title: Journal of Geophysical Research: Biogeosciences – ident: e_1_2_10_1_72_1 doi: 10.1038/nature20150 – ident: e_1_2_10_1_105_1 doi: 10.1002/hyp.13385 – ident: e_1_2_10_1_238_1 doi: 10.1002/2017WR021689 – ident: e_1_2_10_1_126_1 doi: 10.1029/2018WR023703 – ident: e_1_2_10_1_169_1 doi: 10.1029/JB089iB06p04009 – ident: e_1_2_10_1_103_1 doi: 10.1016/0022-1694(85)90167-2 – ident: e_1_2_10_1_146_1 doi: 10.1007/s11252-012-0226-7 – ident: e_1_2_10_1_156_1 doi: 10.5194/hess-20-279-2016 – ident: e_1_2_10_1_281_1 doi: 10.1029/2018RG000633 – ident: e_1_2_10_1_39_1 doi: 10.1002/hyp.8201 – ident: e_1_2_10_1_240_1 doi: 10.1016/S0016-7037(03)00270-9 – ident: e_1_2_10_1_166_1 doi: 10.1002/2016WR019516 – ident: e_1_2_10_1_236_1 doi: 10.1146/annurev-arplant-042817-040256 – ident: e_1_2_10_1_40_1 doi: 10.1002/hyp.5209 – ident: e_1_2_10_1_123_1 doi: 10.3389/fmicb.2014.00480 – ident: e_1_2_10_1_61_1 doi: 10.1002/wat2.1348 – ident: e_1_2_10_1_70_1 doi: 10.1029/2010WR009827 – ident: e_1_2_10_1_110_1 doi: 10.1016/j.gca.2017.08.011 – ident: e_1_2_10_1_140_1 doi: 10.1029/2019WR025236 – volume: 6 issue: 547 year: 2015 ident: e_1_2_10_1_60_1 article-title: How tree roots respond to drought publication-title: Frontiers in Plant Science – ident: e_1_2_10_1_291_1 doi: 10.2475/10.2016.02 – volume: 7 issue: 46 year: 2019 ident: e_1_2_10_1_234_1 article-title: Spatiotemporal heterogeneity of water Flowpaths controls dissolved organic carbon sourcing in a snow‐dominated, headwater catchment publication-title: Frontiers in Ecology and Evolution – ident: e_1_2_10_1_83_1 doi: 10.1073/pnas.1712381114 – ident: e_1_2_10_1_199_1 doi: 10.1002/2016WR019712 – ident: e_1_2_10_1_307_1 doi: 10.1038/ngeo2646 – ident: e_1_2_10_1_162_1 doi: 10.5194/hess-23-4367-2019 – ident: e_1_2_10_1_292_1 doi: 10.1016/j.chemgeo.2016.05.012 – ident: e_1_2_10_1_269_1 doi: 10.5194/hess-13-2287-2009 – ident: e_1_2_10_1_201_1 doi: 10.1017/S0021859614000021 – ident: e_1_2_10_1_263_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_10_1_80_1 doi: 10.1016/j.chemgeo.2016.08.008 – ident: e_1_2_10_1_247_1 doi: 10.1103/PhysRevLett.70.822 – ident: e_1_2_10_1_295_1 doi: 10.1021/acs.est.5b01869 – ident: e_1_2_10_1_95_1 doi: 10.1016/S0883-2927(02)00031-8 – ident: e_1_2_10_1_302_1 doi: 10.1002/2017WR021353 – ident: e_1_2_10_1_11_1 doi: 10.1002/2016WR018934 – ident: e_1_2_10_1_173_1 doi: 10.1515/9781501512001-014 – ident: e_1_2_10_1_138_1 doi: 10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2 – ident: e_1_2_10_1_2_1 doi: 10.1016/j.earscirev.2016.06.014 – ident: e_1_2_10_1_316_1 doi: 10.5194/hess-24-945-2020 – ident: e_1_2_10_1_242_1 doi: 10.1111/nph.13338 – ident: e_1_2_10_1_99_1 doi: 10.1007/s10750-011-0854-6 – ident: e_1_2_10_1_48_1 doi: 10.1029/2009WR008371 – ident: e_1_2_10_1_217_1 doi: 10.1016/j.epsl.2007.07.010 – volume-title: Watershed models year: 2006 ident: e_1_2_10_1_332_1 – volume: 49 start-page: 333 year: 1913 ident: e_1_2_10_1_202_1 article-title: Die Kinetik der Invertinwirkung publication-title: Biochemistry Zeitung – ident: e_1_2_10_1_207_1 doi: 10.1016/j.scitotenv.2017.07.211 – ident: e_1_2_10_1_101_1 doi: 10.1007/s12665-013-2281-7 – ident: e_1_2_10_1_192_1 doi: 10.1016/j.chemgeo.2016.11.029 – ident: e_1_2_10_1_293_1 doi: 10.1016/j.chemgeo.2019.06.023 – ident: e_1_2_10_1_323_1 doi: 10.1016/j.chemgeo.2003.03.001 – ident: e_1_2_10_1_319_1 doi: 10.1029/2000WR900241 – ident: e_1_2_10_1_44_1 doi: 10.1515/9781501509650-009 – ident: e_1_2_10_1_187_1 doi: 10.1016/j.gca.2008.09.004 – volume-title: Hydrology for engineers year: 1958 ident: e_1_2_10_1_181_1 – ident: e_1_2_10_1_283_1 doi: 10.1016/j.jhydrol.2019.01.058 – ident: e_1_2_10_1_96_1 doi: 10.1002/hyp.7677 – ident: e_1_2_10_1_261_1 doi: 10.1016/j.jconhyd.2016.01.005 – ident: e_1_2_10_1_186_1 doi: 10.1016/j.earscirev.2013.09.002 – ident: e_1_2_10_1_86_1 doi: 10.1038/s41467-020-14411-z – ident: e_1_2_10_1_94_1 doi: 10.1029/1999WR900013 – volume: 31 start-page: 463 issue: 1 year: 1995 ident: e_1_2_10_1_75_1 article-title: Weathering rates in catchments publication-title: Reviews in Mineralogy and Geochemistry – start-page: 545 volume-title: Kinetics of water‐rock interaction year: 2007 ident: e_1_2_10_1_284_1 – ident: e_1_2_10_1_71_1 doi: 10.1016/0016-7037(85)90140-1 – ident: e_1_2_10_1_246_1 doi: 10.1073/pnas.1322700111 – ident: e_1_2_10_1_78_1 doi: 10.1002/2015WR016937 – ident: e_1_2_10_1_176_1 doi: 10.1016/j.jconhyd.2009.10.006 – ident: e_1_2_10_1_116_1 doi: 10.1002/2017WR021902 – ident: e_1_2_10_1_127_1 doi: 10.1017/S0263593300011226 – ident: e_1_2_10_1_139_1 doi: 10.1029/WR005i006p01353 – ident: e_1_2_10_1_279_1 doi: 10.1029/WR019i001p00260 – ident: e_1_2_10_1_20_1 doi: 10.1002/hyp.13781 – ident: e_1_2_10_1_221_1 doi: 10.1029/2004WR003773 – ident: e_1_2_10_1_168_1 – ident: e_1_2_10_1_53_1 doi: 10.2113/gselements.3.5.307 – ident: e_1_2_10_1_52_1 doi: 10.1038/ngeo858 – ident: e_1_2_10_1_128_1 doi: 10.1007/BF00333714 – ident: e_1_2_10_1_224_1 doi: 10.1126/science.278.5341.1251 – ident: e_1_2_10_1_313_1 doi: 10.1007/s10040-014-1121-5 – ident: e_1_2_10_1_182_1 doi: 10.1093/acrefore/9780190228620.013.593 – ident: e_1_2_10_1_30_1 doi: 10.1016/j.jhydrol.2005.07.007 – ident: e_1_2_10_1_232_1 doi: 10.1021/bk-1979-0093.ch025 – ident: e_1_2_10_1_124_1 doi: 10.1002/hyp.13807 – ident: e_1_2_10_1_191_1 doi: 10.1016/j.soilbio.2009.02.031 – ident: e_1_2_10_1_51_1 doi: 10.1007/978-0-387-73563-4_5 – ident: e_1_2_10_1_118_1 doi: 10.1007/s10533-004-4322-5 – ident: e_1_2_10_1_308_1 doi: 10.5194/hess-23-4825-2019 – ident: e_1_2_10_1_41_1 doi: 10.1016/0022-1694(90)90114-D – ident: e_1_2_10_1_225_1 doi: 10.1002/2014RG000465 – ident: e_1_2_10_1_157_1 doi: 10.5194/hess-20-299-2016 – ident: e_1_2_10_1_90_1 doi: 10.1016/j.chemgeo.2018.05.009 – ident: e_1_2_10_1_251_1 doi: 10.1029/1999WR900210 – ident: e_1_2_10_1_253_1 doi: 10.1016/j.envpol.2010.08.014 – ident: e_1_2_10_1_58_1 doi: 10.1038/ngeo722 – ident: e_1_2_10_1_294_1 doi: 10.1016/0167-8809(94)00558-V – ident: e_1_2_10_1_220_1 doi: 10.1016/j.ecolind.2020.106321 – ident: e_1_2_10_1_34_1 doi: 10.1016/S0022-1694(01)00421-8 – ident: e_1_2_10_1_4_1 doi: 10.1002/2016WR019448 – ident: e_1_2_10_1_37_1 doi: 10.5194/hess-4-203-2000 – ident: e_1_2_10_1_270_1 doi: 10.1029/2018WR022643 – ident: e_1_2_10_1_175_1 doi: 10.1016/j.earscirev.2016.09.001 – ident: e_1_2_10_1_151_1 doi: 10.1002/9780470691854.ch12 – ident: e_1_2_10_1_311_1 doi: 10.1029/2001WR001118 – volume-title: SWAT (Soil and water assessment tool) year: 1994 ident: e_1_2_10_1_7_1 – ident: e_1_2_10_1_43_1 doi: 10.1080/10643380801977966 – ident: e_1_2_10_1_141_1 doi: 10.1016/j.gca.2018.05.009 – ident: e_1_2_10_1_318_1 doi: 10.1021/acs.est.8b01123 – ident: e_1_2_10_1_79_1 doi: 10.1890/070062 – ident: e_1_2_10_1_142_1 doi: 10.1016/j.gca.2018.02.028 – ident: e_1_2_10_1_213_1 doi: 10.1016/j.advwatres.2016.07.003 – ident: e_1_2_10_1_208_1 doi: 10.1146/annurev.mi.03.100149.002103 – volume: 6 issue: 246 year: 2019 ident: e_1_2_10_1_6_1 article-title: Does stream water composition at Sleepers River in Vermont reflect dynamic changes in soils during recovery from acidification? publication-title: Frontiers in Earth Science – ident: e_1_2_10_1_115_1 doi: 10.1038/s41586-018-0463-x – ident: e_1_2_10_1_152_1 doi: 10.2134/jeq2014.04.0163 – ident: e_1_2_10_1_50_1 doi: 10.1029/2019WR026695 – ident: e_1_2_10_1_206_1 doi: 10.3389/fevo.2019.00516 – ident: e_1_2_10_1_68_1 doi: 10.1021/ac020113w – ident: e_1_2_10_1_107_1 doi: 10.1002/2013RG000443 – ident: e_1_2_10_1_155_1 doi: 10.1029/2008WR006912 – ident: e_1_2_10_1_87_1 doi: 10.1016/j.jhydrol.2016.03.026 – ident: e_1_2_10_1_197_1 doi: 10.1016/j.jhydrol.2006.04.020 – ident: e_1_2_10_1_339_1 doi: 10.1515/9781501508462-014 – ident: e_1_2_10_1_25_1 doi: 10.1146/annurev.earth.36.031207.124210 – ident: e_1_2_10_1_324_1 doi: 10.1073/pnas.1411723111 – volume: 31 start-page: 1 year: 1995 ident: e_1_2_10_1_322_1 article-title: Chemical weathering rates of silicate minerals: An overview publication-title: Chemical Weathering Rates of Silicate Minerals – ident: e_1_2_10_1_301_1 doi: 10.1038/s41561-019-0526-0 – ident: e_1_2_10_1_216_1 doi: 10.1029/WR026i007p01465 – ident: e_1_2_10_1_267_1 doi: 10.5194/hess-18-4751-2014 – ident: e_1_2_10_1_312_1 doi: 10.1029/2018JG004956 – ident: e_1_2_10_1_14_1 doi: 10.1002/2016GL069690 – ident: e_1_2_10_1_143_1 doi: 10.5194/hess-10-873-2006 – ident: e_1_2_10_1_244_1 doi: 10.1029/2018JG004981 – ident: e_1_2_10_1_309_1 doi: 10.1371/journal.pone.0106922 – ident: e_1_2_10_1_32_1 doi: 10.2136/vzj2018.08.0153 – ident: e_1_2_10_1_122_1 doi: 10.1029/2000WR900290 – ident: e_1_2_10_1_137_1 doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – ident: e_1_2_10_1_117_1 doi: 10.1038/s41598-019-40819-9 – ident: e_1_2_10_1_145_1 doi: 10.1109/TKDE.2017.2720168 – ident: e_1_2_10_1_164_1 doi: 10.1073/pnas.1816892116 – ident: e_1_2_10_1_12_1 doi: 10.1021/es501060d – ident: e_1_2_10_1_46_1 doi: 10.2475/ajs.299.1.1 – ident: e_1_2_10_1_278_1 doi: 10.1016/j.jhydrol.2015.02.013 – volume: 17 issue: 2 year: 2003 ident: e_1_2_10_1_289_1 article-title: Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans publication-title: Global Biogeochemical Cycles – ident: e_1_2_10_1_59_1 doi: 10.1556/168.2015.16.2.11 – ident: e_1_2_10_1_230_1 doi: 10.1029/WR005i002p00438 – ident: e_1_2_10_1_262_1 doi: 10.1029/WR026i012p02949 – ident: e_1_2_10_1_10_1 doi: 10.1029/2005WR004387 – ident: e_1_2_10_1_171_1 doi: 10.1038/ngeo2947 – ident: e_1_2_10_1_65_1 doi: 10.1007/BF00329030 – ident: e_1_2_10_1_23_1 doi: 10.1038/nclimate2246 – ident: e_1_2_10_1_149_1 doi: 10.4319/lo.2002.47.5.1380 – ident: e_1_2_10_1_57_1 doi: 10.1128/mBio.01318-19 – ident: e_1_2_10_1_218_1 doi: 10.1016/0022-1694(90)90122-E – ident: e_1_2_10_1_314_1 doi: 10.1016/j.gca.2017.04.019 – ident: e_1_2_10_1_82_1 doi: 10.1029/2018WR023903 – ident: e_1_2_10_1_336_1 doi: 10.1021/acs.est.0c01340 – ident: e_1_2_10_1_237_1 doi: 10.1038/s41586-019-0912-1 – ident: e_1_2_10_1_331_1 doi: 10.1038/s41467-018-04971-6 – ident: e_1_2_10_1_252_1 doi: 10.1029/2017GB005798 – ident: e_1_2_10_1_329_1 doi: 10.1002/esp.4434 |
SSID | ssj0001105395 |
Score | 2.4696605 |
Snippet | Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e1495 |
SubjectTerms | Biogeochemistry Catchment scale catchment science Catchments Climate Columns (structural) critical zone Data Data collection Data integration Geochemistry Geokemi Geology Headwaters Hydrology Integration Intersections Isotopes Model testing Moisture content Oceanografi, hydrologi, vattenresurser Oceanography, Hydrology, Water Resources Reaction kinetics shallow and deep hypothesis Solutes Theories Tracers Transit time Water content Watersheds |
Title | Toward catchment hydro‐biogeochemical theories |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1495 https://www.proquest.com/docview/2471059840 https://res.slu.se/id/publ/109736 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60vehBfGK1lkUEvazdzWZfeCpqKWJFsMXelmQ3sUJppQ_Emz_B3-gvcSbbJyh42hwy2WWyyXwzyXwDcBbLVBPvl42mSdrcj10bcZy2s9iN0kiHynUowbn5EDTa_K7jd9bgapYLk_NDzANutDLMfk0LXMhRdUEa-i7G7JLw_ToUKbWWiPMZf1wEWBA5eKbqCkMUbKOzHs2YhRxWnUuv2qMlkJkTh65iVmN06tuwNUWLVi2f3h1YU_1d2FziENwDp2Uuvlop7qldCvVZ3Y9sOPj-_JKvgxdFBbEMI4BlUhbRL96Hdv22dd2wp2UQ7NQLXd_WmfYyRgdiQeCkGSKUKJYiDHyPa0_ImHN0JgPlOzwLVJhmLgooz0dFY9ONpHcAhf6grw7BipWrIs2FirXDhUhxGK2pTk2IQioTJbiYKSNJpxzhVKqil-TsxiwhvSWktxKczru-5cQYv3UqzzSaTNfGKGFoDxHUoWdZgvNcy_MRiOx61JtIMaRHMlLmhNwL8MPMNPz9quS51mLUOPp_12PYYHRFxURUylAYDyfqBDHGWFbMv1SBYu2mef_0A-OIz5Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagH8YnVqosIelm7m82-wEsRpWpbPLTYW9hHYoXSSh-IN3-Cv9Ff4kx2-wIFT5tDJrtMdjLfTJJvAM7DOFHE-2Wia4pN7oa2iThOmWloB0mgfGlbdMG50fRqbf7QcTsFuJ7ehcn4IWYJN7IMvV6TgVNCujJnDX2PxuyKAP4KrHKP-WSWjD_NMywIHRxddoUhDDYxWg-m1EIWq8yklx3SAsrMmEOXQav2OndbsJnDRaOaze82FGR_BzYWSAR3wWrpk69Ggotql3J9RvcjHQ6-P7_i18GLpIpYmhLA0HcWMTDeg_bdbeumZuZ1EMzE8W3XVKlyUkY7Yp5nJSlClCCMI99zHa6cKA45x2jSk67FU0_6SWqjgHRc1DQ27SB29qHYH_TlARihtGWgeCRDZfEoSnAYpahQjY9CMo1KcDlVhkhyknCqVdETGb0xE6Q3QXorwdms61vGjPFbp_JUoyI3jpFg6BAR1WFoWYKLTMuzEYjtetSbxNGQHmIk9Ra54-GH6Wn4-1Xiudpi1Dj8f9dTWKu1GnVRv28-HsE6o_MqOr1ShuJ4OJHHCDjG8Yn-r34Al2bRbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qBdGD-MRq1UUEvazdR_aFp6KW-io9tNhb2N0kViht6QPx5k_wN_pLnMn2CQqeNocku0x2Mt9MMt8AnEdJqoj3y0TTlJjMi2wTcZwyRWSHaagCaVuU4Pxc86tN9tDyWjm4nubCZPwQs4AbaYber0nB-0KV5qSh7_HIuSJ8vwKr-rCPaJ1ZfR5gQeTg6qorDqJgE531cMosZDml2ehle7QAMjPi0GXMqo1OZQs2J2jRKGfLuw052d2BjQUOwV2wGvriq5HintqmUJ_R_hCD3vfnV_LWe5VUEEszAhg6ZRH94j1oVu4aN1VzUgbBTN3A9kwllCscOhDzfSsViFDCKIkD33OZcuMkYgydSV96FhO-DFJh4wDpeihobNph4u5DvtvrygMwImnLULFYRspicZziNEpRnZoAB0kRF-ByKgyeTjjCqVRFh2fsxg4nuXGSWwHOZl37GTHGb52KU4nyiW4MuYP2EEEdepYFuMikPJuByK6HnXESD-jBh1KfkLs-fphehr9fxV_KDYcah__vegpr9dsKf7qvPR7BukO3VXRwpQj50WAsjxFujJIT_Vv9AImG0KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+catchment+hydro-biogeochemical+theories&rft.jtitle=Wiley+interdisciplinary+reviews.+Water&rft.au=Bishop%2C+Kevin&rft.date=2021&rft.issn=2049-1948&rft.eissn=2049-1948&rft.volume=8&rft_id=info:doi/10.1002%2Fwat2.1495&rft.externalDocID=oai_slubar_slu_se_109736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1948&client=summon |