Toward catchment hydro‐biogeochemical theories

Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Water Vol. 8; no. 1; pp. e1495 - n/a
Main Authors Li, Li, Sullivan, Pamela L., Benettin, Paolo, Cirpka, Olaf A., Bishop, Kevin, Brantley, Susan L., Knapp, Julia L. A., Meerveld, Ilja, Rinaldo, Andrea, Seibert, Jan, Wen, Hang, Kirchner, James W.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems. This article is categorized under: Engineering Water > Methods To develop hydro‐biogeochemical theories, we will need to acknowledge the challenge of data scarcity in the era of “big data”, to expand measurements beyond disciplinary boundaries, stream channels, and common places, and to fuse process‐based and data‐driven modeling tools, all within the framework of hypothesis testing.
AbstractList Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.This article is categorized under:Engineering Water > Methods
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems. This article is categorized under: Engineering Water > Methods To develop hydro‐biogeochemical theories, we will need to acknowledge the challenge of data scarcity in the era of “big data”, to expand measurements beyond disciplinary boundaries, stream channels, and common places, and to fuse process‐based and data‐driven modeling tools, all within the framework of hypothesis testing.
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well-mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro-biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human- and climate-induced perturbations. Although integration has started and co-located measurements are well under way, tremendous challenges remain. In particular, even in this era of "big data," we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model-informed data collection strategies and to maximize data usage; (2) adopt a "simple but not simplistic," or fit-for-purpose approach to include essential processes in process-based models; (3) blend the use of process-based and data-driven models in the framework of "theory-guided data science." Within the framework of hypothesis testing, model-data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro-biogeochemistry, but also enable hind- and fore-casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.This article is categorized under:Science of Water > Methods
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems. This article is categorized under: Engineering Water > Methods
Author Brantley, Susan L.
Knapp, Julia L. A.
Li, Li
Meerveld, Ilja
Bishop, Kevin
Sullivan, Pamela L.
Wen, Hang
Seibert, Jan
Kirchner, James W.
Cirpka, Olaf A.
Benettin, Paolo
Rinaldo, Andrea
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-1641-3710
  surname: Li
  fullname: Li, Li
  email: lili@engr.psu.edu
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Pamela L.
  orcidid: 0000-0001-8780-8501
  surname: Sullivan
  fullname: Sullivan, Pamela L.
  organization: Oregon State University
– sequence: 3
  givenname: Paolo
  orcidid: 0000-0001-7556-1417
  surname: Benettin
  fullname: Benettin, Paolo
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Olaf A.
  orcidid: 0000-0003-3509-4118
  surname: Cirpka
  fullname: Cirpka, Olaf A.
  organization: University of Tübingen
– sequence: 5
  givenname: Kevin
  orcidid: 0000-0002-8057-1051
  surname: Bishop
  fullname: Bishop, Kevin
  organization: Swedish University of Agricultural Sciences
– sequence: 6
  givenname: Susan L.
  orcidid: 0000-0002-9574-2693
  surname: Brantley
  fullname: Brantley, Susan L.
  organization: The Pennsylvania State University
– sequence: 7
  givenname: Julia L. A.
  orcidid: 0000-0003-0885-7829
  surname: Knapp
  fullname: Knapp, Julia L. A.
  organization: ETH Zürich
– sequence: 8
  givenname: Ilja
  orcidid: 0000-0002-7547-3270
  surname: Meerveld
  fullname: Meerveld, Ilja
  organization: University of Zurich
– sequence: 9
  givenname: Andrea
  orcidid: 0000-0002-2546-9548
  surname: Rinaldo
  fullname: Rinaldo, Andrea
  organization: University of Tübingen
– sequence: 10
  givenname: Jan
  surname: Seibert
  fullname: Seibert, Jan
  organization: University of Zurich
– sequence: 11
  givenname: Hang
  orcidid: 0000-0001-7358-1625
  surname: Wen
  fullname: Wen, Hang
  organization: The Pennsylvania State University
– sequence: 12
  givenname: James W.
  orcidid: 0000-0001-6577-3619
  surname: Kirchner
  fullname: Kirchner, James W.
  organization: ETH Zürich
BackLink https://res.slu.se/id/publ/109736$$DView record from Swedish Publication Index
BookMark eNp1kMtKAzEYhYNUsNYufIOCKxfT5jozWZbiDQpuKi5DJpNxUqaTmmQo3fkIPqNPYsZWENHVfxbnO5z_nINBa1sNwCWCUwQhnu1kwFNEOTsBQwwpTxCn-eCHPgNj79cQQoQgI5wNAVzZnXTlRMmg6o1uw6Tel85-vL0Xxr5oq2q9MUo2k1Br64z2F-C0ko3X4-Mdgafbm9XiPlk-3j0s5stEkQyxpCorUuIcE5imUJUphDkvZJYyQisiC04pwyTVDNIy1ZkqUQQ0YXmVRYnygozA9JDrd3rbFWLrzEa6vbDSCN90hXT9EV4LBHlG0ghcHYCts6-d9kGsbefa2FFgmsV_eU5hdM0OLuWs905XQpkgg7FtcNI0MUz0U4p-StFPGYnrX8R3lb-8x_SdafT-f6N4nq_wF_EJkSiFsw
CitedBy_id crossref_primary_10_1016_j_jhydrol_2025_132708
crossref_primary_10_1080_02626667_2023_2212167
crossref_primary_10_1029_2020WR029053
crossref_primary_10_1029_2023EF003971
crossref_primary_10_1029_2023WR034948
crossref_primary_10_1029_2023WR035719
crossref_primary_10_3390_ijms25031628
crossref_primary_10_1002_saj2_20705
crossref_primary_10_1029_2021GB007050
crossref_primary_10_1016_j_watres_2022_119490
crossref_primary_10_1002_wat2_1702
crossref_primary_10_1016_j_epsl_2024_119098
crossref_primary_10_1016_j_watres_2022_119295
crossref_primary_10_1029_2022WR033999
crossref_primary_10_1038_s43247_024_01732_w
crossref_primary_10_1021_acs_est_4c02495
crossref_primary_10_1038_s43017_023_00450_9
crossref_primary_10_1002_hyp_14423
crossref_primary_10_1038_s41598_024_76675_5
crossref_primary_10_1021_acs_est_3c07576
crossref_primary_10_5194_hess_27_613_2023
crossref_primary_10_1021_acs_est_2c06675
crossref_primary_10_1029_2022GB007351
crossref_primary_10_5194_hess_25_6437_2021
crossref_primary_10_1016_j_ecolind_2023_110236
crossref_primary_10_1002_hyp_14540
crossref_primary_10_5194_hess_26_5085_2022
crossref_primary_10_1002_hyp_15231
crossref_primary_10_1029_2023CN000226
crossref_primary_10_1016_j_jhydrol_2023_129248
crossref_primary_10_1029_2020WR029528
crossref_primary_10_1038_s44221_024_00351_1
crossref_primary_10_1029_2022WR032314
crossref_primary_10_5194_gmd_15_315_2022
crossref_primary_10_1029_2020WR029207
crossref_primary_10_1029_2024MS004217
crossref_primary_10_1002_hyp_15324
crossref_primary_10_1029_2021GB007047
crossref_primary_10_1029_2022WR033096
crossref_primary_10_5194_bg_22_995_2025
crossref_primary_10_5194_essd_14_3715_2022
crossref_primary_10_1016_j_scitotenv_2023_163178
crossref_primary_10_1029_2022EF002966
crossref_primary_10_5194_bg_20_3353_2023
crossref_primary_10_1029_2023WR035292
crossref_primary_10_1002_hyp_14197
crossref_primary_10_1029_2021WR029931
crossref_primary_10_1088_1748_9326_ac4a9f
crossref_primary_10_1007_s10533_024_01163_x
crossref_primary_10_1029_2022JG007190
crossref_primary_10_1016_j_jhydrol_2023_130388
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126611
crossref_primary_10_1029_2021WR029890
crossref_primary_10_1029_2023JG007532
crossref_primary_10_5194_hess_27_2301_2023
crossref_primary_10_3389_frwa_2021_578608
crossref_primary_10_1002_hyp_14565
crossref_primary_10_1016_j_envsoft_2021_105166
crossref_primary_10_1029_2023WR035940
crossref_primary_10_1029_2024EF005681
crossref_primary_10_1002_hyp_14524
crossref_primary_10_3389_frwa_2022_1003968
crossref_primary_10_3389_frwa_2023_1147561
crossref_primary_10_1029_2024GL111310
crossref_primary_10_1002_hyp_14880
crossref_primary_10_1002_hyp_14683
crossref_primary_10_1088_2515_7620_ad0744
crossref_primary_10_3389_frwa_2024_1456647
crossref_primary_10_1021_acs_est_2c01432
crossref_primary_10_1029_2024GL109624
crossref_primary_10_1016_j_watres_2024_122118
crossref_primary_10_1029_2021WR031665
crossref_primary_10_1029_2021WR030698
crossref_primary_10_1029_2024GB008250
crossref_primary_10_1002_wat2_70015
crossref_primary_10_1016_j_jhydrol_2022_128390
crossref_primary_10_1029_2024WR038567
crossref_primary_10_1038_s44221_024_00202_z
crossref_primary_10_1021_acs_est_0c06783
crossref_primary_10_1029_2023WR036513
crossref_primary_10_1016_j_earscirev_2021_103873
crossref_primary_10_1016_j_ecoleng_2021_106503
crossref_primary_10_5194_bg_18_55_2021
crossref_primary_10_1016_j_geoderma_2023_116569
crossref_primary_10_1038_s41467_024_49598_y
crossref_primary_10_1016_j_scitotenv_2022_156524
crossref_primary_10_1029_2022EA002320
crossref_primary_10_1038_s41558_023_01923_x
crossref_primary_10_1029_2021EF002603
Cites_doi 10.1038/s41561-019-0387-6
10.1029/2009WR007803
10.1016/0016-7037(84)90294-1
10.1002/wat2.1155
10.1016/S0022-1694(99)00059-1
10.1016/0048-9697(95)04971-1
10.1038/ngeo2636
10.5194/hess-22-2881-2018
10.1002/hyp.7835
10.1038/nature13470
10.1038/35000537
10.1073/pnas.1614941114
10.1029/98WR02577
10.1029/2004WR003800
10.1016/j.gca.2013.01.010
10.1016/j.gca.2010.03.036
10.1111/j.1745-6584.2003.tb02434.x
10.1016/j.tree.2005.12.006
10.1126/science.aad1010
10.1016/j.advwatres.2015.09.026
10.1007/s13280-014-0558-z
10.1002/2016WR019080
10.1002/2013WR013670
10.1002/rcm.926
10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N
10.1029/95WR01806
10.1073/pnas.0812721106
10.1002/2017GL072630
10.1073/pnas.1404763111
10.1016/j.epsl.2011.09.040
10.1002/2017WR020709
10.1016/j.envsci.2012.06.004
10.1029/2018GL080005
10.5194/hess-17-1133-2013
10.1029/2007GB002952
10.5194/hess-22-5639-2018
10.1080/02626667.2015.1031761
10.1002/2017GL075619
10.1126/science.1160232
10.1002/2014MS000358
10.1002/hyp.11136
10.1016/S0022-1694(01)00381-X
10.1016/j.gca.2008.04.011
10.1021/es104322q
10.1038/315207a0
10.1002/2016WR020116
10.1016/j.jconhyd.2005.12.011
10.1002/esp.4052
10.1080/02626667.2013.803183
10.1029/WR026i011p02821
10.5194/esd-9-593-2018
10.2166/nh.2012.217
10.1029/97WR01881
10.5194/hess-13-883-2009
10.1021/es404880j
10.1016/0016-7037(68)90100-2
10.1016/B978-0-12-809665-9.09977-8
10.1016/j.gca.2007.10.027
10.1029/2018WR024257
10.1525/elementa.287
10.1016/j.jhydrol.2018.12.065
10.1029/2005WR004362
10.1111/j.1752-1688.2001.tb03630.x
10.1016/j.envsoft.2019.104521
10.1002/2015WR017273
10.1021/acs.est.7b04717
10.1038/nature04514
10.1002/wat2.1436
10.1029/2019GL082447
10.1029/2018WR023736
10.2136/vzj2018.03.0061
10.1111/j.1749-8198.2008.00180.x
10.1126/science.1259855
10.1007/s10661-007-9752-9
10.1002/wrcr.20156
10.1016/j.scitotenv.2015.12.025
10.1029/2000GB001278
10.1016/S0262-4079(16)31050-8
10.1002/2017WR021645
10.1016/j.jhydrol.2005.10.024
10.5194/hess-23-303-2019
10.1175/JHM-D-11-088.1
10.2475/ajs.278.9.1235
10.1126/sciadv.aau6635
10.1029/2019WR026577
10.1002/hyp.10082
10.1002/2015WR018247
10.1126/science.148.3671.754
10.1038/s41598-017-09049-9
10.1515/9781400864874
10.1002/2014WR015707
10.1007/s10021-015-9878-5
10.1016/S0009-2541(01)00314-X
10.1029/2012WR012583
10.1002/hyp.11488
10.1002/hyp.500
10.1029/2012GC004370
10.1016/j.apgeochem.2015.07.005
10.5194/hess-24-2561-2020
10.1002/hyp.9943
10.1016/S0009-2541(99)00031-5
10.1029/2004WR003778
10.1029/2011GL047666
10.1038/nature08930
10.5194/hess-23-405-2019
10.1016/j.gca.2018.04.024
10.1111/gcb.12341
10.1111/nph.16223
10.1002/hyp.7240
10.1002/2013WR015141
10.1016/S0360-1323(03)00080-5
10.1016/j.geomorph.2016.09.027
10.1002/9781119413332.ch10
10.1002/2016WR018935
10.1002/hyp.5108
10.1002/hyp.13753
10.1002/2017WR020835
10.1002/hyp.10310
10.1002/esp.4177
10.1007/s00442-007-0745-8
10.5194/hess-5-1-2001
10.1029/2009WR008818
10.1029/2018WR023665
10.2113/11.4.347
10.1007/s10021-003-0161-9
10.1029/WR026i012p03055
10.1016/j.gca.2014.07.006
10.1029/2004WR003657
10.1016/j.apgeochem.2012.07.008
10.1038/ngeo2943
10.1038/nclimate1419
10.1016/j.biocon.2010.02.013
10.1002/2017WR021654
10.1021/ac010088e
10.1002/esp.3415
10.1002/qj.2414
10.5194/hess-22-1665-2018
10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
10.1016/j.gca.2012.03.021
10.1126/science.1150195
10.1007/s10596-014-9443-x
10.1007/978-3-319-70766-2_6
10.5194/hess-19-3333-2015
10.1002/hyp.5741
10.1038/s41467-019-09922-3
10.1002/2015WR017552
10.1111/gcb.14626
10.1002/grl.50895
10.1016/j.gca.2015.01.035
10.1126/science.aab2210
10.5194/hess-21-3879-2017
10.1016/j.ppees.2017.05.003
10.1029/WR017i005p01419
10.1038/s41598-020-65094-x
10.1002/2017GL074962
10.1038/s43247-020-00039-w
10.1029/2018RG000627
10.1016/j.jconhyd.2016.06.002
10.1002/2015WR017018
10.1111/j.2153-3490.1976.tb00701.x
10.5194/esurf-5-841-2017
10.5194/bg-15-6399-2018
10.1017/S0033822200053078
10.1016/j.chemgeo.2018.06.019
10.1016/j.chemgeo.2016.02.012
10.1002/hyp.7576
10.1515/9781501509797-011
10.1016/j.gca.2005.09.001
10.1002/2016WR019635
10.1016/0016-7037(88)90063-4
10.1038/nature20150
10.1002/hyp.13385
10.1002/2017WR021689
10.1029/2018WR023703
10.1029/JB089iB06p04009
10.1016/0022-1694(85)90167-2
10.1007/s11252-012-0226-7
10.5194/hess-20-279-2016
10.1029/2018RG000633
10.1002/hyp.8201
10.1016/S0016-7037(03)00270-9
10.1002/2016WR019516
10.1146/annurev-arplant-042817-040256
10.1002/hyp.5209
10.3389/fmicb.2014.00480
10.1002/wat2.1348
10.1029/2010WR009827
10.1016/j.gca.2017.08.011
10.1029/2019WR025236
10.2475/10.2016.02
10.1073/pnas.1712381114
10.1002/2016WR019712
10.1038/ngeo2646
10.5194/hess-23-4367-2019
10.1016/j.chemgeo.2016.05.012
10.5194/hess-13-2287-2009
10.1017/S0021859614000021
10.1016/j.neunet.2014.09.003
10.1016/j.chemgeo.2016.08.008
10.1103/PhysRevLett.70.822
10.1021/acs.est.5b01869
10.1016/S0883-2927(02)00031-8
10.1002/2017WR021353
10.1002/2016WR018934
10.1515/9781501512001-014
10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2
10.1016/j.earscirev.2016.06.014
10.5194/hess-24-945-2020
10.1111/nph.13338
10.1007/s10750-011-0854-6
10.1029/2009WR008371
10.1016/j.epsl.2007.07.010
10.1016/j.scitotenv.2017.07.211
10.1007/s12665-013-2281-7
10.1016/j.chemgeo.2016.11.029
10.1016/j.chemgeo.2019.06.023
10.1016/j.chemgeo.2003.03.001
10.1029/2000WR900241
10.1515/9781501509650-009
10.1016/j.gca.2008.09.004
10.1016/j.jhydrol.2019.01.058
10.1002/hyp.7677
10.1016/j.jconhyd.2016.01.005
10.1016/j.earscirev.2013.09.002
10.1038/s41467-020-14411-z
10.1029/1999WR900013
10.1016/0016-7037(85)90140-1
10.1073/pnas.1322700111
10.1002/2015WR016937
10.1016/j.jconhyd.2009.10.006
10.1002/2017WR021902
10.1017/S0263593300011226
10.1029/WR005i006p01353
10.1029/WR019i001p00260
10.1002/hyp.13781
10.1029/2004WR003773
10.2113/gselements.3.5.307
10.1038/ngeo858
10.1007/BF00333714
10.1126/science.278.5341.1251
10.1007/s10040-014-1121-5
10.1093/acrefore/9780190228620.013.593
10.1016/j.jhydrol.2005.07.007
10.1021/bk-1979-0093.ch025
10.1002/hyp.13807
10.1016/j.soilbio.2009.02.031
10.1007/978-0-387-73563-4_5
10.1007/s10533-004-4322-5
10.5194/hess-23-4825-2019
10.1016/0022-1694(90)90114-D
10.1002/2014RG000465
10.5194/hess-20-299-2016
10.1016/j.chemgeo.2018.05.009
10.1029/1999WR900210
10.1016/j.envpol.2010.08.014
10.1038/ngeo722
10.1016/0167-8809(94)00558-V
10.1016/j.ecolind.2020.106321
10.1016/S0022-1694(01)00421-8
10.1002/2016WR019448
10.5194/hess-4-203-2000
10.1029/2018WR022643
10.1016/j.earscirev.2016.09.001
10.1002/9780470691854.ch12
10.1029/2001WR001118
10.1080/10643380801977966
10.1016/j.gca.2018.05.009
10.1021/acs.est.8b01123
10.1890/070062
10.1016/j.gca.2018.02.028
10.1016/j.advwatres.2016.07.003
10.1146/annurev.mi.03.100149.002103
10.1038/s41586-018-0463-x
10.2134/jeq2014.04.0163
10.1029/2019WR026695
10.3389/fevo.2019.00516
10.1021/ac020113w
10.1002/2013RG000443
10.1029/2008WR006912
10.1016/j.jhydrol.2016.03.026
10.1016/j.jhydrol.2006.04.020
10.1515/9781501508462-014
10.1146/annurev.earth.36.031207.124210
10.1073/pnas.1411723111
10.1038/s41561-019-0526-0
10.1029/WR026i007p01465
10.5194/hess-18-4751-2014
10.1029/2018JG004956
10.1002/2016GL069690
10.5194/hess-10-873-2006
10.1029/2018JG004981
10.1371/journal.pone.0106922
10.2136/vzj2018.08.0153
10.1029/2000WR900290
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1038/s41598-019-40819-9
10.1109/TKDE.2017.2720168
10.1073/pnas.1816892116
10.1021/es501060d
10.2475/ajs.299.1.1
10.1016/j.jhydrol.2015.02.013
10.1556/168.2015.16.2.11
10.1029/WR005i002p00438
10.1029/WR026i012p02949
10.1029/2005WR004387
10.1038/ngeo2947
10.1007/BF00329030
10.1038/nclimate2246
10.4319/lo.2002.47.5.1380
10.1128/mBio.01318-19
10.1016/0022-1694(90)90122-E
10.1016/j.gca.2017.04.019
10.1029/2018WR023903
10.1021/acs.est.0c01340
10.1038/s41586-019-0912-1
10.1038/s41467-018-04971-6
10.1029/2017GB005798
10.1002/esp.4434
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID 24P
AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1002/wat2.1495
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Geology
EISSN 2049-1948
EndPage n/a
ExternalDocumentID oai_slubar_slu_se_109736
10_1002_wat2_1495
WAT21495
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DE‐SC0020146; 1904527; 1911967; EAR–1331726; NSF EAR‐1911960; DE‐SC00020146; NSF EAR‐1331726
– fundername: NSF Critical Zone Observatory
  funderid: 1331726; EAR 12‐39285
– fundername: ETH Zurich Postdoctoral Fellowship
– fundername: German Research Foundation
  funderid: SFB 1253/1
GroupedDBID 0R~
1OC
1VH
24P
31~
33P
8-1
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXBN
ACXQS
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AUFTA
AZVAB
BFHJK
BMNLL
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WIH
WIK
WMRSR
WOHZO
WSUWO
WXSBR
WYJ
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
HGLYW
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c3715-fdf3d28230660cd60089ba76534f3ab9445236e504d6e7cd1fdfe358f7d1f18b3
IEDL.DBID 24P
ISSN 2049-1948
IngestDate Thu Aug 21 07:33:01 EDT 2025
Fri Aug 22 20:06:37 EDT 2025
Tue Jul 01 02:10:11 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Wed Jan 22 16:31:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3715-fdf3d28230660cd60089ba76534f3ab9445236e504d6e7cd1fdfe358f7d1f18b3
Notes Funding information
NSF Critical Zone Observatory, Grant/Award Numbers: 1331726, EAR 12‐39285; ETH Zurich Postdoctoral Fellowship; German Research Foundation, Grant/Award Number: SFB 1253/1; National Science Foundation, Grant/Award Numbers: DE‐SC0020146, 1904527, 1911967, EAR–1331726, NSF EAR‐1911960, DE‐SC00020146, NSF EAR‐1331726
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2546-9548
0000-0001-7556-1417
0000-0001-6577-3619
0000-0001-7358-1625
0000-0002-1641-3710
0000-0002-9574-2693
0000-0002-7547-3270
0000-0003-3509-4118
0000-0002-8057-1051
0000-0003-0885-7829
0000-0001-8780-8501
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1495
PQID 2471059840
PQPubID 2034617
PageCount 31
ParticipantIDs swepub_primary_oai_slubar_slu_se_109736
proquest_journals_2471059840
crossref_citationtrail_10_1002_wat2_1495
crossref_primary_10_1002_wat2_1495
wiley_primary_10_1002_wat2_1495_WAT21495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2021
2021-01-00
20210101
2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January/February 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Water
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References e_1_2_10_1_143_1
e_1_2_10_1_189_1
e_1_2_10_1_166_1
Armfield J. R. (e_1_2_10_1_6_1) 2019; 6
e_1_2_10_1_105_1
Rodhe A. (e_1_2_10_1_249_1) 1987
e_1_2_10_1_29_1
e_1_2_10_1_312_1
Drever J. (e_1_2_10_1_75_1) 1995; 31
e_1_2_10_1_120_1
e_1_2_10_1_67_1
e_1_2_10_1_287_1
e_1_2_10_1_21_1
e_1_2_10_1_44_1
e_1_2_10_1_128_1
White A. F. (e_1_2_10_1_322_1) 1995; 31
e_1_2_10_1_82_1
e_1_2_10_1_203_1
e_1_2_10_1_226_1
e_1_2_10_1_241_1
e_1_2_10_1_264_1
e_1_2_10_1_154_1
e_1_2_10_1_177_1
e_1_2_10_1_116_1
e_1_2_10_1_192_1
e_1_2_10_1_324_1
e_1_2_10_1_18_1
e_1_2_10_1_131_1
e_1_2_10_1_301_1
e_1_2_10_1_56_1
e_1_2_10_1_298_1
e_1_2_10_1_79_1
Velde Y. (e_1_2_10_1_306_1) 2012; 48
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_309_1
e_1_2_10_1_139_1
e_1_2_10_1_94_1
e_1_2_10_1_237_1
e_1_2_10_1_290_1
e_1_2_10_1_71_1
e_1_2_10_1_214_1
e_1_2_10_1_252_1
e_1_2_10_1_275_1
e_1_2_10_1_142_1
e_1_2_10_1_165_1
e_1_2_10_1_188_1
e_1_2_10_1_104_1
e_1_2_10_1_127_1
e_1_2_10_1_180_1
e_1_2_10_1_334_1
Arnold J. (e_1_2_10_1_7_1) 1994
e_1_2_10_1_311_1
e_1_2_10_1_240_1
e_1_2_10_1_286_1
e_1_2_10_1_68_1
e_1_2_10_1_22_1
e_1_2_10_1_319_1
e_1_2_10_1_83_1
e_1_2_10_1_248_1
e_1_2_10_1_225_1
Brunner I. (e_1_2_10_1_60_1) 2015; 6
e_1_2_10_1_263_1
e_1_2_10_1_130_1
e_1_2_10_1_153_1
e_1_2_10_1_176_1
e_1_2_10_1_199_1
e_1_2_10_1_138_1
e_1_2_10_1_191_1
e_1_2_10_1_115_1
e_1_2_10_1_8_1
e_1_2_10_1_300_1
e_1_2_10_1_323_1
e_1_2_10_1_19_1
e_1_2_10_1_34_1
e_1_2_10_1_251_1
e_1_2_10_1_297_1
e_1_2_10_1_57_1
Zarnetske J. P. (e_1_2_10_1_335_1) 2011; 116
Linsley R. K. (e_1_2_10_1_181_1) 1958
e_1_2_10_1_308_1
e_1_2_10_1_11_1
e_1_2_10_1_72_1
e_1_2_10_1_95_1
e_1_2_10_1_213_1
e_1_2_10_1_236_1
e_1_2_10_1_259_1
e_1_2_10_1_274_1
e_1_2_10_1_209_1
e_1_2_10_1_164_1
e_1_2_10_1_187_1
e_1_2_10_1_149_1
e_1_2_10_1_310_1
e_1_2_10_1_333_1
e_1_2_10_1_126_1
e_1_2_10_1_103_1
e_1_2_10_1_27_1
e_1_2_10_1_141_1
e_1_2_10_1_262_1
e_1_2_10_1_285_1
e_1_2_10_1_318_1
e_1_2_10_1_42_1
e_1_2_10_1_65_1
e_1_2_10_1_88_1
e_1_2_10_1_201_1
e_1_2_10_1_224_1
e_1_2_10_1_247_1
Wen H. (e_1_2_10_1_317_1) 2020
e_1_2_10_1_80_1
e_1_2_10_1_175_1
e_1_2_10_1_198_1
e_1_2_10_1_9_1
e_1_2_10_1_137_1
e_1_2_10_1_114_1
e_1_2_10_1_190_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_1_152_1
e_1_2_10_1_250_1
e_1_2_10_1_273_1
e_1_2_10_1_296_1
e_1_2_10_1_307_1
e_1_2_10_1_31_1
e_1_2_10_1_77_1
e_1_2_10_1_54_1
e_1_2_10_1_258_1
e_1_2_10_1_212_1
e_1_2_10_1_92_1
e_1_2_10_1_235_1
e_1_2_10_1_186_1
e_1_2_10_1_148_1
e_1_2_10_1_208_1
e_1_2_10_1_102_1
e_1_2_10_1_125_1
Suchet P. A. (e_1_2_10_1_289_1) 2003; 17
e_1_2_10_1_28_1
e_1_2_10_1_140_1
e_1_2_10_1_163_1
e_1_2_10_1_261_1
e_1_2_10_1_89_1
e_1_2_10_1_20_1
e_1_2_10_1_66_1
e_1_2_10_1_43_1
e_1_2_10_1_223_1
e_1_2_10_1_269_1
e_1_2_10_1_81_1
e_1_2_10_1_246_1
e_1_2_10_1_200_1
e_1_2_10_1_197_1
e_1_2_10_1_159_1
e_1_2_10_1_219_1
e_1_2_10_1_136_1
e_1_2_10_1_113_1
White A. F. (e_1_2_10_1_321_1) 1995; 31
e_1_2_10_1_17_1
e_1_2_10_1_151_1
e_1_2_10_1_174_1
e_1_2_10_1_2_1
e_1_2_10_1_329_1
Blum A. E. (e_1_2_10_1_45_1) 1995; 31
e_1_2_10_1_78_1
e_1_2_10_1_55_1
e_1_2_10_1_32_1
e_1_2_10_1_70_1
e_1_2_10_1_93_1
e_1_2_10_1_257_1
e_1_2_10_1_211_1
e_1_2_10_1_295_1
Michaelis L. (e_1_2_10_1_202_1) 1913; 49
e_1_2_10_1_147_1
e_1_2_10_1_207_1
e_1_2_10_1_124_1
e_1_2_10_1_101_1
e_1_2_10_1_185_1
e_1_2_10_1_331_1
e_1_2_10_1_162_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_260_1
e_1_2_10_1_316_1
e_1_2_10_1_109_1
e_1_2_10_1_63_1
e_1_2_10_1_86_1
e_1_2_10_1_339_1
Steefel C. I. (e_1_2_10_1_284_1) 2007
e_1_2_10_1_40_1
e_1_2_10_1_245_1
e_1_2_10_1_268_1
e_1_2_10_1_222_1
e_1_2_10_1_283_1
e_1_2_10_1_158_1
e_1_2_10_1_218_1
e_1_2_10_1_320_1
e_1_2_10_1_135_1
e_1_2_10_1_112_1
e_1_2_10_1_150_1
e_1_2_10_1_196_1
e_1_2_10_1_173_1
e_1_2_10_1_328_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_271_1
e_1_2_10_1_52_1
e_1_2_10_1_98_1
e_1_2_10_1_3_1
e_1_2_10_1_256_1
e_1_2_10_1_279_1
e_1_2_10_1_90_1
e_1_2_10_1_233_1
e_1_2_10_1_294_1
e_1_2_10_1_210_1
e_1_2_10_1_146_1
e_1_2_10_1_169_1
e_1_2_10_1_206_1
e_1_2_10_1_229_1
e_1_2_10_1_100_1
e_1_2_10_1_123_1
e_1_2_10_1_161_1
e_1_2_10_1_184_1
e_1_2_10_1_49_1
e_1_2_10_1_330_1
Yeh G.‐T. (e_1_2_10_1_332_1) 2006
Velde Y. (e_1_2_10_1_305_1) 2010; 46
e_1_2_10_1_26_1
e_1_2_10_1_315_1
e_1_2_10_1_108_1
e_1_2_10_1_41_1
e_1_2_10_1_87_1
e_1_2_10_1_338_1
e_1_2_10_1_64_1
e_1_2_10_1_267_1
e_1_2_10_1_244_1
e_1_2_10_1_282_1
e_1_2_10_1_221_1
e_1_2_10_1_157_1
e_1_2_10_1_217_1
e_1_2_10_1_111_1
e_1_2_10_1_134_1
e_1_2_10_1_172_1
e_1_2_10_1_195_1
e_1_2_10_1_38_1
e_1_2_10_1_342_1
e_1_2_10_1_304_1
e_1_2_10_1_327_1
e_1_2_10_1_15_1
e_1_2_10_1_270_1
e_1_2_10_1_53_1
e_1_2_10_1_76_1
e_1_2_10_1_99_1
e_1_2_10_1_30_1
e_1_2_10_1_119_1
e_1_2_10_1_4_1
e_1_2_10_1_278_1
e_1_2_10_1_91_1
e_1_2_10_1_232_1
e_1_2_10_1_255_1
e_1_2_10_1_293_1
e_1_2_10_1_145_1
e_1_2_10_1_205_1
e_1_2_10_1_228_1
e_1_2_10_1_168_1
e_1_2_10_1_314_1
e_1_2_10_1_122_1
e_1_2_10_1_160_1
e_1_2_10_1_183_1
e_1_2_10_1_23_1
e_1_2_10_1_46_1
e_1_2_10_1_69_1
e_1_2_10_1_337_1
e_1_2_10_1_107_1
e_1_2_10_1_61_1
e_1_2_10_1_84_1
e_1_2_10_1_220_1
e_1_2_10_1_243_1
e_1_2_10_1_266_1
e_1_2_10_1_281_1
Sherman L. K. (e_1_2_10_1_272_1) 1932; 108
e_1_2_10_1_156_1
e_1_2_10_1_179_1
e_1_2_10_1_216_1
e_1_2_10_1_239_1
e_1_2_10_1_133_1
e_1_2_10_1_171_1
e_1_2_10_1_303_1
e_1_2_10_1_341_1
Lasaga A. C. (e_1_2_10_1_170_1) 1998
e_1_2_10_1_110_1
e_1_2_10_1_194_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_58_1
e_1_2_10_1_326_1
e_1_2_10_1_5_1
e_1_2_10_1_118_1
e_1_2_10_1_96_1
e_1_2_10_1_73_1
e_1_2_10_1_50_1
e_1_2_10_1_231_1
e_1_2_10_1_254_1
e_1_2_10_1_277_1
e_1_2_10_1_292_1
e_1_2_10_1_144_1
e_1_2_10_1_167_1
e_1_2_10_1_227_1
e_1_2_10_1_336_1
e_1_2_10_1_313_1
e_1_2_10_1_121_1
e_1_2_10_1_182_1
e_1_2_10_1_24_1
e_1_2_10_1_47_1
e_1_2_10_1_288_1
e_1_2_10_1_106_1
e_1_2_10_1_129_1
e_1_2_10_1_85_1
e_1_2_10_1_62_1
e_1_2_10_1_204_1
e_1_2_10_1_280_1
e_1_2_10_1_265_1
e_1_2_10_1_242_1
e_1_2_10_1_155_1
e_1_2_10_1_178_1
e_1_2_10_1_238_1
e_1_2_10_1_302_1
e_1_2_10_1_325_1
e_1_2_10_1_340_1
e_1_2_10_1_132_1
e_1_2_10_1_193_1
e_1_2_10_1_13_1
e_1_2_10_1_59_1
e_1_2_10_1_36_1
e_1_2_10_1_299_1
e_1_2_10_1_74_1
e_1_2_10_1_97_1
Radke A. G. (e_1_2_10_1_234_1) 2019; 7
e_1_2_10_1_117_1
e_1_2_10_1_51_1
e_1_2_10_1_215_1
e_1_2_10_1_291_1
e_1_2_10_1_230_1
e_1_2_10_1_276_1
e_1_2_10_1_253_1
References_xml – ident: e_1_2_10_1_231_1
  doi: 10.1038/s41561-019-0387-6
– ident: e_1_2_10_1_15_1
  doi: 10.1029/2009WR007803
– ident: e_1_2_10_1_111_1
  doi: 10.1016/0016-7037(84)90294-1
– ident: e_1_2_10_1_120_1
  doi: 10.1002/wat2.1155
– ident: e_1_2_10_1_150_1
  doi: 10.1016/S0022-1694(99)00059-1
– ident: e_1_2_10_1_160_1
  doi: 10.1016/0048-9697(95)04971-1
– ident: e_1_2_10_1_132_1
  doi: 10.1038/ngeo2636
– ident: e_1_2_10_1_21_1
  doi: 10.5194/hess-22-2881-2018
– ident: e_1_2_10_1_119_1
  doi: 10.1002/hyp.7835
– ident: e_1_2_10_1_276_1
– ident: e_1_2_10_1_203_1
  doi: 10.1038/nature13470
– volume: 108
  start-page: 501
  year: 1932
  ident: e_1_2_10_1_272_1
  article-title: Streamflow from rainfall by the unit‐graph method
  publication-title: Engineering News‐Record
– ident: e_1_2_10_1_159_1
  doi: 10.1038/35000537
– ident: e_1_2_10_1_106_1
  doi: 10.1073/pnas.1614941114
– ident: e_1_2_10_1_325_1
  doi: 10.1029/98WR02577
– ident: e_1_2_10_1_297_1
  doi: 10.1029/2004WR003800
– year: 2020
  ident: e_1_2_10_1_317_1
  article-title: Deepening roots can enhance carbonate weathering via amplifying CO2‐rich recharge
  publication-title: Biogeosciences
– ident: e_1_2_10_1_257_1
  doi: 10.1016/j.gca.2013.01.010
– ident: e_1_2_10_1_136_1
  doi: 10.1016/j.gca.2010.03.036
– ident: e_1_2_10_1_62_1
  doi: 10.1111/j.1745-6584.2003.tb02434.x
– ident: e_1_2_10_1_147_1
  doi: 10.1016/j.tree.2005.12.006
– ident: e_1_2_10_1_129_1
  doi: 10.1126/science.aad1010
– ident: e_1_2_10_1_214_1
  doi: 10.1016/j.advwatres.2015.09.026
– ident: e_1_2_10_1_88_1
  doi: 10.1007/s13280-014-0558-z
– ident: e_1_2_10_1_184_1
  doi: 10.1002/2016WR019080
– ident: e_1_2_10_1_265_1
  doi: 10.1002/2013WR013670
– ident: e_1_2_10_1_288_1
  doi: 10.1002/rcm.926
– ident: e_1_2_10_1_328_1
  doi: 10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N
– ident: e_1_2_10_1_250_1
  doi: 10.1029/95WR01806
– ident: e_1_2_10_1_277_1
  doi: 10.1073/pnas.0812721106
– ident: e_1_2_10_1_212_1
  doi: 10.1002/2017GL072630
– volume: 46
  issue: 11
  year: 2010
  ident: e_1_2_10_1_305_1
  article-title: Nitrate response of a lowland catchment: On the relation between stream concentration and travel time distribution dynamics
  publication-title: Water Resources Research
– ident: e_1_2_10_1_239_1
  doi: 10.1073/pnas.1404763111
– ident: e_1_2_10_1_189_1
  doi: 10.1016/j.epsl.2011.09.040
– ident: e_1_2_10_1_167_1
  doi: 10.1002/2017WR020709
– ident: e_1_2_10_1_200_1
  doi: 10.1016/j.envsci.2012.06.004
– volume-title: The origin of Streamwater traced by Oxygen‐18
  year: 1987
  ident: e_1_2_10_1_249_1
– ident: e_1_2_10_1_334_1
  doi: 10.1029/2018GL080005
– ident: e_1_2_10_1_222_1
  doi: 10.5194/hess-17-1133-2013
– ident: e_1_2_10_1_235_1
  doi: 10.1029/2007GB002952
– ident: e_1_2_10_1_271_1
  doi: 10.5194/hess-22-5639-2018
– volume: 31
  start-page: 407
  issue: 1
  year: 1995
  ident: e_1_2_10_1_321_1
  article-title: Chemical weathering rates of silicate minerals in soils
  publication-title: Reviews in Mineralogy and Geochemistry
– ident: e_1_2_10_1_31_1
  doi: 10.1080/02626667.2015.1031761
– ident: e_1_2_10_1_84_1
  doi: 10.1002/2017GL075619
– ident: e_1_2_10_1_299_1
  doi: 10.1126/science.1160232
– ident: e_1_2_10_1_273_1
  doi: 10.1002/2014MS000358
– ident: e_1_2_10_1_77_1
  doi: 10.1002/hyp.11136
– ident: e_1_2_10_1_16_1
  doi: 10.1016/S0022-1694(01)00381-X
– ident: e_1_2_10_1_227_1
  doi: 10.1016/j.gca.2008.04.011
– ident: e_1_2_10_1_320_1
  doi: 10.1021/es104322q
– ident: e_1_2_10_1_85_1
  doi: 10.1038/315207a0
– ident: e_1_2_10_1_228_1
  doi: 10.1002/2016WR020116
– ident: e_1_2_10_1_266_1
  doi: 10.1016/j.jconhyd.2005.12.011
– ident: e_1_2_10_1_243_1
  doi: 10.1002/esp.4052
– ident: e_1_2_10_1_121_1
  doi: 10.1080/02626667.2013.803183
– ident: e_1_2_10_1_195_1
  doi: 10.1029/WR026i011p02821
– ident: e_1_2_10_1_8_1
  doi: 10.5194/esd-9-593-2018
– ident: e_1_2_10_1_211_1
  doi: 10.2166/nh.2012.217
– ident: e_1_2_10_1_81_1
  doi: 10.1029/97WR01881
– ident: e_1_2_10_1_268_1
  doi: 10.5194/hess-13-883-2009
– ident: e_1_2_10_1_74_1
  doi: 10.1021/es404880j
– ident: e_1_2_10_1_112_1
  doi: 10.1016/0016-7037(68)90100-2
– ident: e_1_2_10_1_179_1
  doi: 10.1016/B978-0-12-809665-9.09977-8
– ident: e_1_2_10_1_177_1
  doi: 10.1016/j.gca.2007.10.027
– ident: e_1_2_10_1_337_1
  doi: 10.1029/2018WR024257
– ident: e_1_2_10_1_38_1
  doi: 10.1525/elementa.287
– ident: e_1_2_10_1_144_1
  doi: 10.1016/j.jhydrol.2018.12.065
– ident: e_1_2_10_1_154_1
  doi: 10.1029/2005WR004362
– volume: 31
  start-page: 291
  issue: 1
  year: 1995
  ident: e_1_2_10_1_45_1
  article-title: Feldspar dissolution kinetics
  publication-title: Reviews in Mineralogy and Geochemistry
– ident: e_1_2_10_1_259_1
  doi: 10.1111/j.1752-1688.2001.tb03630.x
– ident: e_1_2_10_1_42_1
  doi: 10.1016/j.envsoft.2019.104521
– ident: e_1_2_10_1_245_1
  doi: 10.1002/2015WR017273
– ident: e_1_2_10_1_13_1
  doi: 10.1021/acs.est.7b04717
– ident: e_1_2_10_1_161_1
– ident: e_1_2_10_1_73_1
  doi: 10.1038/nature04514
– ident: e_1_2_10_1_342_1
  doi: 10.1002/wat2.1436
– ident: e_1_2_10_1_67_1
  doi: 10.1029/2019GL082447
– ident: e_1_2_10_1_330_1
  doi: 10.1029/2018WR023736
– ident: e_1_2_10_1_125_1
  doi: 10.2136/vzj2018.03.0061
– ident: e_1_2_10_1_3_1
  doi: 10.1111/j.1749-8198.2008.00180.x
– ident: e_1_2_10_1_286_1
  doi: 10.1126/science.1259855
– ident: e_1_2_10_1_188_1
  doi: 10.1007/s10661-007-9752-9
– ident: e_1_2_10_1_35_1
  doi: 10.1002/wrcr.20156
– ident: e_1_2_10_1_223_1
  doi: 10.1016/j.scitotenv.2015.12.025
– ident: e_1_2_10_1_5_1
  doi: 10.1029/2000GB001278
– ident: e_1_2_10_1_215_1
  doi: 10.1016/S0262-4079(16)31050-8
– ident: e_1_2_10_1_185_1
  doi: 10.1002/2017WR021645
– ident: e_1_2_10_1_280_1
  doi: 10.1016/j.jhydrol.2005.10.024
– ident: e_1_2_10_1_158_1
  doi: 10.5194/hess-23-303-2019
– ident: e_1_2_10_1_183_1
  doi: 10.1175/JHM-D-11-088.1
– ident: e_1_2_10_1_24_1
  doi: 10.2475/ajs.278.9.1235
– ident: e_1_2_10_1_66_1
  doi: 10.1126/sciadv.aau6635
– ident: e_1_2_10_1_241_1
  doi: 10.1029/2019WR026577
– ident: e_1_2_10_1_33_1
  doi: 10.1002/hyp.10082
– ident: e_1_2_10_1_18_1
  doi: 10.1002/2015WR018247
– ident: e_1_2_10_1_69_1
  doi: 10.1126/science.148.3671.754
– ident: e_1_2_10_1_64_1
  doi: 10.1038/s41598-017-09049-9
– start-page: 811
  volume-title: Kinetic theory in the earth sciences
  year: 1998
  ident: e_1_2_10_1_170_1
  doi: 10.1515/9781400864874
– ident: e_1_2_10_1_104_1
  doi: 10.1002/2014WR015707
– ident: e_1_2_10_1_229_1
  doi: 10.1007/s10021-015-9878-5
– ident: e_1_2_10_1_233_1
  doi: 10.1016/S0009-2541(01)00314-X
– ident: e_1_2_10_1_258_1
  doi: 10.1029/2012WR012583
– ident: e_1_2_10_1_341_1
  doi: 10.1002/hyp.11488
– ident: e_1_2_10_1_28_1
  doi: 10.1002/hyp.500
– ident: e_1_2_10_1_108_1
  doi: 10.1029/2012GC004370
– ident: e_1_2_10_1_109_1
  doi: 10.1016/j.apgeochem.2015.07.005
– ident: e_1_2_10_1_163_1
  doi: 10.5194/hess-24-2561-2020
– ident: e_1_2_10_1_98_1
  doi: 10.1002/hyp.9943
– ident: e_1_2_10_1_91_1
  doi: 10.1016/S0009-2541(99)00031-5
– ident: e_1_2_10_1_298_1
  doi: 10.1029/2004WR003778
– ident: e_1_2_10_1_49_1
  doi: 10.1029/2011GL047666
– ident: e_1_2_10_1_47_1
  doi: 10.1038/nature08930
– ident: e_1_2_10_1_254_1
  doi: 10.5194/hess-23-405-2019
– ident: e_1_2_10_1_315_1
  doi: 10.1016/j.gca.2018.04.024
– ident: e_1_2_10_1_255_1
  doi: 10.1111/gcb.12341
– ident: e_1_2_10_1_326_1
  doi: 10.1111/nph.16223
– ident: e_1_2_10_1_296_1
  doi: 10.1002/hyp.7240
– ident: e_1_2_10_1_196_1
  doi: 10.1002/2013WR015141
– ident: e_1_2_10_1_210_1
  doi: 10.1016/S0360-1323(03)00080-5
– ident: e_1_2_10_1_55_1
  doi: 10.1016/j.geomorph.2016.09.027
– ident: e_1_2_10_1_290_1
  doi: 10.1002/9781119413332.ch10
– ident: e_1_2_10_1_174_1
  doi: 10.1002/2016WR018935
– ident: e_1_2_10_1_303_1
– ident: e_1_2_10_1_153_1
  doi: 10.1002/hyp.5108
– ident: e_1_2_10_1_165_1
  doi: 10.1002/hyp.13753
– volume: 48
  issue: 6
  year: 2012
  ident: e_1_2_10_1_306_1
  article-title: Quantifying catchment‐scale mixing and its effect on time‐varying travel time distributions
  publication-title: Water Resources Research
– ident: e_1_2_10_1_100_1
  doi: 10.1002/2017WR020835
– ident: e_1_2_10_1_97_1
  doi: 10.1002/hyp.10310
– ident: e_1_2_10_1_172_1
  doi: 10.1002/esp.4177
– ident: e_1_2_10_1_219_1
  doi: 10.1007/s00442-007-0745-8
– ident: e_1_2_10_1_27_1
  doi: 10.5194/hess-5-1-2001
– ident: e_1_2_10_1_134_1
  doi: 10.1029/2009WR008818
– ident: e_1_2_10_1_310_1
  doi: 10.1029/2018WR023665
– ident: e_1_2_10_1_9_1
  doi: 10.2113/11.4.347
– ident: e_1_2_10_1_194_1
  doi: 10.1007/s10021-003-0161-9
– ident: e_1_2_10_1_92_1
  doi: 10.1029/WR026i012p03055
– ident: e_1_2_10_1_135_1
  doi: 10.1016/j.gca.2014.07.006
– ident: e_1_2_10_1_198_1
  doi: 10.1029/2004WR003657
– ident: e_1_2_10_1_300_1
  doi: 10.1016/j.apgeochem.2012.07.008
– ident: e_1_2_10_1_133_1
  doi: 10.1038/ngeo2943
– ident: e_1_2_10_1_17_1
  doi: 10.1038/nclimate1419
– ident: e_1_2_10_1_180_1
  doi: 10.1016/j.biocon.2010.02.013
– ident: e_1_2_10_1_204_1
  doi: 10.1002/2017WR021654
– ident: e_1_2_10_1_274_1
  doi: 10.1021/ac010088e
– ident: e_1_2_10_1_54_1
  doi: 10.1002/esp.3415
– ident: e_1_2_10_1_327_1
  doi: 10.1002/qj.2414
– ident: e_1_2_10_1_275_1
  doi: 10.5194/hess-22-1665-2018
– ident: e_1_2_10_1_76_1
  doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
– ident: e_1_2_10_1_209_1
  doi: 10.1016/j.gca.2012.03.021
– ident: e_1_2_10_1_102_1
  doi: 10.1126/science.1150195
– ident: e_1_2_10_1_285_1
  doi: 10.1007/s10596-014-9443-x
– ident: e_1_2_10_1_36_1
  doi: 10.1007/978-3-319-70766-2_6
– ident: e_1_2_10_1_113_1
  doi: 10.5194/hess-19-3333-2015
– ident: e_1_2_10_1_29_1
  doi: 10.1002/hyp.5741
– ident: e_1_2_10_1_63_1
  doi: 10.1038/s41467-019-09922-3
– ident: e_1_2_10_1_19_1
  doi: 10.1002/2015WR017552
– ident: e_1_2_10_1_248_1
  doi: 10.1111/gcb.14626
– ident: e_1_2_10_1_89_1
  doi: 10.1002/grl.50895
– ident: e_1_2_10_1_256_1
  doi: 10.1016/j.gca.2015.01.035
– ident: e_1_2_10_1_282_1
  doi: 10.1126/science.aab2210
– ident: e_1_2_10_1_193_1
  doi: 10.5194/hess-21-3879-2017
– ident: e_1_2_10_1_340_1
  doi: 10.1016/j.ppees.2017.05.003
– ident: e_1_2_10_1_26_1
  doi: 10.1029/WR017i005p01419
– ident: e_1_2_10_1_264_1
  doi: 10.1038/s41598-020-65094-x
– ident: e_1_2_10_1_22_1
  doi: 10.1002/2017GL074962
– ident: e_1_2_10_1_338_1
  doi: 10.1038/s43247-020-00039-w
– ident: e_1_2_10_1_131_1
  doi: 10.1029/2018RG000627
– ident: e_1_2_10_1_260_1
  doi: 10.1016/j.jconhyd.2016.06.002
– ident: e_1_2_10_1_333_1
  doi: 10.1002/2015WR017018
– ident: e_1_2_10_1_148_1
  doi: 10.1111/j.2153-3490.1976.tb00701.x
– ident: e_1_2_10_1_56_1
  doi: 10.5194/esurf-5-841-2017
– ident: e_1_2_10_1_226_1
  doi: 10.5194/bg-15-6399-2018
– ident: e_1_2_10_1_93_1
  doi: 10.1017/S0033822200053078
– ident: e_1_2_10_1_114_1
  doi: 10.1016/j.chemgeo.2018.06.019
– ident: e_1_2_10_1_130_1
  doi: 10.1016/j.chemgeo.2016.02.012
– ident: e_1_2_10_1_287_1
  doi: 10.1002/hyp.7576
– ident: e_1_2_10_1_304_1
  doi: 10.1515/9781501509797-011
– ident: e_1_2_10_1_190_1
  doi: 10.1016/j.gca.2005.09.001
– ident: e_1_2_10_1_205_1
  doi: 10.1002/2016WR019635
– ident: e_1_2_10_1_178_1
  doi: 10.1016/0016-7037(88)90063-4
– volume: 116
  issue: 1
  year: 2011
  ident: e_1_2_10_1_335_1
  article-title: Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone
  publication-title: Journal of Geophysical Research: Biogeosciences
– ident: e_1_2_10_1_72_1
  doi: 10.1038/nature20150
– ident: e_1_2_10_1_105_1
  doi: 10.1002/hyp.13385
– ident: e_1_2_10_1_238_1
  doi: 10.1002/2017WR021689
– ident: e_1_2_10_1_126_1
  doi: 10.1029/2018WR023703
– ident: e_1_2_10_1_169_1
  doi: 10.1029/JB089iB06p04009
– ident: e_1_2_10_1_103_1
  doi: 10.1016/0022-1694(85)90167-2
– ident: e_1_2_10_1_146_1
  doi: 10.1007/s11252-012-0226-7
– ident: e_1_2_10_1_156_1
  doi: 10.5194/hess-20-279-2016
– ident: e_1_2_10_1_281_1
  doi: 10.1029/2018RG000633
– ident: e_1_2_10_1_39_1
  doi: 10.1002/hyp.8201
– ident: e_1_2_10_1_240_1
  doi: 10.1016/S0016-7037(03)00270-9
– ident: e_1_2_10_1_166_1
  doi: 10.1002/2016WR019516
– ident: e_1_2_10_1_236_1
  doi: 10.1146/annurev-arplant-042817-040256
– ident: e_1_2_10_1_40_1
  doi: 10.1002/hyp.5209
– ident: e_1_2_10_1_123_1
  doi: 10.3389/fmicb.2014.00480
– ident: e_1_2_10_1_61_1
  doi: 10.1002/wat2.1348
– ident: e_1_2_10_1_70_1
  doi: 10.1029/2010WR009827
– ident: e_1_2_10_1_110_1
  doi: 10.1016/j.gca.2017.08.011
– ident: e_1_2_10_1_140_1
  doi: 10.1029/2019WR025236
– volume: 6
  issue: 547
  year: 2015
  ident: e_1_2_10_1_60_1
  article-title: How tree roots respond to drought
  publication-title: Frontiers in Plant Science
– ident: e_1_2_10_1_291_1
  doi: 10.2475/10.2016.02
– volume: 7
  issue: 46
  year: 2019
  ident: e_1_2_10_1_234_1
  article-title: Spatiotemporal heterogeneity of water Flowpaths controls dissolved organic carbon sourcing in a snow‐dominated, headwater catchment
  publication-title: Frontiers in Ecology and Evolution
– ident: e_1_2_10_1_83_1
  doi: 10.1073/pnas.1712381114
– ident: e_1_2_10_1_199_1
  doi: 10.1002/2016WR019712
– ident: e_1_2_10_1_307_1
  doi: 10.1038/ngeo2646
– ident: e_1_2_10_1_162_1
  doi: 10.5194/hess-23-4367-2019
– ident: e_1_2_10_1_292_1
  doi: 10.1016/j.chemgeo.2016.05.012
– ident: e_1_2_10_1_269_1
  doi: 10.5194/hess-13-2287-2009
– ident: e_1_2_10_1_201_1
  doi: 10.1017/S0021859614000021
– ident: e_1_2_10_1_263_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_10_1_80_1
  doi: 10.1016/j.chemgeo.2016.08.008
– ident: e_1_2_10_1_247_1
  doi: 10.1103/PhysRevLett.70.822
– ident: e_1_2_10_1_295_1
  doi: 10.1021/acs.est.5b01869
– ident: e_1_2_10_1_95_1
  doi: 10.1016/S0883-2927(02)00031-8
– ident: e_1_2_10_1_302_1
  doi: 10.1002/2017WR021353
– ident: e_1_2_10_1_11_1
  doi: 10.1002/2016WR018934
– ident: e_1_2_10_1_173_1
  doi: 10.1515/9781501512001-014
– ident: e_1_2_10_1_138_1
  doi: 10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2
– ident: e_1_2_10_1_2_1
  doi: 10.1016/j.earscirev.2016.06.014
– ident: e_1_2_10_1_316_1
  doi: 10.5194/hess-24-945-2020
– ident: e_1_2_10_1_242_1
  doi: 10.1111/nph.13338
– ident: e_1_2_10_1_99_1
  doi: 10.1007/s10750-011-0854-6
– ident: e_1_2_10_1_48_1
  doi: 10.1029/2009WR008371
– ident: e_1_2_10_1_217_1
  doi: 10.1016/j.epsl.2007.07.010
– volume-title: Watershed models
  year: 2006
  ident: e_1_2_10_1_332_1
– volume: 49
  start-page: 333
  year: 1913
  ident: e_1_2_10_1_202_1
  article-title: Die Kinetik der Invertinwirkung
  publication-title: Biochemistry Zeitung
– ident: e_1_2_10_1_207_1
  doi: 10.1016/j.scitotenv.2017.07.211
– ident: e_1_2_10_1_101_1
  doi: 10.1007/s12665-013-2281-7
– ident: e_1_2_10_1_192_1
  doi: 10.1016/j.chemgeo.2016.11.029
– ident: e_1_2_10_1_293_1
  doi: 10.1016/j.chemgeo.2019.06.023
– ident: e_1_2_10_1_323_1
  doi: 10.1016/j.chemgeo.2003.03.001
– ident: e_1_2_10_1_319_1
  doi: 10.1029/2000WR900241
– ident: e_1_2_10_1_44_1
  doi: 10.1515/9781501509650-009
– ident: e_1_2_10_1_187_1
  doi: 10.1016/j.gca.2008.09.004
– volume-title: Hydrology for engineers
  year: 1958
  ident: e_1_2_10_1_181_1
– ident: e_1_2_10_1_283_1
  doi: 10.1016/j.jhydrol.2019.01.058
– ident: e_1_2_10_1_96_1
  doi: 10.1002/hyp.7677
– ident: e_1_2_10_1_261_1
  doi: 10.1016/j.jconhyd.2016.01.005
– ident: e_1_2_10_1_186_1
  doi: 10.1016/j.earscirev.2013.09.002
– ident: e_1_2_10_1_86_1
  doi: 10.1038/s41467-020-14411-z
– ident: e_1_2_10_1_94_1
  doi: 10.1029/1999WR900013
– volume: 31
  start-page: 463
  issue: 1
  year: 1995
  ident: e_1_2_10_1_75_1
  article-title: Weathering rates in catchments
  publication-title: Reviews in Mineralogy and Geochemistry
– start-page: 545
  volume-title: Kinetics of water‐rock interaction
  year: 2007
  ident: e_1_2_10_1_284_1
– ident: e_1_2_10_1_71_1
  doi: 10.1016/0016-7037(85)90140-1
– ident: e_1_2_10_1_246_1
  doi: 10.1073/pnas.1322700111
– ident: e_1_2_10_1_78_1
  doi: 10.1002/2015WR016937
– ident: e_1_2_10_1_176_1
  doi: 10.1016/j.jconhyd.2009.10.006
– ident: e_1_2_10_1_116_1
  doi: 10.1002/2017WR021902
– ident: e_1_2_10_1_127_1
  doi: 10.1017/S0263593300011226
– ident: e_1_2_10_1_139_1
  doi: 10.1029/WR005i006p01353
– ident: e_1_2_10_1_279_1
  doi: 10.1029/WR019i001p00260
– ident: e_1_2_10_1_20_1
  doi: 10.1002/hyp.13781
– ident: e_1_2_10_1_221_1
  doi: 10.1029/2004WR003773
– ident: e_1_2_10_1_168_1
– ident: e_1_2_10_1_53_1
  doi: 10.2113/gselements.3.5.307
– ident: e_1_2_10_1_52_1
  doi: 10.1038/ngeo858
– ident: e_1_2_10_1_128_1
  doi: 10.1007/BF00333714
– ident: e_1_2_10_1_224_1
  doi: 10.1126/science.278.5341.1251
– ident: e_1_2_10_1_313_1
  doi: 10.1007/s10040-014-1121-5
– ident: e_1_2_10_1_182_1
  doi: 10.1093/acrefore/9780190228620.013.593
– ident: e_1_2_10_1_30_1
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: e_1_2_10_1_232_1
  doi: 10.1021/bk-1979-0093.ch025
– ident: e_1_2_10_1_124_1
  doi: 10.1002/hyp.13807
– ident: e_1_2_10_1_191_1
  doi: 10.1016/j.soilbio.2009.02.031
– ident: e_1_2_10_1_51_1
  doi: 10.1007/978-0-387-73563-4_5
– ident: e_1_2_10_1_118_1
  doi: 10.1007/s10533-004-4322-5
– ident: e_1_2_10_1_308_1
  doi: 10.5194/hess-23-4825-2019
– ident: e_1_2_10_1_41_1
  doi: 10.1016/0022-1694(90)90114-D
– ident: e_1_2_10_1_225_1
  doi: 10.1002/2014RG000465
– ident: e_1_2_10_1_157_1
  doi: 10.5194/hess-20-299-2016
– ident: e_1_2_10_1_90_1
  doi: 10.1016/j.chemgeo.2018.05.009
– ident: e_1_2_10_1_251_1
  doi: 10.1029/1999WR900210
– ident: e_1_2_10_1_253_1
  doi: 10.1016/j.envpol.2010.08.014
– ident: e_1_2_10_1_58_1
  doi: 10.1038/ngeo722
– ident: e_1_2_10_1_294_1
  doi: 10.1016/0167-8809(94)00558-V
– ident: e_1_2_10_1_220_1
  doi: 10.1016/j.ecolind.2020.106321
– ident: e_1_2_10_1_34_1
  doi: 10.1016/S0022-1694(01)00421-8
– ident: e_1_2_10_1_4_1
  doi: 10.1002/2016WR019448
– ident: e_1_2_10_1_37_1
  doi: 10.5194/hess-4-203-2000
– ident: e_1_2_10_1_270_1
  doi: 10.1029/2018WR022643
– ident: e_1_2_10_1_175_1
  doi: 10.1016/j.earscirev.2016.09.001
– ident: e_1_2_10_1_151_1
  doi: 10.1002/9780470691854.ch12
– ident: e_1_2_10_1_311_1
  doi: 10.1029/2001WR001118
– volume-title: SWAT (Soil and water assessment tool)
  year: 1994
  ident: e_1_2_10_1_7_1
– ident: e_1_2_10_1_43_1
  doi: 10.1080/10643380801977966
– ident: e_1_2_10_1_141_1
  doi: 10.1016/j.gca.2018.05.009
– ident: e_1_2_10_1_318_1
  doi: 10.1021/acs.est.8b01123
– ident: e_1_2_10_1_79_1
  doi: 10.1890/070062
– ident: e_1_2_10_1_142_1
  doi: 10.1016/j.gca.2018.02.028
– ident: e_1_2_10_1_213_1
  doi: 10.1016/j.advwatres.2016.07.003
– ident: e_1_2_10_1_208_1
  doi: 10.1146/annurev.mi.03.100149.002103
– volume: 6
  issue: 246
  year: 2019
  ident: e_1_2_10_1_6_1
  article-title: Does stream water composition at Sleepers River in Vermont reflect dynamic changes in soils during recovery from acidification?
  publication-title: Frontiers in Earth Science
– ident: e_1_2_10_1_115_1
  doi: 10.1038/s41586-018-0463-x
– ident: e_1_2_10_1_152_1
  doi: 10.2134/jeq2014.04.0163
– ident: e_1_2_10_1_50_1
  doi: 10.1029/2019WR026695
– ident: e_1_2_10_1_206_1
  doi: 10.3389/fevo.2019.00516
– ident: e_1_2_10_1_68_1
  doi: 10.1021/ac020113w
– ident: e_1_2_10_1_107_1
  doi: 10.1002/2013RG000443
– ident: e_1_2_10_1_155_1
  doi: 10.1029/2008WR006912
– ident: e_1_2_10_1_87_1
  doi: 10.1016/j.jhydrol.2016.03.026
– ident: e_1_2_10_1_197_1
  doi: 10.1016/j.jhydrol.2006.04.020
– ident: e_1_2_10_1_339_1
  doi: 10.1515/9781501508462-014
– ident: e_1_2_10_1_25_1
  doi: 10.1146/annurev.earth.36.031207.124210
– ident: e_1_2_10_1_324_1
  doi: 10.1073/pnas.1411723111
– volume: 31
  start-page: 1
  year: 1995
  ident: e_1_2_10_1_322_1
  article-title: Chemical weathering rates of silicate minerals: An overview
  publication-title: Chemical Weathering Rates of Silicate Minerals
– ident: e_1_2_10_1_301_1
  doi: 10.1038/s41561-019-0526-0
– ident: e_1_2_10_1_216_1
  doi: 10.1029/WR026i007p01465
– ident: e_1_2_10_1_267_1
  doi: 10.5194/hess-18-4751-2014
– ident: e_1_2_10_1_312_1
  doi: 10.1029/2018JG004956
– ident: e_1_2_10_1_14_1
  doi: 10.1002/2016GL069690
– ident: e_1_2_10_1_143_1
  doi: 10.5194/hess-10-873-2006
– ident: e_1_2_10_1_244_1
  doi: 10.1029/2018JG004981
– ident: e_1_2_10_1_309_1
  doi: 10.1371/journal.pone.0106922
– ident: e_1_2_10_1_32_1
  doi: 10.2136/vzj2018.08.0153
– ident: e_1_2_10_1_122_1
  doi: 10.1029/2000WR900290
– ident: e_1_2_10_1_137_1
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– ident: e_1_2_10_1_117_1
  doi: 10.1038/s41598-019-40819-9
– ident: e_1_2_10_1_145_1
  doi: 10.1109/TKDE.2017.2720168
– ident: e_1_2_10_1_164_1
  doi: 10.1073/pnas.1816892116
– ident: e_1_2_10_1_12_1
  doi: 10.1021/es501060d
– ident: e_1_2_10_1_46_1
  doi: 10.2475/ajs.299.1.1
– ident: e_1_2_10_1_278_1
  doi: 10.1016/j.jhydrol.2015.02.013
– volume: 17
  issue: 2
  year: 2003
  ident: e_1_2_10_1_289_1
  article-title: Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans
  publication-title: Global Biogeochemical Cycles
– ident: e_1_2_10_1_59_1
  doi: 10.1556/168.2015.16.2.11
– ident: e_1_2_10_1_230_1
  doi: 10.1029/WR005i002p00438
– ident: e_1_2_10_1_262_1
  doi: 10.1029/WR026i012p02949
– ident: e_1_2_10_1_10_1
  doi: 10.1029/2005WR004387
– ident: e_1_2_10_1_171_1
  doi: 10.1038/ngeo2947
– ident: e_1_2_10_1_65_1
  doi: 10.1007/BF00329030
– ident: e_1_2_10_1_23_1
  doi: 10.1038/nclimate2246
– ident: e_1_2_10_1_149_1
  doi: 10.4319/lo.2002.47.5.1380
– ident: e_1_2_10_1_57_1
  doi: 10.1128/mBio.01318-19
– ident: e_1_2_10_1_218_1
  doi: 10.1016/0022-1694(90)90122-E
– ident: e_1_2_10_1_314_1
  doi: 10.1016/j.gca.2017.04.019
– ident: e_1_2_10_1_82_1
  doi: 10.1029/2018WR023903
– ident: e_1_2_10_1_336_1
  doi: 10.1021/acs.est.0c01340
– ident: e_1_2_10_1_237_1
  doi: 10.1038/s41586-019-0912-1
– ident: e_1_2_10_1_331_1
  doi: 10.1038/s41467-018-04971-6
– ident: e_1_2_10_1_252_1
  doi: 10.1029/2017GB005798
– ident: e_1_2_10_1_329_1
  doi: 10.1002/esp.4434
SSID ssj0001105395
Score 2.4696605
Snippet Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1495
SubjectTerms Biogeochemistry
Catchment scale
catchment science
Catchments
Climate
Columns (structural)
critical zone
Data
Data collection
Data integration
Geochemistry
Geokemi
Geology
Headwaters
Hydrology
Integration
Intersections
Isotopes
Model testing
Moisture content
Oceanografi, hydrologi, vattenresurser
Oceanography, Hydrology, Water Resources
Reaction kinetics
shallow and deep hypothesis
Solutes
Theories
Tracers
Transit time
Water content
Watersheds
Title Toward catchment hydro‐biogeochemical theories
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1495
https://www.proquest.com/docview/2471059840
https://res.slu.se/id/publ/109736
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60vehBfGK1lkUEvazdzWZfeCpqKWJFsMXelmQ3sUJppQ_Emz_B3-gvcSbbJyh42hwy2WWyyXwzyXwDcBbLVBPvl42mSdrcj10bcZy2s9iN0kiHynUowbn5EDTa_K7jd9bgapYLk_NDzANutDLMfk0LXMhRdUEa-i7G7JLw_ToUKbWWiPMZf1wEWBA5eKbqCkMUbKOzHs2YhRxWnUuv2qMlkJkTh65iVmN06tuwNUWLVi2f3h1YU_1d2FziENwDp2Uuvlop7qldCvVZ3Y9sOPj-_JKvgxdFBbEMI4BlUhbRL96Hdv22dd2wp2UQ7NQLXd_WmfYyRgdiQeCkGSKUKJYiDHyPa0_ImHN0JgPlOzwLVJhmLgooz0dFY9ONpHcAhf6grw7BipWrIs2FirXDhUhxGK2pTk2IQioTJbiYKSNJpxzhVKqil-TsxiwhvSWktxKczru-5cQYv3UqzzSaTNfGKGFoDxHUoWdZgvNcy_MRiOx61JtIMaRHMlLmhNwL8MPMNPz9quS51mLUOPp_12PYYHRFxURUylAYDyfqBDHGWFbMv1SBYu2mef_0A-OIz5Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagH8YnVqosIelm7m82-wEsRpWpbPLTYW9hHYoXSSh-IN3-Cv9Ff4kx2-wIFT5tDJrtMdjLfTJJvAM7DOFHE-2Wia4pN7oa2iThOmWloB0mgfGlbdMG50fRqbf7QcTsFuJ7ehcn4IWYJN7IMvV6TgVNCujJnDX2PxuyKAP4KrHKP-WSWjD_NMywIHRxddoUhDDYxWg-m1EIWq8yklx3SAsrMmEOXQav2OndbsJnDRaOaze82FGR_BzYWSAR3wWrpk69Ggotql3J9RvcjHQ6-P7_i18GLpIpYmhLA0HcWMTDeg_bdbeumZuZ1EMzE8W3XVKlyUkY7Yp5nJSlClCCMI99zHa6cKA45x2jSk67FU0_6SWqjgHRc1DQ27SB29qHYH_TlARihtGWgeCRDZfEoSnAYpahQjY9CMo1KcDlVhkhyknCqVdETGb0xE6Q3QXorwdms61vGjPFbp_JUoyI3jpFg6BAR1WFoWYKLTMuzEYjtetSbxNGQHmIk9Ra54-GH6Wn4-1Xiudpi1Dj8f9dTWKu1GnVRv28-HsE6o_MqOr1ShuJ4OJHHCDjG8Yn-r34Al2bRbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qBdGD-MRq1UUEvazdR_aFp6KW-io9tNhb2N0kViht6QPx5k_wN_pLnMn2CQqeNocku0x2Mt9MMt8AnEdJqoj3y0TTlJjMi2wTcZwyRWSHaagCaVuU4Pxc86tN9tDyWjm4nubCZPwQs4AbaYber0nB-0KV5qSh7_HIuSJ8vwKr-rCPaJ1ZfR5gQeTg6qorDqJgE531cMosZDml2ehle7QAMjPi0GXMqo1OZQs2J2jRKGfLuw052d2BjQUOwV2wGvriq5HintqmUJ_R_hCD3vfnV_LWe5VUEEszAhg6ZRH94j1oVu4aN1VzUgbBTN3A9kwllCscOhDzfSsViFDCKIkD33OZcuMkYgydSV96FhO-DFJh4wDpeihobNph4u5DvtvrygMwImnLULFYRspicZziNEpRnZoAB0kRF-ByKgyeTjjCqVRFh2fsxg4nuXGSWwHOZl37GTHGb52KU4nyiW4MuYP2EEEdepYFuMikPJuByK6HnXESD-jBh1KfkLs-fphehr9fxV_KDYcah__vegpr9dsKf7qvPR7BukO3VXRwpQj50WAsjxFujJIT_Vv9AImG0KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+catchment+hydro-biogeochemical+theories&rft.jtitle=Wiley+interdisciplinary+reviews.+Water&rft.au=Bishop%2C+Kevin&rft.date=2021&rft.issn=2049-1948&rft.eissn=2049-1948&rft.volume=8&rft_id=info:doi/10.1002%2Fwat2.1495&rft.externalDocID=oai_slubar_slu_se_109736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1948&client=summon