Bone Morphogenetic Protein 9 Protects Against Myocardial Infarction by Improving Lymphatic Drainage Function and Triggering DECR1-Mediated Mitochondrial Bioenergetics
BACKGROUND: BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive. METHODS: The expre...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 150; no. 21; pp. 1684 - 1701 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
19.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND:
BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive.
METHODS:
The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice.
RESULTS:
We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice.
CONCLUSIONS:
These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart. |
---|---|
AbstractList | BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive.
The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice.
We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice.
These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart. BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive.BACKGROUNDBMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive.The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice.METHODSThe expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice.We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice.RESULTSWe show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice.These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart.CONCLUSIONSThese results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart. BACKGROUND: BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive. METHODS: The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice. RESULTS: We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA [coenzyme A] reductase 1), a rate-limiting enzyme involved in β-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice. CONCLUSIONS: These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart. |
Author | Lei, Wei Zhang, Ke Wu, Fan Huang, Zhouqing Jin, Hua Duan, Zikun Zhou, Hao Li, Yulin Wu, Maolan Xie, Wei Wang, Ningrui Xu, Aimin Lin, Zhuofeng Li, Xiaokun |
Author_xml | – sequence: 1 givenname: Zikun surname: Duan fullname: Duan, Zikun email: dzk880909@163.com organization: Affiliated Dongguan Songshan Lake Central Hospital (Z.D., F.W., Z.L.), Guangdong Medical University, Dongguan, China – sequence: 2 givenname: Zhouqing orcidid: 0000-0001-5854-1377 surname: Huang fullname: Huang, Zhouqing email: susiehzq@126.com organization: Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.) – sequence: 3 givenname: Wei orcidid: 0000-0002-4033-4799 surname: Lei fullname: Lei, Wei email: xiewei06@126.com organization: Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (W.L.) – sequence: 4 givenname: Ke surname: Zhang fullname: Zhang, Ke email: zhangkeke0918@163.com organization: School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.) – sequence: 5 givenname: Wei surname: Xie fullname: Xie, Wei organization: Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.) – sequence: 6 givenname: Hua surname: Jin fullname: Jin, Hua email: jinhuahua17@163.com organization: School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.) – sequence: 7 givenname: Maolan surname: Wu fullname: Wu, Maolan email: zflwf@126.com organization: School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.) – sequence: 8 givenname: Ningrui surname: Wang fullname: Wang, Ningrui organization: School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.) – sequence: 9 givenname: Xiaokun surname: Li fullname: Li, Xiaokun email: lyllyl_1111@163.com organization: School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.) – sequence: 10 givenname: Aimin orcidid: 0000-0002-0668-033X surname: Xu fullname: Xu, Aimin organization: State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, China (A.X.) – sequence: 11 givenname: Hao surname: Zhou fullname: Zhou, Hao email: wyzh66@126.com organization: Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (Z.H., W.X., H.Z., Z.L.) – sequence: 12 givenname: Fan surname: Wu fullname: Wu, Fan organization: Innovation Center of Cardiometabolic Disease (F.W., Z.L.), Guangdong Medical University, Dongguan, China – sequence: 13 givenname: Yulin orcidid: 0000-0003-1805-9820 surname: Li fullname: Li, Yulin organization: Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, China (Y.L.) – sequence: 14 givenname: Zhuofeng orcidid: 0000-0003-0136-3084 surname: Lin fullname: Lin, Zhuofeng organization: School of Pharmaceutical Sciences, Wenzhou Medical University, China (K.Z., H.J., M.W., N.W., X.L., Z.L.) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39315433$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhi1URKeFV0BmxyZTO45zWSA0TW-RZiiqpuvISU4SQ2IPtkM1L8Rz4igFCVZd2Za-_9Px-c_QidIKEPpAyZrSmF7kxUP-uN3si_svm7vNmoZsTWKeMf4KrSgPoyDiLDtBK0JIFiQsDE_RmbXf_DNmCX-DTlnGKI8YW6Ffl16Nd9ocet2BAidr_NVoB1LhbLnVzuJNJ6SyDu-OuhamkWLAhWqFqZ3UCldHXIwHo39K1eHtcTz0YvZcGR8SHeCbSS2gUA3eG9l1YGb06jp_oMEOvM9Bg3fS6brXqjGz_1JqP4_p5pHsW_S6FYOFd8_nOXq8ud7nd8H2_rbIN9ugZgnlQVWzVIQiySBJBYQirkgY0YQC46kgJBK8iqo2itqUZS1jHFrREl4lwNKKN3HIztHHxet_82MC68pR2hqGQSjQky0ZJWkSRyQhHn3_jE7VCE15MHIU5lj-2a0HsgWojbbWQPsXoaSceyz_7bH0PZZLjz77-b9sLZ2Yd-j8UocXGT4thic9ODD2-zA9gSl7EIPrX5D_DZ1_vCs |
CitedBy_id | crossref_primary_10_3390_antiox13121509 |
Cites_doi | 10.1038/s41598-019-48562-x 10.1164/rccm.202005-1761OC 10.1007/s00018-011-0751-1 10.1007/s00210-019-01708-0 10.1093/cvr/cvab187 10.1161/CIRCRESAHA.111.243170 10.1016/j.jacc.2014.01.014 10.1016/j.cell.2020.06.039 10.1038/cddis.2017.227 10.1016/j.jacc.2020.05.076 10.1056/NEJMcp1803290 10.1161/CIRCULATIONAHA.117.031635 10.1084/jem.20171868 10.1016/S0140-6736(16)30677-8 10.1093/eurheartj/ehaa1012 10.3389/fphys.2018.01333 10.1016/j.redox.2021.101866 10.1038/nature14483 10.1172/JCI71603 10.1146/annurev.cellbio.21.012704.132338 10.1182/blood-2011-01-330142 10.1056/NEJMoa1505489 10.7554/eLife.60311 10.1016/j.bbadis.2017.12.008 10.1038/s41467-024-46973-7 10.1016/j.tem.2016.12.002 10.1172/JCI147070 10.1074/jbc.M503328200 10.1161/CIRCULATIONAHA.121.055727 10.1038/nbt795 10.1016/j.cytogfr.2009.05.001 10.2174/1381612043384718 10.1681/ASN.2008050513 10.1161/CIRCULATIONAHA.121.057549 10.1074/jbc.RA118.002968 10.1172/JCI97192 10.1161/CIRCRESAHA.119.315807 10.1186/s12931-015-0202-x 10.1136/gutjnl-2016-313314 10.7554/eLife.42762 10.1161/CIRCULATIONAHA.115.020143 10.1016/j.cell.2010.01.045 10.1186/s13020-022-00616-5 10.1161/CIRCULATIONAHA.120.050301 10.1161/HYPERTENSIONAHA.107.091348 10.1161/CIRCRESAHA.116.309202 10.2147/IJN.S129274 10.1161/CIRCRESAHA.118.313835 10.3389/fgene.2014.00456 10.1074/jbc.275.24.17937 10.1182/blood-2012-12-472142 10.1161/CIRCRESAHA.112.265660 10.1371/journal.pgen.1000543 10.1038/s41586-020-2998-x |
ContentType | Journal Article |
Copyright | 2024 American Heart Association, Inc. |
Copyright_xml | – notice: 2024 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCULATIONAHA.123.065935 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1701 |
ExternalDocumentID | 39315433 10_1161_CIRCULATIONAHA_123_065935 CIRCULATIONAHA2023065935 |
Genre | research-article Journal Article |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 AAFWJ AAYXX ABPXF CITATION ACIJW AWKKM CGR CUY CVF ECM EIF NPM ODA OJAPA OLW RHF 7X8 |
ID | FETCH-LOGICAL-c3715-bc38a2a79e78ae2a6b024171e358a004a5b4bf44f839f335efaf05b7e38b5d623 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Fri Jul 11 03:57:55 EDT 2025 Wed Feb 19 02:04:11 EST 2025 Thu Apr 24 22:50:19 EDT 2025 Thu Jul 03 08:14:25 EDT 2025 Wed Apr 16 02:29:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | lymphatic drainage dysfunction BMP9 mitochondrial bioenergetics myocardial infarction DECR1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3715-bc38a2a79e78ae2a6b024171e358a004a5b4bf44f839f335efaf05b7e38b5d623 |
Notes | Z. Duan, Z. Huang, and W. Lei contributed equally. Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.123.065935. For Sources of Funding and Disclosures, see page 1700. Circulation is available at www.ahajournals.org/journal/circ Correspondence to: Fan Wu, PhD, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China, Email zflwf@126.com Yulin Li, MD, PhD, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing, China, Email lyllyl_1111@163.com Zhuofeng Lin, MD, PhD, Innovation Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China. Email zlin@gdmu.edu.cn ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0136-3084 0000-0002-0668-033X 0000-0001-5854-1377 0000-0002-4033-4799 0000-0003-1805-9820 |
PMID | 39315433 |
PQID | 3108764070 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_3108764070 pubmed_primary_39315433 crossref_primary_10_1161_CIRCULATIONAHA_123_065935 crossref_citationtrail_10_1161_CIRCULATIONAHA_123_065935 wolterskluwer_health_10_1161_CIRCULATIONAHA_123_065935 |
PublicationCentury | 2000 |
PublicationDate | 2024-November-19 2024-11-19 2024-Nov-19 20241119 |
PublicationDateYYYYMMDD | 2024-11-19 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-November-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2024 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | Tammela, Alitalo (R24) 2010; 140 Tillet, Ouarné, Desroches-Castan, Mallet, Subileau, Didier, Lioutsko, Belthier, Feige, Bailly (R6) 2018; 293 Harrison, Feng, Mo, Aguayo, Villafuerte, Yoshida, Pearson, Schulte-Merker, Lien (R16) 2019; 8 Chen, Grzegorzewski, Barash, Zhao, Schneider, Wang, Singh, Pukac, Bell, Duan (R28) 2003; 21 Miller, Harvey, Thies, Olson (R32) 2000; 275 Brown, Zhao, Baker, Naik, Chen, Pukac, Singh, Tsareva, Parice, Mahoney (R8) 2005; 280 Martinelli, Timotin, Moreno-Corchado, Marsal, Kramar, Loy, Joffre, Boal, Tronchere, Kunduzova (R50) 2021; 40 Seropian, Toldo, Van Tassell, Abbate (R1) 2014; 63 Liu, Sun, Zheng, Su, Liu, Wei, Li, Wang, Dai, Gong (R46) 2020; 393 Reed, Rossi, Cannon (R2) 2017; 389 Li, Long, Yang, Tong, Southwood, King, Caruso, Upton, Yang, Bocobo (R21) 2021; 203 Oliver, Alitalo (R22) 2005; 21 Ke, Zhou, Yang, Wang, Zhang, Chen, Ren, Ye (R53) 2017; 12 Tillet, Bailly (R10) 2014; 5 Huang, Dai, Xie, Zhu, Hu, Su, Liu, Lu, Shen, Ning (R51) 2020; 127 Trincot, Xu, Zhang, Kulikauskas, Caranasos, Jensen, Sabine, Petrova, Caron (R18) 2019; 124 Klotz, Norman, Vieira, Masters, Rohling, Dubé, Bollini, Matsuzaki, Carr, Riley (R25) 2015; 522 Keller, Lim, Shewale, McDaid, Martí-Pàmies, Tang, Wittig, Guerrero, Sterling, Leu (R54) 2021; 131 Petrova, Koh (R23) 2018; 215 Mäkelä, Hohtola, Miinalainen, Autio, Schmitz, Niemi, Hiltunen, Autio (R39) 2019; 9 Cung, Morel, Cayla, Rioufol, Garcia-Dorado, Angoulvant, Bonnefoy-Cudraz, Guérin, Elbaz, Delarche (R37) 2015; 373 Ackers-Johnson, Li, Holmes, O'Brien, Pavlovic, Foo (R47) 2016; 119 Bouvard, Tu, Rossi, Desroches-Castan, Berrebeh, Helfer, Roelants, Liu, Ouarné, Chaumontel (R7) 2022; 118 Ferrari, Guardigli, Mele, Percoco, Ceconi, Curello (R34) 2004; 10 Morine, Qiao, York, Natov, Paruchuri, Zhang, Aronovitz, Karas, Kapur (R11) 2018; 138 Ma, Li, Li, Yang, Zhu, Ma, Gao, Gao, Zhang, Ma (R20) 2024; 15 Zheng, Aspelund, Alitalo (R40) 2014; 124 Rockson (R42) 2018; 379 Bidart, Ricard, Levet, Samson, Mallet, David, Subileau, Tillet, Feige, Bailly (R33) 2012; 69 Lei, Tian, Gao, Liu, Guo, Tang, Chen, Wang (R45) 2021; 10 Marchant, Boyd, Lin, Granville, Garmaroudi, McManus (R35) 2012; 110 Vieira, Norman, Villa Del Campo, Cahill, Barnette, Gunadasa-Rohling, Johnson, Greaves, Carr, Jackson (R15) 2018; 128 Li, Li, Zhu, Yang, He, Wang, Shang, Pan, Wang, Ma (R29) 2018; 1864 Breitkopf-Heinlein, Meyer, König, Gaitantzi, Addante, Thomas, Wiercinska, Cai, Li, Wan (R5) 2017; 66 Gao, Zhou, Liang, Huang, Yang, Chen, Zhang, Yan, Wang, Lu (R44) 2018; 9 Melhem, Chajadine, Gomez, Howangyin, Bouvet, Knosp, Sun, Rouanet, Laurans, Cazorla (R52) 2021; 143 Zhuang, Jia, Chen, Li, Zhao, Hu, Zhang, Fan, Huang, Xie (R26) 2022; 145 Ito, Okada, Mimuro, Miyashita, Uchibori, Urabe, Mizukami, Kume, Takahashi, Ikeda (R43) 2007; 50 Levet, Ciais, Merdzhanova, Mallet, Zimmers, Lee, Navarro, Texier, Feige, Bailly (R19) 2013; 122 Cunha, Pietras (R27) 2011; 117 Li, Yang, Zhang, Zheng, Gao, Sun, Shi (R48) 2022; 17 De Langhe, Cailotto, De Vooght, Aznar-Lopez, Vanoirbeek, Luyten, Lories (R30) 2015; 16 Walters, Porter, Brookes (R36) 2012; 111 Liu, De la Cruz, Gu, Balint, Oxendine-Burns, Terrones, Ma, Kuo, Lantz, Bansal (R17) 2020; 588 Oliver, Kipnis, Randolph, Harvey (R12) 2020; 182 Miinalainen, Schmitz, Huotari, Autio, Soininen, Ver Loren van Themaat, Baes, Herzig, Conzelmann, Hiltunen (R38) 2009; 5 Bauersachs (R4) 2021; 42 Brakenhielm, González, Díez (R41) 2020; 76 David, Feige, Bailly (R9) 2009; 20 Zeisberg, Potenta, Sugimoto, Zeisberg, Kalluri (R31) 2008; 19 Jia, Chen, Bai, Luo, Liu, Sun, Ge (R3) 2022; 145 Vuorio, Tirronen, Ylä-Herttuala (R13) 2017; 28 Wu, Qian, Zhao, Dong, Li, Wang, Chen, Yu, Han, Du (R49) 2017; 8 Henri, Pouehe, Houssari, Galas, Nicol, Edwards-Lévy, Henry, Dumesnil, Boukhalfa, Banquet (R14) 2016; 133 e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – volume: 19 start-page: 2282 year: 2008 end-page: 2287 ident: R31 article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. publication-title: J Am Soc Nephrol – volume: 9 start-page: 12038 year: 2019 ident: R39 article-title: Mitochondrial 2,4-dienoyl-CoA reductase (Decr) deficiency and impairment of thermogenesis in mouse brown adipose tissue. publication-title: Sci Rep – volume: 12 start-page: 2531 year: 2017 end-page: 2551 ident: R53 article-title: Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. publication-title: Int J Nanomedicine – volume: 140 start-page: 460 year: 2010 end-page: 476 ident: R24 article-title: Lymphangiogenesis: molecular mechanisms and future promise. publication-title: Cell – volume: 124 start-page: 878 year: 2014 end-page: 887 ident: R40 article-title: Lymphangiogenic factors, mechanisms, and applications. publication-title: J Clin Invest – volume: 131 start-page: e147070 year: 2021 ident: R54 article-title: Genetic blockade of lymphangiogenesis does not impair cardiac function after myocardial infarction. publication-title: J Clin Invest – volume: 118 start-page: 1805 year: 2022 end-page: 1820 ident: R7 article-title: Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10. publication-title: Cardiovasc Res – volume: 10 start-page: 1699 year: 2004 end-page: 1711 ident: R34 article-title: Oxidative stress during myocardial ischaemia and heart failure. publication-title: Curr Pharm Des – volume: 124 start-page: 101 year: 2019 end-page: 113 ident: R18 article-title: Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via connexin 43. publication-title: Circ Res – volume: 17 start-page: 73 year: 2022 ident: R48 article-title: Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. publication-title: Chin Med – volume: 122 start-page: 598 year: 2013 end-page: 607 ident: R19 article-title: Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. publication-title: Blood – volume: 50 start-page: 531 year: 2007 end-page: 536 ident: R43 article-title: Adenoassociated virus-mediated prostacyclin synthase expression prevents pulmonary arterial hypertension in rats. publication-title: Hypertension – volume: 10 start-page: e60311 year: 2021 ident: R45 article-title: Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation. publication-title: Elife – volume: 145 start-page: 1542 year: 2022 end-page: 1556 ident: R3 article-title: Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. publication-title: Circulation – volume: 15 start-page: 2701 year: 2024 ident: R20 article-title: S100A8/A9 as a prognostic biomarker with causal effects for post-acute myocardial infarction heart failure. publication-title: Nat Commun – volume: 16 start-page: 38 year: 2015 ident: R30 article-title: Enhanced endogenous bone morphogenetic protein signaling protects against bleomycin induced pulmonary fibrosis. publication-title: Respir Res – volume: 393 start-page: 25 year: 2020 end-page: 33 ident: R46 article-title: Spexin protects cardiomyocytes from hypoxia-induced metabolic and mitochondrial dysfunction. publication-title: Naunyn Schmiedebergs Arch Pharmacol – volume: 5 start-page: e1000543 year: 2009 ident: R38 article-title: Mitochondrial 2,4-dienoyl-CoA reductase deficiency in mice results in severe hypoglycemia with stress intolerance and unimpaired ketogenesis. publication-title: PLoS Genet – volume: 63 start-page: 1593 year: 2014 end-page: 1603 ident: R1 article-title: Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. publication-title: J Am Coll Cardiol – volume: 588 start-page: 705 year: 2020 end-page: 711 ident: R17 article-title: Lymphoangiocrine signals promote cardiac growth and repair. publication-title: Nature – volume: 111 start-page: 1222 year: 2012 end-page: 1236 ident: R36 article-title: Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. publication-title: Circ Res – volume: 280 start-page: 25111 year: 2005 end-page: 25118 ident: R8 article-title: Crystal structure of BMP-9 and functional interactions with pro-region and receptors. publication-title: J Biol Chem – volume: 133 start-page: 1484 year: 2016 end-page: 1497; discussion 1497 ident: R14 article-title: Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. publication-title: Circulation – volume: 203 start-page: 1419 year: 2021 end-page: 1430 ident: R21 article-title: Circulating BMP9 protects the pulmonary endothelium during inflammation-induced lung injury in mice. publication-title: Am J Respir Crit Care Med – volume: 9 start-page: 1333 year: 2018 ident: R44 article-title: Inhibiting receptor of advanced glycation end products attenuates pressure overload-induced cardiac dysfunction by preventing excessive autophagy. publication-title: Front Physiol – volume: 145 start-page: 829 year: 2022 end-page: 846 ident: R26 article-title: DYRK1B-STAT3 drives cardiac hypertrophy and heart failure by impairing mitochondrial bioenergetics. publication-title: Circulation – volume: 215 start-page: 35 year: 2018 end-page: 49 ident: R23 article-title: Organ-specific lymphatic vasculature: from development to pathophysiology. publication-title: J Exp Med – volume: 379 start-page: 1937 year: 2018 end-page: 1944 ident: R42 article-title: Lymphedema after breast cancer treatment. publication-title: N Engl J Med – volume: 182 start-page: 270 year: 2020 end-page: 296 ident: R12 article-title: The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. publication-title: Cell – volume: 373 start-page: 1021 year: 2015 end-page: 1031 ident: R37 article-title: Cyclosporine before PCI in patients with acute myocardial infarction. publication-title: N Engl J Med – volume: 127 start-page: 953 year: 2020 end-page: 973 ident: R51 article-title: Lgr4 governs a pro-inflammatory program in macrophages to antagonize post-infarction cardiac repair. publication-title: Circ Res – volume: 8 start-page: e2828 year: 2017 ident: R49 article-title: Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. publication-title: Cell Death Dis – volume: 21 start-page: 457 year: 2005 end-page: 483 ident: R22 article-title: The lymphatic vasculature: recent progress and paradigms. publication-title: Annu Rev Cell Dev Biol – volume: 117 start-page: 6999 year: 2011 end-page: 7006 ident: R27 article-title: ALK1 as an emerging target for antiangiogenic therapy of cancer. publication-title: Blood – volume: 275 start-page: 17937 year: 2000 end-page: 17945 ident: R32 article-title: Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. publication-title: J Biol Chem – volume: 293 start-page: 10963 year: 2018 end-page: 10974 ident: R6 article-title: A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. publication-title: J Biol Chem – volume: 389 start-page: 197 year: 2017 end-page: 210 ident: R2 article-title: Acute myocardial infarction. publication-title: Lancet – volume: 128 start-page: 3402 year: 2018 end-page: 3412 ident: R15 article-title: The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. publication-title: J Clin Invest – volume: 119 start-page: 909 year: 2016 end-page: 920 ident: R47 article-title: A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. publication-title: Circ Res – volume: 8 start-page: e42762 year: 2019 ident: R16 article-title: Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. publication-title: Elife – volume: 522 start-page: 62 year: 2015 end-page: 67 ident: R25 article-title: Cardiac lymphatics are heterogeneous in origin and respond to injury. publication-title: Nature – volume: 69 start-page: 313 year: 2012 end-page: 324 ident: R33 article-title: BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. publication-title: Cell Mol Life Sci – volume: 110 start-page: 126 year: 2012 end-page: 144 ident: R35 article-title: Inflammation in myocardial diseases. publication-title: Circ Res – volume: 66 start-page: 939 year: 2017 end-page: 954 ident: R5 article-title: BMP-9 interferes with liver regeneration and promotes liver fibrosis. publication-title: Gut – volume: 42 start-page: 681 year: 2021 end-page: 683 ident: R4 article-title: Heart failure drug treatment: the fantastic four. publication-title: Eur Heart J – volume: 138 start-page: 513 year: 2018 end-page: 526 ident: R11 article-title: Bone morphogenetic protein 9 reduces cardiac fibrosis and improves cardiac function in heart failure. publication-title: Circulation – volume: 143 start-page: 566 year: 2021 end-page: 580 ident: R52 article-title: Endothelial cell indoleamine 2, 3-dioxygenase 1 alters cardiac function after myocardial infarction through kynurenine. publication-title: Circulation – volume: 28 start-page: 285 year: 2017 end-page: 296 ident: R13 article-title: Cardiac lymphatics - a new avenue for yherapeutics? publication-title: Trends Endocrinol Metab – volume: 76 start-page: 735 year: 2020 end-page: 744 ident: R41 article-title: Role of cardiac lymphatics in myocardial edema and fibrosis: JACC review topic of the week. publication-title: J Am Coll Cardiol – volume: 40 start-page: 101866 year: 2021 ident: R50 article-title: Galanin promotes autophagy and alleviates apoptosis in the hypertrophied heart through FoxO1 pathway. publication-title: Redox Biol – volume: 21 start-page: 294 year: 2003 end-page: 301 ident: R28 article-title: An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. publication-title: Nat Biotechnol – volume: 1864 start-page: 709 year: 2018 end-page: 720 ident: R29 article-title: Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. publication-title: Biochim Biophys Acta Mol Basis Dis – volume: 20 start-page: 203 year: 2009 end-page: 212 ident: R9 article-title: Emerging role of bone morphogenetic proteins in angiogenesis. publication-title: Cytokine Growth Factor Rev – volume: 5 start-page: 456 year: 2014 ident: R10 article-title: Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. publication-title: Front Genet – ident: e_1_3_3_40_2 doi: 10.1038/s41598-019-48562-x – ident: e_1_3_3_22_2 doi: 10.1164/rccm.202005-1761OC – ident: e_1_3_3_34_2 doi: 10.1007/s00018-011-0751-1 – ident: e_1_3_3_47_2 doi: 10.1007/s00210-019-01708-0 – ident: e_1_3_3_8_2 doi: 10.1093/cvr/cvab187 – ident: e_1_3_3_36_2 doi: 10.1161/CIRCRESAHA.111.243170 – ident: e_1_3_3_2_2 doi: 10.1016/j.jacc.2014.01.014 – ident: e_1_3_3_13_2 doi: 10.1016/j.cell.2020.06.039 – ident: e_1_3_3_50_2 doi: 10.1038/cddis.2017.227 – ident: e_1_3_3_42_2 doi: 10.1016/j.jacc.2020.05.076 – ident: e_1_3_3_43_2 doi: 10.1056/NEJMcp1803290 – ident: e_1_3_3_12_2 doi: 10.1161/CIRCULATIONAHA.117.031635 – ident: e_1_3_3_24_2 doi: 10.1084/jem.20171868 – ident: e_1_3_3_3_2 doi: 10.1016/S0140-6736(16)30677-8 – ident: e_1_3_3_5_2 doi: 10.1093/eurheartj/ehaa1012 – ident: e_1_3_3_45_2 doi: 10.3389/fphys.2018.01333 – ident: e_1_3_3_51_2 doi: 10.1016/j.redox.2021.101866 – ident: e_1_3_3_26_2 doi: 10.1038/nature14483 – ident: e_1_3_3_41_2 doi: 10.1172/JCI71603 – ident: e_1_3_3_23_2 doi: 10.1146/annurev.cellbio.21.012704.132338 – ident: e_1_3_3_28_2 doi: 10.1182/blood-2011-01-330142 – ident: e_1_3_3_38_2 doi: 10.1056/NEJMoa1505489 – ident: e_1_3_3_46_2 doi: 10.7554/eLife.60311 – ident: e_1_3_3_30_2 doi: 10.1016/j.bbadis.2017.12.008 – ident: e_1_3_3_21_2 doi: 10.1038/s41467-024-46973-7 – ident: e_1_3_3_14_2 doi: 10.1016/j.tem.2016.12.002 – ident: e_1_3_3_55_2 doi: 10.1172/JCI147070 – ident: e_1_3_3_9_2 doi: 10.1074/jbc.M503328200 – ident: e_1_3_3_27_2 doi: 10.1161/CIRCULATIONAHA.121.055727 – ident: e_1_3_3_29_2 doi: 10.1038/nbt795 – ident: e_1_3_3_10_2 doi: 10.1016/j.cytogfr.2009.05.001 – ident: e_1_3_3_35_2 doi: 10.2174/1381612043384718 – ident: e_1_3_3_32_2 doi: 10.1681/ASN.2008050513 – ident: e_1_3_3_4_2 doi: 10.1161/CIRCULATIONAHA.121.057549 – ident: e_1_3_3_7_2 doi: 10.1074/jbc.RA118.002968 – ident: e_1_3_3_16_2 doi: 10.1172/JCI97192 – ident: e_1_3_3_52_2 doi: 10.1161/CIRCRESAHA.119.315807 – ident: e_1_3_3_31_2 doi: 10.1186/s12931-015-0202-x – ident: e_1_3_3_6_2 doi: 10.1136/gutjnl-2016-313314 – ident: e_1_3_3_17_2 doi: 10.7554/eLife.42762 – ident: e_1_3_3_15_2 doi: 10.1161/CIRCULATIONAHA.115.020143 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2010.01.045 – ident: e_1_3_3_49_2 doi: 10.1186/s13020-022-00616-5 – ident: e_1_3_3_53_2 doi: 10.1161/CIRCULATIONAHA.120.050301 – ident: e_1_3_3_44_2 doi: 10.1161/HYPERTENSIONAHA.107.091348 – ident: e_1_3_3_48_2 doi: 10.1161/CIRCRESAHA.116.309202 – ident: e_1_3_3_54_2 doi: 10.2147/IJN.S129274 – ident: e_1_3_3_19_2 doi: 10.1161/CIRCRESAHA.118.313835 – ident: e_1_3_3_11_2 doi: 10.3389/fgene.2014.00456 – ident: e_1_3_3_33_2 doi: 10.1074/jbc.275.24.17937 – ident: e_1_3_3_20_2 doi: 10.1182/blood-2012-12-472142 – ident: e_1_3_3_37_2 doi: 10.1161/CIRCRESAHA.112.265660 – ident: e_1_3_3_39_2 doi: 10.1371/journal.pgen.1000543 – ident: e_1_3_3_18_2 doi: 10.1038/s41586-020-2998-x |
SSID | ssj0006375 |
Score | 2.5000923 |
Snippet | BACKGROUND:
BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose... BMP9 (bone morphogenetic protein 9) is a member of the TGF-β (transforming growth factor β) family of cytokines with pleiotropic effects on glucose metabolism,... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1684 |
SubjectTerms | Animals Energy Metabolism Growth Differentiation Factor 2 - genetics Growth Differentiation Factor 2 - metabolism Humans Lymphatic Vessels - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Mitochondria, Heart - metabolism Mitochondria, Heart - pathology Myocardial Infarction - metabolism Myocardial Infarction - pathology |
Title | Bone Morphogenetic Protein 9 Protects Against Myocardial Infarction by Improving Lymphatic Drainage Function and Triggering DECR1-Mediated Mitochondrial Bioenergetics |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&DO=10.1161/CIRCULATIONAHA.123.065935 https://www.ncbi.nlm.nih.gov/pubmed/39315433 https://www.proquest.com/docview/3108764070 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIlUghKDlCJe2EuIlchpnfT6mORRoUkSViKgv1q69LlHBhsQWCj-IR34js4fjWAkikAfLWsVey_N5dmZ25huEXjMvprbjMsPloSDVDrnhU5cYLe5EoeXHMWEyQfbCGU6tdzN7Vqv92shayjPWDH_srCv5H6nCGMhVVMn-g2TXN4UBOAf5whEkDMe9ZHyWJuKrhFeVwn9EOaJI_Bf9Kxu-OhOpGp1r8P6XWWO8gnVrESl2jRgALkUP5mcZWBitQLiSw7UnWkeIfJ4BLHxZkbM8AV_-WpIXNnr97qVpjGWnDzBax6AZQJMmkewCcjZPBZ21KGHTyfQFGcJ8EeqGYbv6AG3EJXq5Cs1ezW_ypASfDm9ffUrzb8WqK_OJZFbCRz7fioSf883IRtsSJX5af2plDGOWrciOmnzHWKHBFXethqqquNYK2XRUB7rtlcIRK0X37WV3OlK8w0MRGCZNsdGsGFSq7NwX74PBdDQKJv3Z5Ba63Qa3RHTMOP9QstM7RBI7r5_xEJ3oqU7_OFHVHtpycu6ie99TkTexvJFlExvGz-QBuq-9FtxREHyIajw5QsedhGbplxV-g2UesdygOUKHY52ucYx-CoDiCkCxBij2cQFQrAGKS4DiEqCYrfAaoHgNUFwAFBcAxQBQXAIUVwGKKwDFFYA-QtNBf9IdGroxiBES17QNFhKPtqnrc9ejvE0dBugxXZMT26OgH6jNLBZbVgzWf0yIzWMat2zmcuIxOwKD_zE6SOAFPEWYs1bkg09PuegkEVEvojH4PPCDO1LHqSOvEE8QatZ80bzlcyC9Z8cMqpINQLKBkmwdtdeXflXUMftcdFJgIABFL3bvaMLTfBmAHwaWiwVLdB09UeBY35b4BFwhQurIqaAlUMXUf5_22R7TPkd3yq_0BTrIFjl_CRZ5xl7Jz-A3d0vg6A |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+Morphogenetic+Protein+9+Protects+Against+Myocardial+Infarction+by+Improving+Lymphatic+Drainage+Function+and+Triggering+DECR1-Mediated+Mitochondrial+Bioenergetics&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Duan%2C+Zikun&rft.au=Huang%2C+Zhouqing&rft.au=Lei%2C+Wei&rft.au=Zhang%2C+Ke&rft.date=2024-11-19&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=150&rft.issue=21&rft.spage=1684&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.123.065935&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |