Adaptation of Listeria monocytogenes to perturbation of c‐di‐AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system
Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA,...
Saved in:
Published in | Environmental microbiology Vol. 24; no. 9; pp. 4466 - 4488 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in L. monocytogenes. |
---|---|
AbstractList | Summary
The human pathogen
Listeria monocytogenes
synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of
cdaA
,
pdeA
,
pgpH
and
pdeA pgpH
mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the
pdeA pgpH
mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in
cdaA
. The previously reported growth defect of the
cdaA
mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the
cdaA
mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the
cdaA
mutant is suppressed by
codY
mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the
cdaA
suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in
L
.
monocytogenes
. Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in L. monocytogenes. The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes. |
Author | Schwedt, Inge Commichau, Fabian M. Holland, Gudrun Halbedel, Sven Gibhardt, Johannes Scheibner, Katrin Wang, Mengyi Wamp, Sabrina Schmidtke, Kai‐Uwe |
Author_xml | – sequence: 1 givenname: Mengyi surname: Wang fullname: Wang, Mengyi organization: University of Hohenheim – sequence: 2 givenname: Sabrina surname: Wamp fullname: Wamp, Sabrina organization: Robert‐Koch‐Institute – sequence: 3 givenname: Johannes surname: Gibhardt fullname: Gibhardt, Johannes organization: Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya ulitsa 29A – sequence: 4 givenname: Gudrun surname: Holland fullname: Holland, Gudrun organization: ZBS4 – Advanced Light and Electron Microscopy, Robert‐Koch‐Institute, Seestraße 10 – sequence: 5 givenname: Inge surname: Schwedt fullname: Schwedt, Inge organization: University of Hohenheim – sequence: 6 givenname: Kai‐Uwe surname: Schmidtke fullname: Schmidtke, Kai‐Uwe organization: FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus‐Senftenberg – sequence: 7 givenname: Katrin surname: Scheibner fullname: Scheibner, Katrin organization: FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus‐Senftenberg – sequence: 8 givenname: Sven orcidid: 0000-0002-5575-8973 surname: Halbedel fullname: Halbedel, Sven organization: Robert‐Koch‐Institute – sequence: 9 givenname: Fabian M. orcidid: 0000-0003-0323-7479 surname: Commichau fullname: Commichau, Fabian M. email: fabian.commichau@uni-hohenheim.de organization: University of Hohenheim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35688634$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcuOFCEUhokZ41x07c6QuHHTDpeqomrZmYw6SU90oWsC1MEwFlAClUntfASfwIfzSaTtsU3cyIJbvvNxyH-OTkIMgNBzSl7TOi5p07ENG1g9dqRvHqGz483JcU_ZKTrP-Y4QKrggT9Apb7u-73hzhn5sRzUXVVwMOFq8c7lAcgr7GKJZS_wMATIuEc-QypL0kTQ_v30fXZ22tx-wh6J0nFz2eAkjpNmFjF3JOMUJsKsF2Uf19yUVRuxGCMVZV_UK25ht9Kup6FKhL4DzWjvxT9Fjq6YMzx7WC_TpzfXHq3eb3fu3N1fb3cZwQZsNkI5qodqeGDpwBgPTQouRs0FopnvQ3PKhqX9XhlBtO6JGKgAsMYIPQjX8Ar06eOcUvy6Qi_QuG5gmFSAuWbJOtB2hjJGKvvwHvYtLCrU7yQStlGjbvfDyQJkUc05g5ZycV2mVlMh9dHIfjtwHJX9HVytePHgX7WE88n-yqkB7AO7dBOv_fPL69uYg_gVSKalK |
CitedBy_id | crossref_primary_10_1093_femsml_uqad005 crossref_primary_10_1093_femsml_uqad015 crossref_primary_10_1099_mgen_0_001114 crossref_primary_10_1093_femsml_uqad043 |
Cites_doi | 10.7554/eLife.56048 10.1111/j.1365-2958.2011.07953.x 10.1074/jbc.RA119.009246 10.1038/s42003-019-0414-6 10.1111/mmi.14449 10.1371/journal.pgen.1002887 10.1038/embor.2011.77 10.1128/JB.00845-15 10.1128/JB.00138-20 10.1080/15476286.2017.1338241 10.1128/mBio.00341-18 10.1128/JB.00691-19 10.1128/JB.00028-19 10.1126/scisignal.aaf7279 10.1128/JB.02563-14 10.3389/fmicb.2016.00804 10.1111/j.1469-0691.2011.03636.x 10.1126/sciadv.abd7697 10.1371/journal.pgen.1007301 10.1128/JB.01128-13 10.1016/j.mib.2017.11.007 10.3389/fmicb.2017.01910 10.1128/IAI.00317-20 10.1074/jbc.M114.621789 10.1371/journal.pgen.1007525 10.1128/AEM.02316-12 10.1016/j.chom.2016.06.003 10.1128/mBio.01625-20 10.1111/j.1574-6968.2009.01527.x 10.1371/journal.pgen.1007574 10.1074/jbc.M114.619619 10.1371/journal.ppat.1002217 10.1074/jbc.M114.598300 10.1128/mBio.00324-21 10.1016/j.dnarep.2019.03.002 10.1128/JB.00818-09 10.1128/mBio.00282-13 10.1111/mmi.12890 10.1093/nar/gkz219 10.1073/pnas.1917080117 10.1128/AEM.70.11.6887-6891.2004 10.1016/j.chom.2015.05.006 10.1128/IAI.68.12.7069-7077.2000 10.1039/C5MD00351B 10.1038/s41467-021-21306-0 10.1046/j.1365-2958.1996.661421.x 10.1128/mbio.03602-21 10.1111/j.1365-2958.1991.tb01838.x 10.1016/j.febslet.2014.11.022 10.1111/mmi.13277 10.1074/jbc.M114.630418 10.1128/IAI.00147-19 10.1073/pnas.1704756114 10.1016/j.jbc.2021.101317 10.1128/JB.00751-19 10.1021/acs.biochem.5b00633 10.1111/mmi.14205 10.1038/nature15709 10.1016/j.micres.2014.01.002 10.1111/mmi.13304 10.3389/fmicb.2017.01328 10.1074/jbc.RA119.010046 10.1128/JB.00462-18 10.1111/mmi.13281 10.1128/JB.00564-15 10.1074/jbc.M117.818716 10.1128/JB.00918-13 10.1111/1462-2920.14534 10.1016/j.molcel.2008.02.020 10.1371/journal.pgen.1007283 10.1128/JB.00480-15 10.1146/annurev-micro-020518-115943 10.1371/journal.pgen.1005870 10.1126/science.1189801 10.1002/mbo3.1203 10.1111/mmi.14479 10.1128/JB.01041-13 10.1128/mBio.00018-13 10.1002/mbo3.243 10.1016/j.dnarep.2014.12.007 10.1016/j.tim.2017.09.003 10.1038/nrmicro3069 10.1016/j.cell.2006.03.039 10.1111/j.1365-2958.2008.06483.x 10.1371/journal.pgen.1009092 10.1128/mbio.03640-21 10.1126/scisignal.aal3011 10.1093/bioinformatics/bts199 10.1111/1462-2920.15008 10.1111/j.1749-6632.1974.tb43277.x 10.1128/IAI.00700-20 10.1073/pnas.1300428110 10.1371/journal.ppat.1007537 10.1128/JB.00769-13 10.1111/j.1574-695X.2011.00812.x 10.1046/j.1365-2958.2002.03080.x 10.1099/00221287-141-1-41 10.1111/mmi.12873 10.1126/science.1063447 10.1128/AEM.00314-08 10.1016/j.cell.2014.07.046 10.1371/journal.pgen.1007342 10.1111/mmi.13456 10.1128/JB.00307-20 10.1093/femsre/fuz009 10.1111/mmi.13622 10.1128/JB.05510-11 10.1073/pnas.2020653118 10.1016/j.resmic.2003.11.008 10.1038/nm1396 10.1002/mbo3.829 10.1038/nchembio.1363 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 |
DOI | 10.1111/1462-2920.16084 |
DatabaseName | Wiley_OA刊 Wiley Free Archive PubMed CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 4488 |
ExternalDocumentID | 10_1111_1462_2920_16084 35688634 EMI16084 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: CSC Grant – fundername: Deutsche Forschungsgemeinschaft funderid: CO 1139/2‐2 – fundername: Deutsche Forschungsgemeinschaft grantid: CO 1139/2-2 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT NPM AAYXX CITATION 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 |
ID | FETCH-LOGICAL-c3714-e061b7a580c1932e92b7b7d3297b2b8eb3f394370ac01bf60ad17eef0c7397a43 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Sat Aug 17 02:26:18 EDT 2024 Thu Oct 10 19:38:02 EDT 2024 Fri Aug 23 01:46:46 EDT 2024 Sat Sep 28 08:19:29 EDT 2024 Sat Aug 24 00:52:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3714-e061b7a580c1932e92b7b7d3297b2b8eb3f394370ac01bf60ad17eef0c7397a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5575-8973 0000-0003-0323-7479 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16084 |
PMID | 35688634 |
PQID | 2715607554 |
PQPubID | 1066360 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2675601220 proquest_journals_2715607554 crossref_primary_10_1111_1462_2920_16084 pubmed_primary_35688634 wiley_primary_10_1111_1462_2920_16084_EMI16084 |
PublicationCentury | 2000 |
PublicationDate | September 2022 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021b; 12 2017; 8 2013; 4 2015; 589 2011; 62 2019; 15 2015b; 197 2016; 102 2019; 201 2022; 25 2016; 100 2012; 18 2011; 12 2020; 202 2008; 74 2020; 11 2008; 30 2008; 70 2011; 193 2017; 114 2013; 9 2019a; 47 2020; 6 2018; 9 2001; 294 2015; 290 2004; 70 2018; 293 2013; 11 2019; 21 2002; 45 2021; 118 2020; 9 2021a; 17 2016; 198 2013; 195 2012; 28 2013; 110 2018a; 41 2014; 169 2019; 111 1996; 21 2006; 125 2016; 44 2019; 8 2015a; 290 2012; 83 2015; 17 2015; 4 2021; 89 2006; 12 2010; 328 2015; 95 2019b; 77 2019; 2 2000; 68 2015; 54 2009; 293 2015; 527 2014; 196 2012; 78 2014; 158 2018; 26 2011; 7 2016; 12 2016; 99 1991; 5 2004; 155 2016; 7 2021; 10 2015; 27 2021; 12 2017; 14 2020; 74 2009; 191 2019; 87 2019; 43 2017; 10 2022; 8 2015; 197 2015; 198 2016; 20 2018b; 14 2020; 117 2020; 113 2020; 22 1974; 235 2021; 297 2019; 294 1995; 141 2017; 104 2016; 9 2018; 14 2012; 8 e_1_2_6_114_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_101_1 Krüger L. (e_1_2_6_55_1) 2022; 8 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_112_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_78_1 Dutta S. (e_1_2_6_32_1) 2022; 25 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 Han A.R. (e_1_2_6_44_1) 2016; 44 e_1_2_6_100_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 Rorvik G.H. (e_1_2_6_84_1) 2021; 10 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_67_1 The W.K. (e_1_2_6_96_1) 2019; 201 |
References_xml | – volume: 21 start-page: 1287 year: 2019 end-page: 1305 article-title: Identification of the first glyphosate transporter by genomic adaptation publication-title: Environ Microbiol – volume: 14 year: 2018 article-title: Enhanced uptake of potassium or glycine betaine or export of cyclic‐di‐AMP restores osmoresistance in a high cyclic‐di‐AMP mutant publication-title: PLoS Genet – volume: 4 start-page: 361 year: 2015 end-page: 374 article-title: Molecular basis for the recognition of cyclic‐di‐AMP by PstA, a PII‐like signal transduction protein publication-title: MicrobiologyOpen – volume: 9 year: 2020 article-title: PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM publication-title: Elife – volume: 47 start-page: 5141 year: 2019a end-page: 5154 article-title: DisA regulates RecA‐mediated DNA strand exchange publication-title: Nucleic Acids Res – volume: 114 start-page: E7226 year: 2017 end-page: E7235 article-title: Structural and functional studies of pyruvate carboxylase regulation by cyclic di‐AMP in lactic acid bacteria publication-title: Proc Natl Acad Sci U S A – volume: 158 start-page: 1389 year: 2014 end-page: 1401 article-title: The cyclic dinucleotide c‐di‐AMP is an allosteric regulator of metabolic enzyme function publication-title: Cell – volume: 202 start-page: e00138‐20 year: 2020 article-title: Two ways to convert a low‐affinity potassium channel to high affinity: control of KtrCD by glutamate publication-title: J Bacteriol – volume: 12 start-page: 515 year: 2006 end-page: 517 article-title: Coexpression of virulence and fosfomycin susceptibility in : molecular basis of an antimicrobial ‐ paradox publication-title: Nat Med – volume: 74 start-page: 159 year: 2020 end-page: 179 article-title: Cyclic di‐AMP signaling in bacteria publication-title: Annu Rev Microbiol – volume: 8 year: 2019 article-title: Cyclic nucleotides in archaea: cyclic di‐AMP in the archaeon and its putative role publication-title: MicrobiologyOpen – volume: 70 start-page: 1307 year: 2008 end-page: 1322 article-title: A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway publication-title: Mol Microbiol – volume: 43 start-page: 389 year: 2019 end-page: 400 article-title: Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria publication-title: FEMS Microbiol Rev – volume: 14 start-page: 1592 year: 2017 end-page: 1605 article-title: Regulation of a muralytic enzyme‐encoding gene by two non‐coding RNAs publication-title: RNA Biol – volume: 125 start-page: 679 year: 2006 end-page: 690 article-title: A checkpoint protein that scans the chromosome for damage at the start of sporulation in publication-title: Cell – volume: 111 start-page: 1009 year: 2019 end-page: 1024 article-title: Aurantimycin resistance genes contribute to survival of during lifetime in the environment publication-title: Mol Microbiol – volume: 198 start-page: 416 year: 2016 end-page: 426 article-title: Phenotypes associated with the essential diadenylate cyclase CdaA and its potential regulator CdaR in the human pathogen publication-title: J Bacteriol – volume: 293 start-page: 3180 year: 2018 end-page: 3200 article-title: Cyclic di‐adenosine monophosphate (c‐di‐AMP) is required for osmotic regulation in but dispensable for viability in anaerobic conditions publication-title: J Biol Chem – volume: 12 year: 2016 article-title: Systems level analyses reveal multiple regulatory activities of CodY controlling metabolism, motility and virulence in publication-title: PLoS Genet – volume: 201 start-page: e00028‐19 year: 2019 article-title: The KupA and KupB proteins of IL1403 are novel c‐di‐AMP receptor proteins responsible for potassium uptake publication-title: J Bacteriol – volume: 100 start-page: 108 year: 2016 end-page: 124 article-title: Salt‐sensitivity of σ(H) and Spo0A prevents sporulation of at high osmolarity avoiding death during cellular differentiation publication-title: Mol Microbiol – volume: 235 start-page: 364 year: 1974 end-page: 386 article-title: The mechanism of action of fosfomycin (phosphonomycin) publication-title: Ann N Y Acad Sci – volume: 10 year: 2021 article-title: The c‐di‐AMP signaling system influences stress tolerance and biofilm formation of publication-title: Microbiology – volume: 202 start-page: e00307‐20 year: 2020 article-title: c‐di‐AMP accumulation impairs muropeptide synthesis in publication-title: J Bacteriol – volume: 4 start-page: e00282‐13 year: 2013 article-title: Cyclic di‐AMP is critical for growth, cell wall homeostasis, and establishment of infection publication-title: mBio – volume: 54 start-page: 4936 year: 2015 end-page: 4951 article-title: Structural insights into the distinct binding mode of cyclic di‐AMP with SaCpaA‐RCK publication-title: Biochemistry – volume: 18 start-page: 4 year: 2012 end-page: 7 article-title: Fosfomycin: an old–new antibiotic publication-title: Clin Microbiol Infect – volume: 83 start-page: 623 year: 2012 end-page: 639 article-title: Analysis of the role of sigma(M) in beta‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis publication-title: Mol Microbiol – volume: 6 start-page: eabd7697 year: 2020 article-title: Gating by ionic strength and safety check by cyclic‐di‐AMP in the ABC transporter OpuA publication-title: Sci Adv – volume: 198 start-page: 98 year: 2015 end-page: 110 article-title: Binding of cyclic di‐AMP to the sensor kinase KdpD occurs the universal stress protein domain and downregulates the expression of the Kdp potassium transporter publication-title: J Bacteriol – volume: 62 start-page: 123 year: 2011 end-page: 139 article-title: The CodY pleiotropic repressor controls virulence in gram‐positive pathogens publication-title: FEMS Immunol Med Microbiol – volume: 196 start-page: 189 year: 2014 end-page: 201 article-title: GTP dysregulation in cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshifts and regulate biosynthesis genes publication-title: J Bacteriol – volume: 293 start-page: 177 year: 2009 end-page: 187 article-title: Genetic characterization of oligopeptide uptake systems in publication-title: FEMS Microbiol Lett – volume: 2 start-page: 151 year: 2019 article-title: A c‐di‐AMP riboswitch controlling operon transcription regulates the potassium transporter system in publication-title: Commun Biol – volume: 202 start-page: e00751‐19 year: 2020 article-title: Mild stress conditions during laboratory culture promote the proliferation of mutations that negatively affect sigma B activity in publication-title: J Bacteriol – volume: 8 start-page: 1910 year: 2017 article-title: Home alone: elimination of all but one sigma factor in allows prediction of new roles for σB publication-title: Front Microbiol – volume: 290 start-page: 2888 year: 2015 end-page: 2901 article-title: Complex structure and biochemical characterization of the cyclic diadenylate monophosphate (c‐di‐AMP)‐binding protein PstA, the founding member of a new signa transduction protein family publication-title: J Biol Chem – volume: 201 start-page: e00462‐18 year: 2019 article-title: Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di‐AMP in bacteria publication-title: J Bacteriol – volume: 193 start-page: 5637 year: 2011 end-page: 5648 article-title: Dissecting complex metabolic integration provides direct genetic evidence for CodY activation by guanine nucleotides publication-title: J Bacteriol – volume: 99 start-page: 1015 year: 2016 end-page: 1027 article-title: Cyclic‐di‐AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in publication-title: Mol Microbiol – volume: 294 start-page: 16020 year: 2019 end-page: 16033 article-title: c‐di‐AMP assists osmoadaptation by regulating the potassium transporters KimA and KtrCD publication-title: J Biol Chem – volume: 201 start-page: e00597‐18 year: 2019 article-title: Increased intracellular cyclic di‐AMP levels sensitize subsp. to osmotic stress and reduce biofilm formation and adherence on intestinal cells publication-title: J Bacteriol – volume: 7 start-page: 804 year: 2016 article-title: Second messenger signaling in : accumulation of cyclic di‐AMP inhibits biofilm formation publication-title: Front Microbiol – volume: 95 start-page: 332 year: 2015 end-page: 351 article-title: Discrete and overlapping functions of peptidoglycan synthases in growth, cell division and virulence of publication-title: Mol Microbiol – volume: 297 year: 2021 article-title: Structural basis for the inhibition of the c‐di‐AMP cyclase CdaA by the phosphoglucomutase GlmM publication-title: J Biol Chem – volume: 14 year: 2018 article-title: Controlled branched‐chain amino acids auxotrophy in allows isoleucine to serve as a host signal and virulence effector publication-title: PLoS Genet – volume: 328 start-page: 1703 year: 2010 end-page: 1705 article-title: c‐di‐AMP secreted by intracellular activates a host type I interferon response publication-title: Science – volume: 8 start-page: 1328 year: 2017 article-title: Identification of the components involved in cyclic di‐AMP signaling in publication-title: Front Microbiol – volume: 195 start-page: 5123 year: 2013 end-page: 5132 article-title: Two DHH subfamily 1 proteins in possess cyclic di‐AMP phosphodiesterase activity and affect bacterial growth and virulence publication-title: J Bacteriol – volume: 294 start-page: 10463 year: 2019 end-page: 10470 article-title: Crystal structures of the c‐di‐AMP‐synthesizing enzyme CdaA publication-title: J Biol Chem – volume: 10 start-page: eaal3011 year: 2017 article-title: Control of potassium homeostasis is an essential function of the second messenger cyclic di‐AMP in publication-title: Sci Signal – volume: 44 start-page: 9483 year: 2016 end-page: 9493 article-title: The structure of the pleiotropic transcription regulator CodY provides insight into its GTP‐sensing mechanism publication-title: Nucleic Acids Res – volume: 45 start-page: 1095 year: 2002 end-page: 1106 article-title: bile salt hydrolase is a PrfA‐regulated virulence factor involved in the intestinal and hepatic phases of listeriosis publication-title: Mol Microbiol – volume: 102 start-page: 233 year: 2016 end-page: 243 article-title: Cyclic di‐AMP targets the cystathione beta‐synthase domain of the osmolyte transporter OpuC publication-title: Mol Microbiol – volume: 77 start-page: 45 year: 2019b end-page: 57 article-title: RadA/Sms contributes to chromosomal transformation and DNA repair in concert with RecA and circumvents replicative stress in concert with DisA publication-title: DNA Repair (Amst) – volume: 15 year: 2019 article-title: Inhibition of the c‐di‐AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM publication-title: PLoS Pathog – volume: 4 start-page: e00018‐13 year: 2013 article-title: STING‐dependent recognition of cyclic di‐AMP mediates type I interferon responses during infection publication-title: mBio – volume: 28 start-page: 1647 year: 2012 end-page: 1649 article-title: Geneious basic: an intergrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics – volume: 74 start-page: 3921 year: 2008 end-page: 3934 article-title: Tools for functional postgenomic analysis of publication-title: Appl Environ Microbiol – volume: 197 start-page: 3265 year: 2015b end-page: 3274 article-title: An essential poison: synthesis and degradation of cyclic di‐AMP in publication-title: J Bacteriol – volume: 12 start-page: e00324‐21 year: 2021 article-title: Cyclic di‐AMP oversight of counter‐ion osmolyte pools impacts intrinsic cefuroxime resistance in publication-title: mBio – volume: 290 start-page: 5826 year: 2015 end-page: 5839 article-title: Cross‐talk between two nucleotide‐signaling pathways in publication-title: J Biol Chem – volume: 14 year: 2018b article-title: Cyclic di‐AMP regulation of osmotic homeostasis is essential in group B publication-title: PLoS Genet – volume: 89 start-page: e00700 year: 2021 end-page: e00720 article-title: Identification of genes contributing to oxidative stress resistance under conditions relevant to host infection publication-title: Infect Immun – volume: 11 start-page: e1625‐20 year: 2020 article-title: (p)ppGpp and c‐di‐AMP homeostasis is controlled by CbpB in publication-title: mBio – volume: 118 year: 2021 article-title: c‐di‐AMP, a likely master regulator of bacterial K(+) homeostasis machinery, activates a K(+) exporter publication-title: Proc Natl Acad Sci U S A – volume: 117 start-page: 7392 year: 2020 end-page: 7400 article-title: c‐di‐AMP hydrolysis by the phosphodiesterase AtaC promotes differentiation of multicellular bacteria publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: e00341‐18 year: 2018 article-title: Cyclic di‐AMP acts as an extracellular signal that impacts biofilm formation and plant attachment publication-title: mBio – volume: 141 start-page: 41 year: 1995 end-page: 49 article-title: The role of peptide metabolism in the growth of ATCC 23074 at high osmolarity publication-title: Microbiology – volume: 8 year: 2022 article-title: Sustained control of pyruvate carboxylase by the essential second messenger cyclic di‐AMP in publication-title: mBio – volume: 113 start-page: 1085 year: 2020 end-page: 1110 article-title: Identification of the main glutamine and glutamate transporters in and their impact on c‐di‐AMP production publication-title: Mol Microbiol – volume: 113 start-page: 841 year: 2020 end-page: 858 article-title: Genome‐wide identification of CodY‐binding sites publication-title: Mol Microbiol – volume: 202 start-page: e00691‐19 year: 2020 article-title: Bacterial second messenger cyclic di‐AMP modulates the competence state in publication-title: J Bacteriol – volume: 89 start-page: e00317‐20 year: 2021 article-title: c‐di‐AMP‐regulated K importer KtrAB affects biofilm formation, stress response, and SpeB expression in publication-title: Infect Immun – volume: 20 start-page: 49 year: 2016 end-page: 59 article-title: Group B degrades cyclic‐di‐AMP to modulate STING‐dependent type I interferon production publication-title: Cell Host Microbe – volume: 68 start-page: 7069 year: 2000 end-page: 7077 article-title: OppA of , an oligopeptide‐binding protein required for bacterial growth at low temperature and involved in intracellular survival publication-title: Infect Immun – volume: 14 year: 2018 article-title: Epistatic control of intrinsic resistance by virulence genes in publication-title: PLoS Genet – volume: 9 start-page: 834 year: 2013 end-page: 839 article-title: Riboswitches in eubacteria sense the second messenger c‐di‐AMP publication-title: Nat Chem Biol – volume: 9 start-page: ra81 year: 2016 article-title: The second messenger c‐di‐AMP inhibits the osmolyte uptake system OpuC in publication-title: Sci Signal – volume: 12 start-page: 594 year: 2011 end-page: 601 article-title: c‐di‐AMP reports DNA integrity during sporulation in publication-title: EMBO Rep – volume: 99 start-page: 945 year: 2016 end-page: 959 article-title: Cyclic di‐AMP mediates biofilm formation publication-title: Mol Microbiol – volume: 155 start-page: 80 year: 2004 end-page: 86 article-title: The operon of encodes an ABC permease transporting methionine sulfoxide, D‐ and L‐methionine publication-title: Res Microbiol – volume: 17 start-page: 788 year: 2015 end-page: 798 article-title: The PAMP c‐di‐AMP is essential for growth in rich but not in minimal media due to a toxic increase in (p)ppGpp publication-title: Cell Host Microbe – volume: 196 start-page: 614 year: 2014 end-page: 623 article-title: Cyclic di‐AMP impairs potassium uptake mediated by a cyclic di‐AMP binding protein in publication-title: J Bacteriol – volume: 95 start-page: 624 year: 2015 end-page: 644 article-title: The metabolic regulator CodY links metabolism to virulence by directly activating the virulence regulatory gene publication-title: Mol Microbiol – volume: 14 year: 2018 article-title: High‐throughput interaction screens illuminate the role of c‐di‐AMP in cyanobacterial nighttime survival publication-title: PLoS Genet – volume: 104 start-page: 212 year: 2017 end-page: 233 article-title: c‐di‐AMP modulates central metabolism to regulate growth, antibiotic resistance and osmoregulation publication-title: Mol Microbiol – volume: 17 year: 2021a article-title: Essentiality of c‐di‐AMP in : bypassing mutations converging in potassium and glutamate homeostasis publication-title: PLoS Genet – volume: 290 start-page: 3069 year: 2015a end-page: 3080 article-title: Identification, characterization, and structure analysis of the cyclic di‐AMP‐binding PII‐like signal transduction protein DarA publication-title: J Biol Chem – volume: 30 start-page: 167 year: 2008 end-page: 178 article-title: Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates publication-title: Mol Cell – volume: 26 start-page: 175 year: 2018 end-page: 185 article-title: A delicate connection: c‐di‐AMP affects cell integrity by controlling osmolyte transport publication-title: Trends Microbiol – volume: 197 start-page: 1330 year: 2015 end-page: 1338 article-title: Role of branched‐chain amino acid transport in CodY activity publication-title: J Bacteriol – volume: 196 start-page: 515 year: 2014 end-page: 526 article-title: The γ‐aminobutyrate permease GabP serves as the third proline transporter of publication-title: J Bacteriol – volume: 78 start-page: 7753 year: 2012 end-page: 7759 article-title: Heat resistance and salt hypersensitivity in due to spontaneous mutation of llmg_1816 ( ) induced by high‐temperature growth publication-title: Appl Environ Microbiol – volume: 12 start-page: 1210 year: 2021b article-title: A meet‐up oft wo second messengers: the c‐di‐AMP receptor DarB controls (p)ppGpp synthesis in publication-title: Nat Commun – volume: 290 start-page: 6596 year: 2015 end-page: 6606 article-title: Structural and biochemical analysis of the essential diadenylate cyclase CdaA from publication-title: J Biol Chem – volume: 5 start-page: 173 year: 1991 end-page: 185 article-title: The oligopeptide transport system of plays a role in the initiation of sporulation publication-title: Mol Microbiol – volume: 7 year: 2011 article-title: c‐di‐AMP is a new second messenger in with a role in controlling cell size and envelope stress publication-title: PLoS Pathog – volume: 22 start-page: 2771 year: 2020 end-page: 2791 article-title: An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c‐di‐AMP in publication-title: Environ Microbiol – volume: 21 start-page: 1087 year: 1996 end-page: 1099 article-title: Molecular characterization of group A streptococcal (GAS) oligopeptide permease (Opp) and its effect on cysteine protease production publication-title: Mol Microbiol – volume: 8 year: 2012 article-title: Integrative genomic analysis identifies isoleucine and CodY as regulators of virulence publication-title: PLoS Genet – volume: 527 start-page: 59 year: 2015 end-page: 63 article-title: Ion channels enable electrical communication in bacterial communities publication-title: Nature – volume: 11 start-page: 513 year: 2013 end-page: 524 article-title: Cyclic di‐AMP: another second messenger enters the fray publication-title: Nat Rev Microbiol – volume: 7 start-page: 28 year: 2016 article-title: Molecular basis for resistance against phosphonate antibiotics and herbicides publication-title: MedChemComm – volume: 87 start-page: e00147‐19 year: 2019 article-title: The second messenger c‐di‐AMP regulates diverse cellular pathways involved in stress response, biofilm formation, cell wall homeostasis, SpeB expression, and virulence in publication-title: Infect Immun – volume: 70 start-page: 6887 year: 2004 end-page: 6891 article-title: New vector for efficient allelic replacement in naturally transformable, low‐GC content, Gram‐positive bacteria publication-title: Appl Environ Microbiol – volume: 191 start-page: 6865 year: 2009 end-page: 6876 article-title: Genetic and biochemical analysis of the interaction of CodY with branched‐chain amino acids publication-title: J Bacteriol – volume: 169 start-page: 749 year: 2014 end-page: 758 article-title: Functional analysis of c‐di‐AMP phosphodiesterase, GdpP, in serotype 2 publication-title: Microbiol Res – volume: 110 start-page: 7026 year: 2013 end-page: 7031 article-title: Genome‐wide identification of CodY‐binding sites at single‐nucleotide resolution publication-title: Proc Natl Acad Sci U S A – volume: 25 year: 2022 article-title: BrnQ‐type branched‐chain amino acid transporters influence growth and virulence publication-title: mBio – volume: 589 start-page: 45 year: 2015 end-page: 51 article-title: c‐di‐AMP recognition by PstA publication-title: FEBS Lett – volume: 41 start-page: 21 year: 2018a end-page: 28 article-title: Cyclic di‐AMP in host‐pathogen interactions publication-title: Curr Opin Microbiol – volume: 294 start-page: 849 year: 2001 end-page: 852 article-title: Comparative genomics of species publication-title: Science – volume: 27 start-page: 1 year: 2015 end-page: 8 article-title: DisA and c‐di‐AMP act at the intersection between DNA‐damage response and stress homeostasis in exponentially growing cells publication-title: DNA Repair (Amst) – ident: e_1_2_6_102_1 doi: 10.7554/eLife.56048 – ident: e_1_2_6_61_1 doi: 10.1111/j.1365-2958.2011.07953.x – ident: e_1_2_6_46_1 doi: 10.1074/jbc.RA119.009246 – ident: e_1_2_6_103_1 doi: 10.1038/s42003-019-0414-6 – ident: e_1_2_6_10_1 doi: 10.1111/mmi.14449 – ident: e_1_2_6_60_1 doi: 10.1371/journal.pgen.1002887 – ident: e_1_2_6_70_1 doi: 10.1038/embor.2011.77 – ident: e_1_2_6_81_1 doi: 10.1128/JB.00845-15 – ident: e_1_2_6_54_1 doi: 10.1128/JB.00138-20 – ident: e_1_2_6_93_1 doi: 10.1080/15476286.2017.1338241 – ident: e_1_2_6_100_1 doi: 10.1128/mBio.00341-18 – ident: e_1_2_6_112_1 doi: 10.1128/JB.00691-19 – ident: e_1_2_6_79_1 doi: 10.1128/JB.00028-19 – ident: e_1_2_6_87_1 doi: 10.1126/scisignal.aaf7279 – ident: e_1_2_6_8_1 doi: 10.1128/JB.02563-14 – ident: e_1_2_6_43_1 doi: 10.3389/fmicb.2016.00804 – ident: e_1_2_6_80_1 doi: 10.1111/j.1469-0691.2011.03636.x – ident: e_1_2_6_90_1 doi: 10.1126/sciadv.abd7697 – ident: e_1_2_6_86_1 doi: 10.1371/journal.pgen.1007301 – ident: e_1_2_6_111_1 doi: 10.1128/JB.01128-13 – ident: e_1_2_6_27_1 doi: 10.1016/j.mib.2017.11.007 – ident: e_1_2_6_57_1 doi: 10.3389/fmicb.2017.01910 – ident: e_1_2_6_34_1 doi: 10.1128/IAI.00317-20 – ident: e_1_2_6_16_1 doi: 10.1074/jbc.M114.621789 – ident: e_1_2_6_88_1 doi: 10.1371/journal.pgen.1007525 – ident: e_1_2_6_91_1 doi: 10.1128/AEM.02316-12 – ident: e_1_2_6_2_1 doi: 10.1016/j.chom.2016.06.003 – ident: e_1_2_6_74_1 doi: 10.1128/mBio.01625-20 – ident: e_1_2_6_69_1 doi: 10.1111/j.1574-6968.2009.01527.x – ident: e_1_2_6_75_1 doi: 10.1371/journal.pgen.1007574 – ident: e_1_2_6_40_1 doi: 10.1074/jbc.M114.619619 – ident: e_1_2_6_24_1 doi: 10.1371/journal.ppat.1002217 – ident: e_1_2_6_25_1 doi: 10.1074/jbc.M114.598300 – ident: e_1_2_6_76_1 doi: 10.1128/mBio.00324-21 – ident: e_1_2_6_98_1 doi: 10.1016/j.dnarep.2019.03.002 – ident: e_1_2_6_101_1 doi: 10.1128/JB.00818-09 – ident: e_1_2_6_108_1 doi: 10.1128/mBio.00282-13 – ident: e_1_2_6_59_1 doi: 10.1111/mmi.12890 – ident: e_1_2_6_97_1 doi: 10.1093/nar/gkz219 – ident: e_1_2_6_56_1 doi: 10.1073/pnas.1917080117 – ident: e_1_2_6_3_1 doi: 10.1128/AEM.70.11.6887-6891.2004 – ident: e_1_2_6_105_1 doi: 10.1016/j.chom.2015.05.006 – ident: e_1_2_6_12_1 doi: 10.1128/IAI.68.12.7069-7077.2000 – ident: e_1_2_6_18_1 doi: 10.1039/C5MD00351B – volume: 201 start-page: e00597‐18 year: 2019 ident: e_1_2_6_96_1 article-title: Increased intracellular cyclic di‐AMP levels sensitize Streptococcus gallolyticus subsp. gallolyticus to osmotic stress and reduce biofilm formation and adherence on intestinal cells publication-title: J Bacteriol contributor: fullname: The W.K. – ident: e_1_2_6_53_1 doi: 10.1038/s41467-021-21306-0 – ident: e_1_2_6_77_1 doi: 10.1046/j.1365-2958.1996.661421.x – volume: 8 year: 2022 ident: e_1_2_6_55_1 article-title: Sustained control of pyruvate carboxylase by the essential second messenger cyclic di‐AMP in Bacillus subtilis publication-title: mBio doi: 10.1128/mbio.03602-21 contributor: fullname: Krüger L. – ident: e_1_2_6_73_1 doi: 10.1111/j.1365-2958.1991.tb01838.x – ident: e_1_2_6_67_1 doi: 10.1016/j.febslet.2014.11.022 – ident: e_1_2_6_72_1 doi: 10.1111/mmi.13277 – volume: 44 start-page: 9483 year: 2016 ident: e_1_2_6_44_1 article-title: The structure of the pleiotropic transcription regulator CodY provides insight into its GTP‐sensing mechanism publication-title: Nucleic Acids Res contributor: fullname: Han A.R. – ident: e_1_2_6_85_1 doi: 10.1074/jbc.M114.630418 – ident: e_1_2_6_33_1 doi: 10.1128/IAI.00147-19 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.1704756114 – ident: e_1_2_6_71_1 doi: 10.1016/j.jbc.2021.101317 – ident: e_1_2_6_39_1 doi: 10.1128/JB.00751-19 – ident: e_1_2_6_19_1 doi: 10.1021/acs.biochem.5b00633 – ident: e_1_2_6_45_1 doi: 10.1111/mmi.14205 – ident: e_1_2_6_78_1 doi: 10.1038/nature15709 – ident: e_1_2_6_29_1 doi: 10.1016/j.micres.2014.01.002 – ident: e_1_2_6_107_1 doi: 10.1111/mmi.13304 – ident: e_1_2_6_11_1 doi: 10.3389/fmicb.2017.01328 – ident: e_1_2_6_37_1 doi: 10.1074/jbc.RA119.010046 – ident: e_1_2_6_23_1 doi: 10.1128/JB.00462-18 – ident: e_1_2_6_115_1 doi: 10.1111/mmi.13281 – ident: e_1_2_6_42_1 doi: 10.1128/JB.00564-15 – ident: e_1_2_6_114_1 doi: 10.1074/jbc.M117.818716 – ident: e_1_2_6_51_1 doi: 10.1128/JB.00918-13 – ident: e_1_2_6_106_1 doi: 10.1111/1462-2920.14534 – ident: e_1_2_6_109_1 doi: 10.1016/j.molcel.2008.02.020 – ident: e_1_2_6_14_1 doi: 10.1371/journal.pgen.1007283 – ident: e_1_2_6_66_1 doi: 10.1128/JB.00480-15 – ident: e_1_2_6_94_1 doi: 10.1146/annurev-micro-020518-115943 – ident: e_1_2_6_58_1 doi: 10.1371/journal.pgen.1005870 – ident: e_1_2_6_110_1 doi: 10.1126/science.1189801 – volume: 10 year: 2021 ident: e_1_2_6_84_1 article-title: The c‐di‐AMP signaling system influences stress tolerance and biofilm formation of Streptococcus mitis publication-title: Microbiology doi: 10.1002/mbo3.1203 contributor: fullname: Rorvik G.H. – ident: e_1_2_6_113_1 doi: 10.1111/mmi.14479 – ident: e_1_2_6_5_1 doi: 10.1128/JB.01041-13 – ident: e_1_2_6_6_1 doi: 10.1128/mBio.00018-13 – ident: e_1_2_6_20_1 doi: 10.1002/mbo3.243 – ident: e_1_2_6_35_1 doi: 10.1016/j.dnarep.2014.12.007 – ident: e_1_2_6_22_1 doi: 10.1016/j.tim.2017.09.003 – ident: e_1_2_6_26_1 doi: 10.1038/nrmicro3069 – ident: e_1_2_6_7_1 doi: 10.1016/j.cell.2006.03.039 – ident: e_1_2_6_30_1 doi: 10.1111/j.1365-2958.2008.06483.x – ident: e_1_2_6_52_1 doi: 10.1371/journal.pgen.1009092 – volume: 25 year: 2022 ident: e_1_2_6_32_1 article-title: BrnQ‐type branched‐chain amino acid transporters influence Bacillus anthracis growth and virulence publication-title: mBio doi: 10.1128/mbio.03640-21 contributor: fullname: Dutta S. – ident: e_1_2_6_41_1 doi: 10.1126/scisignal.aal3011 – ident: e_1_2_6_50_1 doi: 10.1093/bioinformatics/bts199 – ident: e_1_2_6_36_1 doi: 10.1111/1462-2920.15008 – ident: e_1_2_6_49_1 doi: 10.1111/j.1749-6632.1974.tb43277.x – ident: e_1_2_6_62_1 doi: 10.1128/IAI.00700-20 – ident: e_1_2_6_9_1 doi: 10.1073/pnas.1300428110 – ident: e_1_2_6_99_1 doi: 10.1371/journal.ppat.1007537 – ident: e_1_2_6_4_1 doi: 10.1128/JB.00769-13 – ident: e_1_2_6_92_1 doi: 10.1111/j.1574-695X.2011.00812.x – ident: e_1_2_6_31_1 doi: 10.1046/j.1365-2958.2002.03080.x – ident: e_1_2_6_63_1 doi: 10.1099/00221287-141-1-41 – ident: e_1_2_6_82_1 doi: 10.1111/mmi.12873 – ident: e_1_2_6_38_1 doi: 10.1126/science.1063447 – ident: e_1_2_6_65_1 doi: 10.1128/AEM.00314-08 – ident: e_1_2_6_95_1 doi: 10.1016/j.cell.2014.07.046 – ident: e_1_2_6_28_1 doi: 10.1371/journal.pgen.1007342 – ident: e_1_2_6_48_1 doi: 10.1111/mmi.13456 – ident: e_1_2_6_64_1 doi: 10.1128/JB.00307-20 – ident: e_1_2_6_83_1 doi: 10.1093/femsre/fuz009 – ident: e_1_2_6_104_1 doi: 10.1111/mmi.13622 – ident: e_1_2_6_15_1 doi: 10.1128/JB.05510-11 – ident: e_1_2_6_17_1 doi: 10.1073/pnas.2020653118 – ident: e_1_2_6_47_1 doi: 10.1016/j.resmic.2003.11.008 – ident: e_1_2_6_89_1 doi: 10.1038/nm1396 – ident: e_1_2_6_13_1 doi: 10.1002/mbo3.829 – ident: e_1_2_6_68_1 doi: 10.1038/nchembio.1363 |
SSID | ssj0017370 |
Score | 2.4703012 |
Snippet | Summary
The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH... The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH... Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH... The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4466 |
SubjectTerms | AMP Antibiotics Bacteria Defects Deoxyribonucleic acid DNA Fosfomycin Growth Homeostasis Isoleucine Listeria Listeria monocytogenes Metabolism Mutation Pathogens Perturbation Phenotypes Suppressor mutant Transportation systems Uptake |
Title | Adaptation of Listeria monocytogenes to perturbation of c‐di‐AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16084 https://www.ncbi.nlm.nih.gov/pubmed/35688634 https://www.proquest.com/docview/2715607554 https://search.proquest.com/docview/2675601220 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7SQKCX_qR_m6ZBgR5ycbBl2bKOS2kIpQkhNJCbkWS5mHTtZe09bE99hDxBH65P0hnLdpv0UEovxuCRLEsz1jfS6BuAt4VSGj2NBN0SpQKRWB4oUWr0eXQYZTbORE-kfXaenl6JD9fJGE1IZ2E8P8S04EaW0f-vycC1aX8zcjRxHlCuJVogyYgRlOj0CBZdTgRSkYz7dHGDbMQHch-K5blX_u689AfYvItd-8nn5DGYsdk-5uTmeN2ZY_v1HqPjf33XE3g0QFM297r0FLZcvQs7Plnl5hl8nxd66TfuWVOyj6QfqL0M9bixm675TH9N1jVs6VY4j5lJ0v74dltUeJmfXbCF61DtvlTtgtHxtRVlzmZV1zIKc2QVFmgXjf71Jl0XrCp8SBNWr1nZIM5ebCyKrlHoxjFPRv0crk7ef3p3GgzZHQJLLIGBQyRhpE6y0BKIdIobaWQRcyUNNxk6-WWsBI6ftmFkyjTURSSdK0MrEUNpEb-A7bqp3StgQjl05E1hlJEitQqrTHUqrJPobUpuZnA0jm2-9CQe-ej8UHfn1N15390z2B_HPh-suc25pPPmEpHXDA6nx2iHtLmia9esUQY9r5T2KcMZvPQ6M70rTtIsS2Ms7Uf-b43I0QT7m71_LfAaHnI6n9EHwe3DdrdauzeImjpzAA-4uDjozeMnS7IO_A |
link.rule.ids | 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTtwwcERBVbmglj5YSosr9dBLpKzjxPFxhYq27S7iABK3yHacKqKbrHazh73xCXwBH8eXMBNnU2gPVS9RpIztyDPjmfG8AD7nSmm0NGI0S5QKRGx5oESh0ebR4TC1USraQtrTs2R8Kb5fxVePcmF8fYj-wo04oz2vicHpQvoRlyOP84CaLdENSSqewY6gcnBU3Vmc954EGbUN4zrgIe_K-1A0zx8TPJVMf6mbT7XXVvycvoS9Tm9kI4_oV7Dlqn147jtJrl_D3SjXc-9VZ3XBJoQ8JC2GRFbbdVP_pCONNTWbuwUKGdND2vub27zEx2h6zmauQZr4VS5njHLLFtTWmpXNklEMIitxwHJW698r6SpnZe7jjXB6zYoaleDZ2iLoCoGuHfOVot_A5enXi5Nx0LVeCCyV8AscinkjdZyGljQ8p7iRRuYRV9Jwk6IFXkRK4NZqGw5NkYQ6H0rnitBKVHC0iN7CdlVX7gCYUA6tbJMbZaRIrMIpE50I6ySagpKbAXzZbHs29xU2so1lQhjKCENZi6EBHG3QknWstsy4pGRwiWrRAD71n5FJyPOhK1evEAbNooSciOEA3nl09mtFcZKmSYSjPbn96ycy5I_25fB_BxzDi_HFdJJNvp39eA-7nBIp2mi1I9huFiv3AdWbxnxs6fcBOsjw8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtNAcFRagbggyqMESlkkDlwsOeu113uMgKj0pRyoxM3al5HVxo4S55BbP6FfwMfxJcx4HUPhgLjYljy7a-3MeGZ2XgDvnFIaLY0UzRKlIpFaHilRarR5dDzObZKLrpD2-UV2fClOvqbbaELKhQn1IYYDN-KM7n9NDL5w5W9MjizOI-q1RAckubgHewLvFNXHxWxwJMik6xfXA495X92Hgnn-mOCuYPpL27yrvHbSZ_oYHvVqI5sEPO_Djq-fwP3QSHLzFL5PnF4EpzprSnZGuEPKYkhjjd20zTf6o7G2YQu_RBljBkj74-bWVXiZnM_Y3LdIEtfVas4otWxJXa1Z1a4YhSCyCges5o3-tZKuHatcCDfC6TUrG9SB5xuLoGsEuvIsFIp-BpfTT18-HEd954XIUgW_yKOUN1KneWxJwfOKG2mkS7iShpscDfAyUQK3Vtt4bMos1m4svS9jK1G_0SJ5Drt1U_sXwITyaGQbZ5SRIrMKp8x0JqyXaAlKbkbwfrvtxSIU2Ci2hglhqCAMFR2GRnC4RUvRc9qq4JJywSVqRSN4O7xGHiHHh659s0YYtIoy8iHGIzgI6BzWStIsz7MERwdq-9dHFMge3cPL_x3wBh7MPk6Ls88Xp6_gIac0ii5W7RB22-Xav0blpjVHHfn-BMPM8Bo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+Listeria+monocytogenes+to+perturbation+of+c-di-AMP+metabolism+underpins+its+role+in+osmoadaptation+and+identifies+a+fosfomycin+uptake+system&rft.jtitle=Environmental+microbiology&rft.au=Wang%2C+Mengyi&rft.au=Wamp%2C+Sabrina&rft.au=Gibhardt%2C+Johannes&rft.au=Holland%2C+Gudrun&rft.date=2022-09-01&rft.eissn=1462-2920&rft.volume=24&rft.issue=9&rft.spage=4466&rft.epage=4488&rft_id=info:doi/10.1111%2F1462-2920.16084&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |