Adaptation of Listeria monocytogenes to perturbation of c‐di‐AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system

Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA,...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 24; no. 9; pp. 4466 - 4488
Main Authors Wang, Mengyi, Wamp, Sabrina, Gibhardt, Johannes, Holland, Gudrun, Schwedt, Inge, Schmidtke, Kai‐Uwe, Scheibner, Katrin, Halbedel, Sven, Commichau, Fabian M.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in L. monocytogenes.
AbstractList Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA , pdeA , pgpH and pdeA pgpH mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA . The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in L . monocytogenes .
Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c‐di‐AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c‐di‐AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c‐di‐AMP‐free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine‐dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA‐binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c‐di‐AMP in controlling osmolyte homeostasis in L. monocytogenes.
The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes.
Author Schwedt, Inge
Commichau, Fabian M.
Holland, Gudrun
Halbedel, Sven
Gibhardt, Johannes
Scheibner, Katrin
Wang, Mengyi
Wamp, Sabrina
Schmidtke, Kai‐Uwe
Author_xml – sequence: 1
  givenname: Mengyi
  surname: Wang
  fullname: Wang, Mengyi
  organization: University of Hohenheim
– sequence: 2
  givenname: Sabrina
  surname: Wamp
  fullname: Wamp, Sabrina
  organization: Robert‐Koch‐Institute
– sequence: 3
  givenname: Johannes
  surname: Gibhardt
  fullname: Gibhardt, Johannes
  organization: Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya ulitsa 29A
– sequence: 4
  givenname: Gudrun
  surname: Holland
  fullname: Holland, Gudrun
  organization: ZBS4 – Advanced Light and Electron Microscopy, Robert‐Koch‐Institute, Seestraße 10
– sequence: 5
  givenname: Inge
  surname: Schwedt
  fullname: Schwedt, Inge
  organization: University of Hohenheim
– sequence: 6
  givenname: Kai‐Uwe
  surname: Schmidtke
  fullname: Schmidtke, Kai‐Uwe
  organization: FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus‐Senftenberg
– sequence: 7
  givenname: Katrin
  surname: Scheibner
  fullname: Scheibner, Katrin
  organization: FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus‐Senftenberg
– sequence: 8
  givenname: Sven
  orcidid: 0000-0002-5575-8973
  surname: Halbedel
  fullname: Halbedel, Sven
  organization: Robert‐Koch‐Institute
– sequence: 9
  givenname: Fabian M.
  orcidid: 0000-0003-0323-7479
  surname: Commichau
  fullname: Commichau, Fabian M.
  email: fabian.commichau@uni-hohenheim.de
  organization: University of Hohenheim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35688634$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuOFCEUhokZ41x07c6QuHHTDpeqomrZmYw6SU90oWsC1MEwFlAClUntfASfwIfzSaTtsU3cyIJbvvNxyH-OTkIMgNBzSl7TOi5p07ENG1g9dqRvHqGz483JcU_ZKTrP-Y4QKrggT9Apb7u-73hzhn5sRzUXVVwMOFq8c7lAcgr7GKJZS_wMATIuEc-QypL0kTQ_v30fXZ22tx-wh6J0nFz2eAkjpNmFjF3JOMUJsKsF2Uf19yUVRuxGCMVZV_UK25ht9Kup6FKhL4DzWjvxT9Fjq6YMzx7WC_TpzfXHq3eb3fu3N1fb3cZwQZsNkI5qodqeGDpwBgPTQouRs0FopnvQ3PKhqX9XhlBtO6JGKgAsMYIPQjX8Ar06eOcUvy6Qi_QuG5gmFSAuWbJOtB2hjJGKvvwHvYtLCrU7yQStlGjbvfDyQJkUc05g5ZycV2mVlMh9dHIfjtwHJX9HVytePHgX7WE88n-yqkB7AO7dBOv_fPL69uYg_gVSKalK
CitedBy_id crossref_primary_10_1093_femsml_uqad005
crossref_primary_10_1093_femsml_uqad015
crossref_primary_10_1099_mgen_0_001114
crossref_primary_10_1093_femsml_uqad043
Cites_doi 10.7554/eLife.56048
10.1111/j.1365-2958.2011.07953.x
10.1074/jbc.RA119.009246
10.1038/s42003-019-0414-6
10.1111/mmi.14449
10.1371/journal.pgen.1002887
10.1038/embor.2011.77
10.1128/JB.00845-15
10.1128/JB.00138-20
10.1080/15476286.2017.1338241
10.1128/mBio.00341-18
10.1128/JB.00691-19
10.1128/JB.00028-19
10.1126/scisignal.aaf7279
10.1128/JB.02563-14
10.3389/fmicb.2016.00804
10.1111/j.1469-0691.2011.03636.x
10.1126/sciadv.abd7697
10.1371/journal.pgen.1007301
10.1128/JB.01128-13
10.1016/j.mib.2017.11.007
10.3389/fmicb.2017.01910
10.1128/IAI.00317-20
10.1074/jbc.M114.621789
10.1371/journal.pgen.1007525
10.1128/AEM.02316-12
10.1016/j.chom.2016.06.003
10.1128/mBio.01625-20
10.1111/j.1574-6968.2009.01527.x
10.1371/journal.pgen.1007574
10.1074/jbc.M114.619619
10.1371/journal.ppat.1002217
10.1074/jbc.M114.598300
10.1128/mBio.00324-21
10.1016/j.dnarep.2019.03.002
10.1128/JB.00818-09
10.1128/mBio.00282-13
10.1111/mmi.12890
10.1093/nar/gkz219
10.1073/pnas.1917080117
10.1128/AEM.70.11.6887-6891.2004
10.1016/j.chom.2015.05.006
10.1128/IAI.68.12.7069-7077.2000
10.1039/C5MD00351B
10.1038/s41467-021-21306-0
10.1046/j.1365-2958.1996.661421.x
10.1128/mbio.03602-21
10.1111/j.1365-2958.1991.tb01838.x
10.1016/j.febslet.2014.11.022
10.1111/mmi.13277
10.1074/jbc.M114.630418
10.1128/IAI.00147-19
10.1073/pnas.1704756114
10.1016/j.jbc.2021.101317
10.1128/JB.00751-19
10.1021/acs.biochem.5b00633
10.1111/mmi.14205
10.1038/nature15709
10.1016/j.micres.2014.01.002
10.1111/mmi.13304
10.3389/fmicb.2017.01328
10.1074/jbc.RA119.010046
10.1128/JB.00462-18
10.1111/mmi.13281
10.1128/JB.00564-15
10.1074/jbc.M117.818716
10.1128/JB.00918-13
10.1111/1462-2920.14534
10.1016/j.molcel.2008.02.020
10.1371/journal.pgen.1007283
10.1128/JB.00480-15
10.1146/annurev-micro-020518-115943
10.1371/journal.pgen.1005870
10.1126/science.1189801
10.1002/mbo3.1203
10.1111/mmi.14479
10.1128/JB.01041-13
10.1128/mBio.00018-13
10.1002/mbo3.243
10.1016/j.dnarep.2014.12.007
10.1016/j.tim.2017.09.003
10.1038/nrmicro3069
10.1016/j.cell.2006.03.039
10.1111/j.1365-2958.2008.06483.x
10.1371/journal.pgen.1009092
10.1128/mbio.03640-21
10.1126/scisignal.aal3011
10.1093/bioinformatics/bts199
10.1111/1462-2920.15008
10.1111/j.1749-6632.1974.tb43277.x
10.1128/IAI.00700-20
10.1073/pnas.1300428110
10.1371/journal.ppat.1007537
10.1128/JB.00769-13
10.1111/j.1574-695X.2011.00812.x
10.1046/j.1365-2958.2002.03080.x
10.1099/00221287-141-1-41
10.1111/mmi.12873
10.1126/science.1063447
10.1128/AEM.00314-08
10.1016/j.cell.2014.07.046
10.1371/journal.pgen.1007342
10.1111/mmi.13456
10.1128/JB.00307-20
10.1093/femsre/fuz009
10.1111/mmi.13622
10.1128/JB.05510-11
10.1073/pnas.2020653118
10.1016/j.resmic.2003.11.008
10.1038/nm1396
10.1002/mbo3.829
10.1038/nchembio.1363
ContentType Journal Article
Copyright 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
DOI 10.1111/1462-2920.16084
DatabaseName Wiley_OA刊
Wiley Free Archive
PubMed
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 4488
ExternalDocumentID 10_1111_1462_2920_16084
35688634
EMI16084
Genre article
Journal Article
GrantInformation_xml – fundername: CSC Grant
– fundername: Deutsche Forschungsgemeinschaft
  funderid: CO 1139/2‐2
– fundername: Deutsche Forschungsgemeinschaft
  grantid: CO 1139/2-2
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
ID FETCH-LOGICAL-c3714-e061b7a580c1932e92b7b7d3297b2b8eb3f394370ac01bf60ad17eef0c7397a43
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Sat Aug 17 02:26:18 EDT 2024
Thu Oct 10 19:38:02 EDT 2024
Fri Aug 23 01:46:46 EDT 2024
Sat Sep 28 08:19:29 EDT 2024
Sat Aug 24 00:52:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3714-e061b7a580c1932e92b7b7d3297b2b8eb3f394370ac01bf60ad17eef0c7397a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5575-8973
0000-0003-0323-7479
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16084
PMID 35688634
PQID 2715607554
PQPubID 1066360
PageCount 23
ParticipantIDs proquest_miscellaneous_2675601220
proquest_journals_2715607554
crossref_primary_10_1111_1462_2920_16084
pubmed_primary_35688634
wiley_primary_10_1111_1462_2920_16084_EMI16084
PublicationCentury 2000
PublicationDate September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021b; 12
2017; 8
2013; 4
2015; 589
2011; 62
2019; 15
2015b; 197
2016; 102
2019; 201
2022; 25
2016; 100
2012; 18
2011; 12
2020; 202
2008; 74
2020; 11
2008; 30
2008; 70
2011; 193
2017; 114
2013; 9
2019a; 47
2020; 6
2018; 9
2001; 294
2015; 290
2004; 70
2018; 293
2013; 11
2019; 21
2002; 45
2021; 118
2020; 9
2021a; 17
2016; 198
2013; 195
2012; 28
2013; 110
2018a; 41
2014; 169
2019; 111
1996; 21
2006; 125
2016; 44
2019; 8
2015a; 290
2012; 83
2015; 17
2015; 4
2021; 89
2006; 12
2010; 328
2015; 95
2019b; 77
2019; 2
2000; 68
2015; 54
2009; 293
2015; 527
2014; 196
2012; 78
2014; 158
2018; 26
2011; 7
2016; 12
2016; 99
1991; 5
2004; 155
2016; 7
2021; 10
2015; 27
2021; 12
2017; 14
2020; 74
2009; 191
2019; 87
2019; 43
2017; 10
2022; 8
2015; 197
2015; 198
2016; 20
2018b; 14
2020; 117
2020; 113
2020; 22
1974; 235
2021; 297
2019; 294
1995; 141
2017; 104
2016; 9
2018; 14
2012; 8
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_101_1
Krüger L. (e_1_2_6_55_1) 2022; 8
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_78_1
Dutta S. (e_1_2_6_32_1) 2022; 25
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
Han A.R. (e_1_2_6_44_1) 2016; 44
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
Rorvik G.H. (e_1_2_6_84_1) 2021; 10
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_67_1
The W.K. (e_1_2_6_96_1) 2019; 201
References_xml – volume: 21
  start-page: 1287
  year: 2019
  end-page: 1305
  article-title: Identification of the first glyphosate transporter by genomic adaptation
  publication-title: Environ Microbiol
– volume: 14
  year: 2018
  article-title: Enhanced uptake of potassium or glycine betaine or export of cyclic‐di‐AMP restores osmoresistance in a high cyclic‐di‐AMP mutant
  publication-title: PLoS Genet
– volume: 4
  start-page: 361
  year: 2015
  end-page: 374
  article-title: Molecular basis for the recognition of cyclic‐di‐AMP by PstA, a PII‐like signal transduction protein
  publication-title: MicrobiologyOpen
– volume: 9
  year: 2020
  article-title: PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM
  publication-title: Elife
– volume: 47
  start-page: 5141
  year: 2019a
  end-page: 5154
  article-title: DisA regulates RecA‐mediated DNA strand exchange
  publication-title: Nucleic Acids Res
– volume: 114
  start-page: E7226
  year: 2017
  end-page: E7235
  article-title: Structural and functional studies of pyruvate carboxylase regulation by cyclic di‐AMP in lactic acid bacteria
  publication-title: Proc Natl Acad Sci U S A
– volume: 158
  start-page: 1389
  year: 2014
  end-page: 1401
  article-title: The cyclic dinucleotide c‐di‐AMP is an allosteric regulator of metabolic enzyme function
  publication-title: Cell
– volume: 202
  start-page: e00138‐20
  year: 2020
  article-title: Two ways to convert a low‐affinity potassium channel to high affinity: control of KtrCD by glutamate
  publication-title: J Bacteriol
– volume: 12
  start-page: 515
  year: 2006
  end-page: 517
  article-title: Coexpression of virulence and fosfomycin susceptibility in : molecular basis of an antimicrobial ‐ paradox
  publication-title: Nat Med
– volume: 74
  start-page: 159
  year: 2020
  end-page: 179
  article-title: Cyclic di‐AMP signaling in bacteria
  publication-title: Annu Rev Microbiol
– volume: 8
  year: 2019
  article-title: Cyclic nucleotides in archaea: cyclic di‐AMP in the archaeon and its putative role
  publication-title: MicrobiologyOpen
– volume: 70
  start-page: 1307
  year: 2008
  end-page: 1322
  article-title: A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway
  publication-title: Mol Microbiol
– volume: 43
  start-page: 389
  year: 2019
  end-page: 400
  article-title: Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria
  publication-title: FEMS Microbiol Rev
– volume: 14
  start-page: 1592
  year: 2017
  end-page: 1605
  article-title: Regulation of a muralytic enzyme‐encoding gene by two non‐coding RNAs
  publication-title: RNA Biol
– volume: 125
  start-page: 679
  year: 2006
  end-page: 690
  article-title: A checkpoint protein that scans the chromosome for damage at the start of sporulation in
  publication-title: Cell
– volume: 111
  start-page: 1009
  year: 2019
  end-page: 1024
  article-title: Aurantimycin resistance genes contribute to survival of during lifetime in the environment
  publication-title: Mol Microbiol
– volume: 198
  start-page: 416
  year: 2016
  end-page: 426
  article-title: Phenotypes associated with the essential diadenylate cyclase CdaA and its potential regulator CdaR in the human pathogen
  publication-title: J Bacteriol
– volume: 293
  start-page: 3180
  year: 2018
  end-page: 3200
  article-title: Cyclic di‐adenosine monophosphate (c‐di‐AMP) is required for osmotic regulation in but dispensable for viability in anaerobic conditions
  publication-title: J Biol Chem
– volume: 12
  year: 2016
  article-title: Systems level analyses reveal multiple regulatory activities of CodY controlling metabolism, motility and virulence in
  publication-title: PLoS Genet
– volume: 201
  start-page: e00028‐19
  year: 2019
  article-title: The KupA and KupB proteins of IL1403 are novel c‐di‐AMP receptor proteins responsible for potassium uptake
  publication-title: J Bacteriol
– volume: 100
  start-page: 108
  year: 2016
  end-page: 124
  article-title: Salt‐sensitivity of σ(H) and Spo0A prevents sporulation of at high osmolarity avoiding death during cellular differentiation
  publication-title: Mol Microbiol
– volume: 235
  start-page: 364
  year: 1974
  end-page: 386
  article-title: The mechanism of action of fosfomycin (phosphonomycin)
  publication-title: Ann N Y Acad Sci
– volume: 10
  year: 2021
  article-title: The c‐di‐AMP signaling system influences stress tolerance and biofilm formation of
  publication-title: Microbiology
– volume: 202
  start-page: e00307‐20
  year: 2020
  article-title: c‐di‐AMP accumulation impairs muropeptide synthesis in
  publication-title: J Bacteriol
– volume: 4
  start-page: e00282‐13
  year: 2013
  article-title: Cyclic di‐AMP is critical for growth, cell wall homeostasis, and establishment of infection
  publication-title: mBio
– volume: 54
  start-page: 4936
  year: 2015
  end-page: 4951
  article-title: Structural insights into the distinct binding mode of cyclic di‐AMP with SaCpaA‐RCK
  publication-title: Biochemistry
– volume: 18
  start-page: 4
  year: 2012
  end-page: 7
  article-title: Fosfomycin: an old–new antibiotic
  publication-title: Clin Microbiol Infect
– volume: 83
  start-page: 623
  year: 2012
  end-page: 639
  article-title: Analysis of the role of sigma(M) in beta‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis
  publication-title: Mol Microbiol
– volume: 6
  start-page: eabd7697
  year: 2020
  article-title: Gating by ionic strength and safety check by cyclic‐di‐AMP in the ABC transporter OpuA
  publication-title: Sci Adv
– volume: 198
  start-page: 98
  year: 2015
  end-page: 110
  article-title: Binding of cyclic di‐AMP to the sensor kinase KdpD occurs the universal stress protein domain and downregulates the expression of the Kdp potassium transporter
  publication-title: J Bacteriol
– volume: 62
  start-page: 123
  year: 2011
  end-page: 139
  article-title: The CodY pleiotropic repressor controls virulence in gram‐positive pathogens
  publication-title: FEMS Immunol Med Microbiol
– volume: 196
  start-page: 189
  year: 2014
  end-page: 201
  article-title: GTP dysregulation in cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshifts and regulate biosynthesis genes
  publication-title: J Bacteriol
– volume: 293
  start-page: 177
  year: 2009
  end-page: 187
  article-title: Genetic characterization of oligopeptide uptake systems in
  publication-title: FEMS Microbiol Lett
– volume: 2
  start-page: 151
  year: 2019
  article-title: A c‐di‐AMP riboswitch controlling operon transcription regulates the potassium transporter system in
  publication-title: Commun Biol
– volume: 202
  start-page: e00751‐19
  year: 2020
  article-title: Mild stress conditions during laboratory culture promote the proliferation of mutations that negatively affect sigma B activity in
  publication-title: J Bacteriol
– volume: 8
  start-page: 1910
  year: 2017
  article-title: Home alone: elimination of all but one sigma factor in allows prediction of new roles for σB
  publication-title: Front Microbiol
– volume: 290
  start-page: 2888
  year: 2015
  end-page: 2901
  article-title: Complex structure and biochemical characterization of the cyclic diadenylate monophosphate (c‐di‐AMP)‐binding protein PstA, the founding member of a new signa transduction protein family
  publication-title: J Biol Chem
– volume: 201
  start-page: e00462‐18
  year: 2019
  article-title: Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di‐AMP in bacteria
  publication-title: J Bacteriol
– volume: 193
  start-page: 5637
  year: 2011
  end-page: 5648
  article-title: Dissecting complex metabolic integration provides direct genetic evidence for CodY activation by guanine nucleotides
  publication-title: J Bacteriol
– volume: 99
  start-page: 1015
  year: 2016
  end-page: 1027
  article-title: Cyclic‐di‐AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in
  publication-title: Mol Microbiol
– volume: 294
  start-page: 16020
  year: 2019
  end-page: 16033
  article-title: c‐di‐AMP assists osmoadaptation by regulating the potassium transporters KimA and KtrCD
  publication-title: J Biol Chem
– volume: 201
  start-page: e00597‐18
  year: 2019
  article-title: Increased intracellular cyclic di‐AMP levels sensitize subsp. to osmotic stress and reduce biofilm formation and adherence on intestinal cells
  publication-title: J Bacteriol
– volume: 7
  start-page: 804
  year: 2016
  article-title: Second messenger signaling in : accumulation of cyclic di‐AMP inhibits biofilm formation
  publication-title: Front Microbiol
– volume: 95
  start-page: 332
  year: 2015
  end-page: 351
  article-title: Discrete and overlapping functions of peptidoglycan synthases in growth, cell division and virulence of
  publication-title: Mol Microbiol
– volume: 297
  year: 2021
  article-title: Structural basis for the inhibition of the c‐di‐AMP cyclase CdaA by the phosphoglucomutase GlmM
  publication-title: J Biol Chem
– volume: 14
  year: 2018
  article-title: Controlled branched‐chain amino acids auxotrophy in allows isoleucine to serve as a host signal and virulence effector
  publication-title: PLoS Genet
– volume: 328
  start-page: 1703
  year: 2010
  end-page: 1705
  article-title: c‐di‐AMP secreted by intracellular activates a host type I interferon response
  publication-title: Science
– volume: 8
  start-page: 1328
  year: 2017
  article-title: Identification of the components involved in cyclic di‐AMP signaling in
  publication-title: Front Microbiol
– volume: 195
  start-page: 5123
  year: 2013
  end-page: 5132
  article-title: Two DHH subfamily 1 proteins in possess cyclic di‐AMP phosphodiesterase activity and affect bacterial growth and virulence
  publication-title: J Bacteriol
– volume: 294
  start-page: 10463
  year: 2019
  end-page: 10470
  article-title: Crystal structures of the c‐di‐AMP‐synthesizing enzyme CdaA
  publication-title: J Biol Chem
– volume: 10
  start-page: eaal3011
  year: 2017
  article-title: Control of potassium homeostasis is an essential function of the second messenger cyclic di‐AMP in
  publication-title: Sci Signal
– volume: 44
  start-page: 9483
  year: 2016
  end-page: 9493
  article-title: The structure of the pleiotropic transcription regulator CodY provides insight into its GTP‐sensing mechanism
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 1095
  year: 2002
  end-page: 1106
  article-title: bile salt hydrolase is a PrfA‐regulated virulence factor involved in the intestinal and hepatic phases of listeriosis
  publication-title: Mol Microbiol
– volume: 102
  start-page: 233
  year: 2016
  end-page: 243
  article-title: Cyclic di‐AMP targets the cystathione beta‐synthase domain of the osmolyte transporter OpuC
  publication-title: Mol Microbiol
– volume: 77
  start-page: 45
  year: 2019b
  end-page: 57
  article-title: RadA/Sms contributes to chromosomal transformation and DNA repair in concert with RecA and circumvents replicative stress in concert with DisA
  publication-title: DNA Repair (Amst)
– volume: 15
  year: 2019
  article-title: Inhibition of the c‐di‐AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM
  publication-title: PLoS Pathog
– volume: 4
  start-page: e00018‐13
  year: 2013
  article-title: STING‐dependent recognition of cyclic di‐AMP mediates type I interferon responses during infection
  publication-title: mBio
– volume: 28
  start-page: 1647
  year: 2012
  end-page: 1649
  article-title: Geneious basic: an intergrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics
– volume: 74
  start-page: 3921
  year: 2008
  end-page: 3934
  article-title: Tools for functional postgenomic analysis of
  publication-title: Appl Environ Microbiol
– volume: 197
  start-page: 3265
  year: 2015b
  end-page: 3274
  article-title: An essential poison: synthesis and degradation of cyclic di‐AMP in
  publication-title: J Bacteriol
– volume: 12
  start-page: e00324‐21
  year: 2021
  article-title: Cyclic di‐AMP oversight of counter‐ion osmolyte pools impacts intrinsic cefuroxime resistance in
  publication-title: mBio
– volume: 290
  start-page: 5826
  year: 2015
  end-page: 5839
  article-title: Cross‐talk between two nucleotide‐signaling pathways in
  publication-title: J Biol Chem
– volume: 14
  year: 2018b
  article-title: Cyclic di‐AMP regulation of osmotic homeostasis is essential in group B
  publication-title: PLoS Genet
– volume: 89
  start-page: e00700
  year: 2021
  end-page: e00720
  article-title: Identification of genes contributing to oxidative stress resistance under conditions relevant to host infection
  publication-title: Infect Immun
– volume: 11
  start-page: e1625‐20
  year: 2020
  article-title: (p)ppGpp and c‐di‐AMP homeostasis is controlled by CbpB in
  publication-title: mBio
– volume: 118
  year: 2021
  article-title: c‐di‐AMP, a likely master regulator of bacterial K(+) homeostasis machinery, activates a K(+) exporter
  publication-title: Proc Natl Acad Sci U S A
– volume: 117
  start-page: 7392
  year: 2020
  end-page: 7400
  article-title: c‐di‐AMP hydrolysis by the phosphodiesterase AtaC promotes differentiation of multicellular bacteria
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: e00341‐18
  year: 2018
  article-title: Cyclic di‐AMP acts as an extracellular signal that impacts biofilm formation and plant attachment
  publication-title: mBio
– volume: 141
  start-page: 41
  year: 1995
  end-page: 49
  article-title: The role of peptide metabolism in the growth of ATCC 23074 at high osmolarity
  publication-title: Microbiology
– volume: 8
  year: 2022
  article-title: Sustained control of pyruvate carboxylase by the essential second messenger cyclic di‐AMP in
  publication-title: mBio
– volume: 113
  start-page: 1085
  year: 2020
  end-page: 1110
  article-title: Identification of the main glutamine and glutamate transporters in and their impact on c‐di‐AMP production
  publication-title: Mol Microbiol
– volume: 113
  start-page: 841
  year: 2020
  end-page: 858
  article-title: Genome‐wide identification of CodY‐binding sites
  publication-title: Mol Microbiol
– volume: 202
  start-page: e00691‐19
  year: 2020
  article-title: Bacterial second messenger cyclic di‐AMP modulates the competence state in
  publication-title: J Bacteriol
– volume: 89
  start-page: e00317‐20
  year: 2021
  article-title: c‐di‐AMP‐regulated K importer KtrAB affects biofilm formation, stress response, and SpeB expression in
  publication-title: Infect Immun
– volume: 20
  start-page: 49
  year: 2016
  end-page: 59
  article-title: Group B degrades cyclic‐di‐AMP to modulate STING‐dependent type I interferon production
  publication-title: Cell Host Microbe
– volume: 68
  start-page: 7069
  year: 2000
  end-page: 7077
  article-title: OppA of , an oligopeptide‐binding protein required for bacterial growth at low temperature and involved in intracellular survival
  publication-title: Infect Immun
– volume: 14
  year: 2018
  article-title: Epistatic control of intrinsic resistance by virulence genes in
  publication-title: PLoS Genet
– volume: 9
  start-page: 834
  year: 2013
  end-page: 839
  article-title: Riboswitches in eubacteria sense the second messenger c‐di‐AMP
  publication-title: Nat Chem Biol
– volume: 9
  start-page: ra81
  year: 2016
  article-title: The second messenger c‐di‐AMP inhibits the osmolyte uptake system OpuC in
  publication-title: Sci Signal
– volume: 12
  start-page: 594
  year: 2011
  end-page: 601
  article-title: c‐di‐AMP reports DNA integrity during sporulation in
  publication-title: EMBO Rep
– volume: 99
  start-page: 945
  year: 2016
  end-page: 959
  article-title: Cyclic di‐AMP mediates biofilm formation
  publication-title: Mol Microbiol
– volume: 155
  start-page: 80
  year: 2004
  end-page: 86
  article-title: The operon of encodes an ABC permease transporting methionine sulfoxide, D‐ and L‐methionine
  publication-title: Res Microbiol
– volume: 17
  start-page: 788
  year: 2015
  end-page: 798
  article-title: The PAMP c‐di‐AMP is essential for growth in rich but not in minimal media due to a toxic increase in (p)ppGpp
  publication-title: Cell Host Microbe
– volume: 196
  start-page: 614
  year: 2014
  end-page: 623
  article-title: Cyclic di‐AMP impairs potassium uptake mediated by a cyclic di‐AMP binding protein in
  publication-title: J Bacteriol
– volume: 95
  start-page: 624
  year: 2015
  end-page: 644
  article-title: The metabolic regulator CodY links metabolism to virulence by directly activating the virulence regulatory gene
  publication-title: Mol Microbiol
– volume: 14
  year: 2018
  article-title: High‐throughput interaction screens illuminate the role of c‐di‐AMP in cyanobacterial nighttime survival
  publication-title: PLoS Genet
– volume: 104
  start-page: 212
  year: 2017
  end-page: 233
  article-title: c‐di‐AMP modulates central metabolism to regulate growth, antibiotic resistance and osmoregulation
  publication-title: Mol Microbiol
– volume: 17
  year: 2021a
  article-title: Essentiality of c‐di‐AMP in : bypassing mutations converging in potassium and glutamate homeostasis
  publication-title: PLoS Genet
– volume: 290
  start-page: 3069
  year: 2015a
  end-page: 3080
  article-title: Identification, characterization, and structure analysis of the cyclic di‐AMP‐binding PII‐like signal transduction protein DarA
  publication-title: J Biol Chem
– volume: 30
  start-page: 167
  year: 2008
  end-page: 178
  article-title: Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates
  publication-title: Mol Cell
– volume: 26
  start-page: 175
  year: 2018
  end-page: 185
  article-title: A delicate connection: c‐di‐AMP affects cell integrity by controlling osmolyte transport
  publication-title: Trends Microbiol
– volume: 197
  start-page: 1330
  year: 2015
  end-page: 1338
  article-title: Role of branched‐chain amino acid transport in CodY activity
  publication-title: J Bacteriol
– volume: 196
  start-page: 515
  year: 2014
  end-page: 526
  article-title: The γ‐aminobutyrate permease GabP serves as the third proline transporter of
  publication-title: J Bacteriol
– volume: 78
  start-page: 7753
  year: 2012
  end-page: 7759
  article-title: Heat resistance and salt hypersensitivity in due to spontaneous mutation of llmg_1816 ( ) induced by high‐temperature growth
  publication-title: Appl Environ Microbiol
– volume: 12
  start-page: 1210
  year: 2021b
  article-title: A meet‐up oft wo second messengers: the c‐di‐AMP receptor DarB controls (p)ppGpp synthesis in
  publication-title: Nat Commun
– volume: 290
  start-page: 6596
  year: 2015
  end-page: 6606
  article-title: Structural and biochemical analysis of the essential diadenylate cyclase CdaA from
  publication-title: J Biol Chem
– volume: 5
  start-page: 173
  year: 1991
  end-page: 185
  article-title: The oligopeptide transport system of plays a role in the initiation of sporulation
  publication-title: Mol Microbiol
– volume: 7
  year: 2011
  article-title: c‐di‐AMP is a new second messenger in with a role in controlling cell size and envelope stress
  publication-title: PLoS Pathog
– volume: 22
  start-page: 2771
  year: 2020
  end-page: 2791
  article-title: An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c‐di‐AMP in
  publication-title: Environ Microbiol
– volume: 21
  start-page: 1087
  year: 1996
  end-page: 1099
  article-title: Molecular characterization of group A streptococcal (GAS) oligopeptide permease (Opp) and its effect on cysteine protease production
  publication-title: Mol Microbiol
– volume: 8
  year: 2012
  article-title: Integrative genomic analysis identifies isoleucine and CodY as regulators of virulence
  publication-title: PLoS Genet
– volume: 527
  start-page: 59
  year: 2015
  end-page: 63
  article-title: Ion channels enable electrical communication in bacterial communities
  publication-title: Nature
– volume: 11
  start-page: 513
  year: 2013
  end-page: 524
  article-title: Cyclic di‐AMP: another second messenger enters the fray
  publication-title: Nat Rev Microbiol
– volume: 7
  start-page: 28
  year: 2016
  article-title: Molecular basis for resistance against phosphonate antibiotics and herbicides
  publication-title: MedChemComm
– volume: 87
  start-page: e00147‐19
  year: 2019
  article-title: The second messenger c‐di‐AMP regulates diverse cellular pathways involved in stress response, biofilm formation, cell wall homeostasis, SpeB expression, and virulence in
  publication-title: Infect Immun
– volume: 70
  start-page: 6887
  year: 2004
  end-page: 6891
  article-title: New vector for efficient allelic replacement in naturally transformable, low‐GC content, Gram‐positive bacteria
  publication-title: Appl Environ Microbiol
– volume: 191
  start-page: 6865
  year: 2009
  end-page: 6876
  article-title: Genetic and biochemical analysis of the interaction of CodY with branched‐chain amino acids
  publication-title: J Bacteriol
– volume: 169
  start-page: 749
  year: 2014
  end-page: 758
  article-title: Functional analysis of c‐di‐AMP phosphodiesterase, GdpP, in serotype 2
  publication-title: Microbiol Res
– volume: 110
  start-page: 7026
  year: 2013
  end-page: 7031
  article-title: Genome‐wide identification of CodY‐binding sites at single‐nucleotide resolution
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  year: 2022
  article-title: BrnQ‐type branched‐chain amino acid transporters influence growth and virulence
  publication-title: mBio
– volume: 589
  start-page: 45
  year: 2015
  end-page: 51
  article-title: c‐di‐AMP recognition by PstA
  publication-title: FEBS Lett
– volume: 41
  start-page: 21
  year: 2018a
  end-page: 28
  article-title: Cyclic di‐AMP in host‐pathogen interactions
  publication-title: Curr Opin Microbiol
– volume: 294
  start-page: 849
  year: 2001
  end-page: 852
  article-title: Comparative genomics of species
  publication-title: Science
– volume: 27
  start-page: 1
  year: 2015
  end-page: 8
  article-title: DisA and c‐di‐AMP act at the intersection between DNA‐damage response and stress homeostasis in exponentially growing cells
  publication-title: DNA Repair (Amst)
– ident: e_1_2_6_102_1
  doi: 10.7554/eLife.56048
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-2958.2011.07953.x
– ident: e_1_2_6_46_1
  doi: 10.1074/jbc.RA119.009246
– ident: e_1_2_6_103_1
  doi: 10.1038/s42003-019-0414-6
– ident: e_1_2_6_10_1
  doi: 10.1111/mmi.14449
– ident: e_1_2_6_60_1
  doi: 10.1371/journal.pgen.1002887
– ident: e_1_2_6_70_1
  doi: 10.1038/embor.2011.77
– ident: e_1_2_6_81_1
  doi: 10.1128/JB.00845-15
– ident: e_1_2_6_54_1
  doi: 10.1128/JB.00138-20
– ident: e_1_2_6_93_1
  doi: 10.1080/15476286.2017.1338241
– ident: e_1_2_6_100_1
  doi: 10.1128/mBio.00341-18
– ident: e_1_2_6_112_1
  doi: 10.1128/JB.00691-19
– ident: e_1_2_6_79_1
  doi: 10.1128/JB.00028-19
– ident: e_1_2_6_87_1
  doi: 10.1126/scisignal.aaf7279
– ident: e_1_2_6_8_1
  doi: 10.1128/JB.02563-14
– ident: e_1_2_6_43_1
  doi: 10.3389/fmicb.2016.00804
– ident: e_1_2_6_80_1
  doi: 10.1111/j.1469-0691.2011.03636.x
– ident: e_1_2_6_90_1
  doi: 10.1126/sciadv.abd7697
– ident: e_1_2_6_86_1
  doi: 10.1371/journal.pgen.1007301
– ident: e_1_2_6_111_1
  doi: 10.1128/JB.01128-13
– ident: e_1_2_6_27_1
  doi: 10.1016/j.mib.2017.11.007
– ident: e_1_2_6_57_1
  doi: 10.3389/fmicb.2017.01910
– ident: e_1_2_6_34_1
  doi: 10.1128/IAI.00317-20
– ident: e_1_2_6_16_1
  doi: 10.1074/jbc.M114.621789
– ident: e_1_2_6_88_1
  doi: 10.1371/journal.pgen.1007525
– ident: e_1_2_6_91_1
  doi: 10.1128/AEM.02316-12
– ident: e_1_2_6_2_1
  doi: 10.1016/j.chom.2016.06.003
– ident: e_1_2_6_74_1
  doi: 10.1128/mBio.01625-20
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1574-6968.2009.01527.x
– ident: e_1_2_6_75_1
  doi: 10.1371/journal.pgen.1007574
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.M114.619619
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.ppat.1002217
– ident: e_1_2_6_25_1
  doi: 10.1074/jbc.M114.598300
– ident: e_1_2_6_76_1
  doi: 10.1128/mBio.00324-21
– ident: e_1_2_6_98_1
  doi: 10.1016/j.dnarep.2019.03.002
– ident: e_1_2_6_101_1
  doi: 10.1128/JB.00818-09
– ident: e_1_2_6_108_1
  doi: 10.1128/mBio.00282-13
– ident: e_1_2_6_59_1
  doi: 10.1111/mmi.12890
– ident: e_1_2_6_97_1
  doi: 10.1093/nar/gkz219
– ident: e_1_2_6_56_1
  doi: 10.1073/pnas.1917080117
– ident: e_1_2_6_3_1
  doi: 10.1128/AEM.70.11.6887-6891.2004
– ident: e_1_2_6_105_1
  doi: 10.1016/j.chom.2015.05.006
– ident: e_1_2_6_12_1
  doi: 10.1128/IAI.68.12.7069-7077.2000
– ident: e_1_2_6_18_1
  doi: 10.1039/C5MD00351B
– volume: 201
  start-page: e00597‐18
  year: 2019
  ident: e_1_2_6_96_1
  article-title: Increased intracellular cyclic di‐AMP levels sensitize Streptococcus gallolyticus subsp. gallolyticus to osmotic stress and reduce biofilm formation and adherence on intestinal cells
  publication-title: J Bacteriol
  contributor:
    fullname: The W.K.
– ident: e_1_2_6_53_1
  doi: 10.1038/s41467-021-21306-0
– ident: e_1_2_6_77_1
  doi: 10.1046/j.1365-2958.1996.661421.x
– volume: 8
  year: 2022
  ident: e_1_2_6_55_1
  article-title: Sustained control of pyruvate carboxylase by the essential second messenger cyclic di‐AMP in Bacillus subtilis
  publication-title: mBio
  doi: 10.1128/mbio.03602-21
  contributor:
    fullname: Krüger L.
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1365-2958.1991.tb01838.x
– ident: e_1_2_6_67_1
  doi: 10.1016/j.febslet.2014.11.022
– ident: e_1_2_6_72_1
  doi: 10.1111/mmi.13277
– volume: 44
  start-page: 9483
  year: 2016
  ident: e_1_2_6_44_1
  article-title: The structure of the pleiotropic transcription regulator CodY provides insight into its GTP‐sensing mechanism
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Han A.R.
– ident: e_1_2_6_85_1
  doi: 10.1074/jbc.M114.630418
– ident: e_1_2_6_33_1
  doi: 10.1128/IAI.00147-19
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.1704756114
– ident: e_1_2_6_71_1
  doi: 10.1016/j.jbc.2021.101317
– ident: e_1_2_6_39_1
  doi: 10.1128/JB.00751-19
– ident: e_1_2_6_19_1
  doi: 10.1021/acs.biochem.5b00633
– ident: e_1_2_6_45_1
  doi: 10.1111/mmi.14205
– ident: e_1_2_6_78_1
  doi: 10.1038/nature15709
– ident: e_1_2_6_29_1
  doi: 10.1016/j.micres.2014.01.002
– ident: e_1_2_6_107_1
  doi: 10.1111/mmi.13304
– ident: e_1_2_6_11_1
  doi: 10.3389/fmicb.2017.01328
– ident: e_1_2_6_37_1
  doi: 10.1074/jbc.RA119.010046
– ident: e_1_2_6_23_1
  doi: 10.1128/JB.00462-18
– ident: e_1_2_6_115_1
  doi: 10.1111/mmi.13281
– ident: e_1_2_6_42_1
  doi: 10.1128/JB.00564-15
– ident: e_1_2_6_114_1
  doi: 10.1074/jbc.M117.818716
– ident: e_1_2_6_51_1
  doi: 10.1128/JB.00918-13
– ident: e_1_2_6_106_1
  doi: 10.1111/1462-2920.14534
– ident: e_1_2_6_109_1
  doi: 10.1016/j.molcel.2008.02.020
– ident: e_1_2_6_14_1
  doi: 10.1371/journal.pgen.1007283
– ident: e_1_2_6_66_1
  doi: 10.1128/JB.00480-15
– ident: e_1_2_6_94_1
  doi: 10.1146/annurev-micro-020518-115943
– ident: e_1_2_6_58_1
  doi: 10.1371/journal.pgen.1005870
– ident: e_1_2_6_110_1
  doi: 10.1126/science.1189801
– volume: 10
  year: 2021
  ident: e_1_2_6_84_1
  article-title: The c‐di‐AMP signaling system influences stress tolerance and biofilm formation of Streptococcus mitis
  publication-title: Microbiology
  doi: 10.1002/mbo3.1203
  contributor:
    fullname: Rorvik G.H.
– ident: e_1_2_6_113_1
  doi: 10.1111/mmi.14479
– ident: e_1_2_6_5_1
  doi: 10.1128/JB.01041-13
– ident: e_1_2_6_6_1
  doi: 10.1128/mBio.00018-13
– ident: e_1_2_6_20_1
  doi: 10.1002/mbo3.243
– ident: e_1_2_6_35_1
  doi: 10.1016/j.dnarep.2014.12.007
– ident: e_1_2_6_22_1
  doi: 10.1016/j.tim.2017.09.003
– ident: e_1_2_6_26_1
  doi: 10.1038/nrmicro3069
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cell.2006.03.039
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-2958.2008.06483.x
– ident: e_1_2_6_52_1
  doi: 10.1371/journal.pgen.1009092
– volume: 25
  year: 2022
  ident: e_1_2_6_32_1
  article-title: BrnQ‐type branched‐chain amino acid transporters influence Bacillus anthracis growth and virulence
  publication-title: mBio
  doi: 10.1128/mbio.03640-21
  contributor:
    fullname: Dutta S.
– ident: e_1_2_6_41_1
  doi: 10.1126/scisignal.aal3011
– ident: e_1_2_6_50_1
  doi: 10.1093/bioinformatics/bts199
– ident: e_1_2_6_36_1
  doi: 10.1111/1462-2920.15008
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1749-6632.1974.tb43277.x
– ident: e_1_2_6_62_1
  doi: 10.1128/IAI.00700-20
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.1300428110
– ident: e_1_2_6_99_1
  doi: 10.1371/journal.ppat.1007537
– ident: e_1_2_6_4_1
  doi: 10.1128/JB.00769-13
– ident: e_1_2_6_92_1
  doi: 10.1111/j.1574-695X.2011.00812.x
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-2958.2002.03080.x
– ident: e_1_2_6_63_1
  doi: 10.1099/00221287-141-1-41
– ident: e_1_2_6_82_1
  doi: 10.1111/mmi.12873
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1063447
– ident: e_1_2_6_65_1
  doi: 10.1128/AEM.00314-08
– ident: e_1_2_6_95_1
  doi: 10.1016/j.cell.2014.07.046
– ident: e_1_2_6_28_1
  doi: 10.1371/journal.pgen.1007342
– ident: e_1_2_6_48_1
  doi: 10.1111/mmi.13456
– ident: e_1_2_6_64_1
  doi: 10.1128/JB.00307-20
– ident: e_1_2_6_83_1
  doi: 10.1093/femsre/fuz009
– ident: e_1_2_6_104_1
  doi: 10.1111/mmi.13622
– ident: e_1_2_6_15_1
  doi: 10.1128/JB.05510-11
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.2020653118
– ident: e_1_2_6_47_1
  doi: 10.1016/j.resmic.2003.11.008
– ident: e_1_2_6_89_1
  doi: 10.1038/nm1396
– ident: e_1_2_6_13_1
  doi: 10.1002/mbo3.829
– ident: e_1_2_6_68_1
  doi: 10.1038/nchembio.1363
SSID ssj0017370
Score 2.4703012
Snippet Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH...
The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH...
Summary The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH...
The human pathogen Listeria monocytogenes synthesizes and degrades c‐di‐AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4466
SubjectTerms AMP
Antibiotics
Bacteria
Defects
Deoxyribonucleic acid
DNA
Fosfomycin
Growth
Homeostasis
Isoleucine
Listeria
Listeria monocytogenes
Metabolism
Mutation
Pathogens
Perturbation
Phenotypes
Suppressor mutant
Transportation systems
Uptake
Title Adaptation of Listeria monocytogenes to perturbation of c‐di‐AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16084
https://www.ncbi.nlm.nih.gov/pubmed/35688634
https://www.proquest.com/docview/2715607554
https://search.proquest.com/docview/2675601220
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7SQKCX_qR_m6ZBgR5ycbBl2bKOS2kIpQkhNJCbkWS5mHTtZe09bE99hDxBH65P0hnLdpv0UEovxuCRLEsz1jfS6BuAt4VSGj2NBN0SpQKRWB4oUWr0eXQYZTbORE-kfXaenl6JD9fJGE1IZ2E8P8S04EaW0f-vycC1aX8zcjRxHlCuJVogyYgRlOj0CBZdTgRSkYz7dHGDbMQHch-K5blX_u689AfYvItd-8nn5DGYsdk-5uTmeN2ZY_v1HqPjf33XE3g0QFM297r0FLZcvQs7Plnl5hl8nxd66TfuWVOyj6QfqL0M9bixm675TH9N1jVs6VY4j5lJ0v74dltUeJmfXbCF61DtvlTtgtHxtRVlzmZV1zIKc2QVFmgXjf71Jl0XrCp8SBNWr1nZIM5ebCyKrlHoxjFPRv0crk7ef3p3GgzZHQJLLIGBQyRhpE6y0BKIdIobaWQRcyUNNxk6-WWsBI6ftmFkyjTURSSdK0MrEUNpEb-A7bqp3StgQjl05E1hlJEitQqrTHUqrJPobUpuZnA0jm2-9CQe-ej8UHfn1N15390z2B_HPh-suc25pPPmEpHXDA6nx2iHtLmia9esUQY9r5T2KcMZvPQ6M70rTtIsS2Ms7Uf-b43I0QT7m71_LfAaHnI6n9EHwe3DdrdauzeImjpzAA-4uDjozeMnS7IO_A
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTtwwcERBVbmglj5YSosr9dBLpKzjxPFxhYq27S7iABK3yHacKqKbrHazh73xCXwBH8eXMBNnU2gPVS9RpIztyDPjmfG8AD7nSmm0NGI0S5QKRGx5oESh0ebR4TC1USraQtrTs2R8Kb5fxVePcmF8fYj-wo04oz2vicHpQvoRlyOP84CaLdENSSqewY6gcnBU3Vmc954EGbUN4zrgIe_K-1A0zx8TPJVMf6mbT7XXVvycvoS9Tm9kI4_oV7Dlqn147jtJrl_D3SjXc-9VZ3XBJoQ8JC2GRFbbdVP_pCONNTWbuwUKGdND2vub27zEx2h6zmauQZr4VS5njHLLFtTWmpXNklEMIitxwHJW698r6SpnZe7jjXB6zYoaleDZ2iLoCoGuHfOVot_A5enXi5Nx0LVeCCyV8AscinkjdZyGljQ8p7iRRuYRV9Jwk6IFXkRK4NZqGw5NkYQ6H0rnitBKVHC0iN7CdlVX7gCYUA6tbJMbZaRIrMIpE50I6ySagpKbAXzZbHs29xU2so1lQhjKCENZi6EBHG3QknWstsy4pGRwiWrRAD71n5FJyPOhK1evEAbNooSciOEA3nl09mtFcZKmSYSjPbn96ycy5I_25fB_BxzDi_HFdJJNvp39eA-7nBIp2mi1I9huFiv3AdWbxnxs6fcBOsjw8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtNAcFRagbggyqMESlkkDlwsOeu113uMgKj0pRyoxM3al5HVxo4S55BbP6FfwMfxJcx4HUPhgLjYljy7a-3MeGZ2XgDvnFIaLY0UzRKlIpFaHilRarR5dDzObZKLrpD2-UV2fClOvqbbaELKhQn1IYYDN-KM7n9NDL5w5W9MjizOI-q1RAckubgHewLvFNXHxWxwJMik6xfXA495X92Hgnn-mOCuYPpL27yrvHbSZ_oYHvVqI5sEPO_Djq-fwP3QSHLzFL5PnF4EpzprSnZGuEPKYkhjjd20zTf6o7G2YQu_RBljBkj74-bWVXiZnM_Y3LdIEtfVas4otWxJXa1Z1a4YhSCyCges5o3-tZKuHatcCDfC6TUrG9SB5xuLoGsEuvIsFIp-BpfTT18-HEd954XIUgW_yKOUN1KneWxJwfOKG2mkS7iShpscDfAyUQK3Vtt4bMos1m4svS9jK1G_0SJ5Drt1U_sXwITyaGQbZ5SRIrMKp8x0JqyXaAlKbkbwfrvtxSIU2Ci2hglhqCAMFR2GRnC4RUvRc9qq4JJywSVqRSN4O7xGHiHHh659s0YYtIoy8iHGIzgI6BzWStIsz7MERwdq-9dHFMge3cPL_x3wBh7MPk6Ls88Xp6_gIac0ii5W7RB22-Xav0blpjVHHfn-BMPM8Bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+Listeria+monocytogenes+to+perturbation+of+c-di-AMP+metabolism+underpins+its+role+in+osmoadaptation+and+identifies+a+fosfomycin+uptake+system&rft.jtitle=Environmental+microbiology&rft.au=Wang%2C+Mengyi&rft.au=Wamp%2C+Sabrina&rft.au=Gibhardt%2C+Johannes&rft.au=Holland%2C+Gudrun&rft.date=2022-09-01&rft.eissn=1462-2920&rft.volume=24&rft.issue=9&rft.spage=4466&rft.epage=4488&rft_id=info:doi/10.1111%2F1462-2920.16084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon