Improve topic modeling algorithms based on Twitter hashtags

Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent semantic analysis (LSA) and Latent Dirichlet A...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1660; no. 1; pp. 12100 - 12108
Main Authors Alash, Hayder M, Al-Sultany, Ghaidaa A
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2020
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/1660/1/012100

Cover

Abstract Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent semantic analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned from Twitter content without modifying the basic topic model of LSA and LDA. Users who share the same hashtag at most discuss the same topic. We compare the performance of the two methods (LSA and LDA) using the topic coherence ( with and without hashtags). The experiment result on the Twitter dataset showed that LSA has better coherence score with hashtags than that do not incorporate hashtags. In contrast, our experiments show that the LDA has a better coherence score without incorporating hashtags. Finally, LDA has a better coherence score than LSA and the best coherence result obtained from the LDA method was (0.6047) and the LSA method was (0.4744) but the number of topics in LDA was higher than LSA. Thus, LDA may cause the same tweets to discuss the same subject set into different clustering.
AbstractList Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned from Twitter content without modifying the basic topic model of LSA and LDA. Users who share the same hashtag at most discuss the same topic. We compare the performance of the two methods (LSA and LDA) using the topic coherence (with and without hashtags). The experiment result on the Twitter dataset showed that LSA has better coherence score with hashtags than that do not incorporate hashtags. In contrast, our experiments show that the LDA has a better coherence score without incorporating hashtags. Finally, LDA has a better coherence score than LSA and the best coherence result obtained from the LDA method was (0.6047) and the LSA method was (0.4744) but the number of topics in LDA was higher than LSA. Thus, LDA may cause the same tweets to discuss the same subject set into different clustering.
Author Alash, Hayder M
Al-Sultany, Ghaidaa A
Author_xml – sequence: 1
  givenname: Hayder M
  surname: Alash
  fullname: Alash, Hayder M
  email: hayder.albdulhameed@uobabylon.edu.iq
  organization: Department of Software, College of Information Technology, University of Babylon , Iraq
– sequence: 2
  givenname: Ghaidaa A
  surname: Al-Sultany
  fullname: Al-Sultany, Ghaidaa A
  email: ghaidaa.almulla@it-net.uobabylon.edu.iq
  organization: Department of Information Network, College of Information Technology, University of Babylon , Iraq
BookMark eNqNkF1LwzAUhoMouE1_gwXvhNp8tUkRL2T4MRkoOK9DlqZbRtvUJFP897ZUJoqguUkOed5zDs8Y7De20QCcIHiOIOcJYhTHWZpnCcoymKAEIowg3AOj3c_-7s35IRh7v4GQdIeNwMWsbp191VGwrVFRbQtdmWYVyWplnQnr2kdL6XUR2SZavJkQtIvW0q-DXPkjcFDKyuvjz3sCnm-uF9O7eP5wO5tezWNFGIKx0pKWVONcUlJSzvOuQCnXihK4xAilGqpUasgUVIqWimmVQq1zRjBOaZGTCTgd-nabvmy1D2Jjt67pRgqcYchJlqWsoy4HSjnrvdOlUCbIYGwTnDSVQFD0vkRvQvRWRO9LIDH46vLsR751ppbu_R_JsyFpbPu12v3j9Ok7KNqi7GDyC_zXiA9GS4xD
CitedBy_id crossref_primary_10_1111_exsy_13195
crossref_primary_10_1007_s10462_022_10254_w
crossref_primary_10_1186_s12891_024_07687_5
crossref_primary_10_1016_j_procs_2024_03_145
crossref_primary_10_3390_app12189081
crossref_primary_10_32604_csse_2024_045066
crossref_primary_10_1007_s13278_023_01055_2
crossref_primary_10_1142_S0218488524500247
crossref_primary_10_1007_s10579_024_09725_z
Cites_doi 10.1007/s11280-018-0584-z
10.1145/3091108
10.1371/journal.pone.0151885
10.1016/j.neucom.2016.10.082
10.3233/IDA-183836
10.1007/s10115-015-0882-z
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1016/j.ipm.2019.04.002
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1660/1/012100
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Improve topic modeling algorithms based on Twitter hashtags
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1660_1_012100
JPCS_1660_1_012100
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3710-cea4f4e29a43f4889f4e158ec430b2115e0c5ae07c0cc4fc7ec50ee9732254d93
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Fri Jul 25 05:35:52 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Jul 01 03:13:39 EDT 2025
Wed Aug 21 03:38:31 EDT 2024
Thu Jan 07 14:56:16 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3710-cea4f4e29a43f4889f4e158ec430b2115e0c5ae07c0cc4fc7ec50ee9732254d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1660/1/012100
PQID 2620836657
PQPubID 4998668
PageCount 9
ParticipantIDs iop_journals_10_1088_1742_6596_1660_1_012100
crossref_citationtrail_10_1088_1742_6596_1660_1_012100
proquest_journals_2620836657
crossref_primary_10_1088_1742_6596_1660_1_012100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Li (JPCS_1660_1_012100bib10) 2016
Zhu (JPCS_1660_1_012100bib12) 2019; 23
Curiskis (JPCS_1660_1_012100bib15) 2020; 57
Deerwester (JPCS_1660_1_012100bib2) 1990; 41
Alvarez-Melis (JPCS_1660_1_012100bib8) 2016
Zhu (JPCS_1660_1_012100bib17) 2017; 254
Pang (JPCS_1660_1_012100bib9) 2016
Blei (JPCS_1660_1_012100bib1) 2003; 3
Zuo (JPCS_1660_1_012100bib13) 2016; 48
Steinskog (JPCS_1660_1_012100bib14) 2017
Anantharaman (JPCS_1660_1_012100bib5) 2019
Nugroho (JPCS_1660_1_012100bib4) 2020
Stevens (JPCS_1660_1_012100bib19) 2012
Hofmann (JPCS_1660_1_012100bib3) 1999
Yıldırım (JPCS_1660_1_012100bib6) 2016; 11
Al-Sultany (JPCS_1660_1_012100bib7) 2019; 8
Li (JPCS_1660_1_012100bib11) 2017; 36
Prateek (JPCS_1660_1_012100bib18)
Cui (JPCS_1660_1_012100bib16) 2019; 22
References_xml – volume: 22
  start-page: 2589
  year: 2019
  ident: JPCS_1660_1_012100bib16
  article-title: Extended search method based on a semantic hashtag graph combining social and conceptual information
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0584-z
– start-page: 1
  year: 2020
  ident: JPCS_1660_1_012100bib4
  article-title: A survey of recent methods on deriving topics from Twitter: algorithm to evaluation
– start-page: 704
  year: 2019
  ident: JPCS_1660_1_012100bib5
  article-title: Performance evaluation of topic modeling algorithms for text classification
– volume: 8
  start-page: 144
  year: 2019
  ident: JPCS_1660_1_012100bib7
  article-title: Enriching Tweets for Topic Modeling via Linking to the Wikipedia
  publication-title: Int. J. Eng. Technol.
– start-page: 1
  ident: JPCS_1660_1_012100bib18
  article-title: Improved topic models for social media via community detection using user interaction and content similarity
– start-page: 952
  year: 2012
  ident: JPCS_1660_1_012100bib19
  article-title: Exploring topic coherence over many models and many topics
– volume: 36
  start-page: 1
  year: 2017
  ident: JPCS_1660_1_012100bib11
  article-title: Enhancing topic modeling for short texts with auxiliary word embeddings
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3091108
– volume: 11
  year: 2016
  ident: JPCS_1660_1_012100bib6
  article-title: Identifying topics in microblogs using Wikipedia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151885
– year: 2016
  ident: JPCS_1660_1_012100bib8
  article-title: Topic modeling in twitter: Aggregating tweets by conversations
– start-page: 165
  year: 2016
  ident: JPCS_1660_1_012100bib10
  article-title: Topic modeling for short texts with auxiliary word embeddings
– volume: 254
  start-page: 13
  year: 2017
  ident: JPCS_1660_1_012100bib17
  article-title: Real-time personalized twitter search based on semantic expansion and quality model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.082
– volume: 3
  start-page: 993
  year: 2003
  ident: JPCS_1660_1_012100bib1
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– start-page: 50
  year: 1999
  ident: JPCS_1660_1_012100bib3
  article-title: Probabilistic latent semantic indexing
– volume: 23
  start-page: 681
  year: 2019
  ident: JPCS_1660_1_012100bib12
  article-title: A joint model of extended LDA and IBTM over streaming Chinese short texts
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-183836
– volume: 48
  start-page: 379
  year: 2016
  ident: JPCS_1660_1_012100bib13
  article-title: Word network topic model: a simple but general solution for short and imbalanced texts
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0882-z
– volume: 41
  start-page: 391
  year: 1990
  ident: JPCS_1660_1_012100bib2
  article-title: Indexing by latent semantic analysis
  publication-title: J. Am. Soc. Inf. Sci.
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– start-page: 43
  year: 2016
  ident: JPCS_1660_1_012100bib9
  article-title: SBTM: Topic modeling over short texts
– start-page: 77
  year: 2017
  ident: JPCS_1660_1_012100bib14
  article-title: Twitter topic modeling by tweet aggregation
– volume: 57
  start-page: 102034
  year: 2020
  ident: JPCS_1660_1_012100bib15
  article-title: An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.04.002
SSID ssj0033337
Score 2.2606926
Snippet Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12100
SubjectTerms Algorithms
Clustering
Coherence
Data mining
Dirichlet problem
Hashtag
Latent Dirichlet Allocation (LDA)
Latent semantic analysis (LSA)
Modelling
Physics
Social networks
Topic Derivation
Twitter
Unstructured data
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA86EXwRP3F-EdBHy9Il7RJ8EBlOERTBDXwLaZq6wWyrrfjve9cPdQjatzYXKHfJ_e6S-yDkNGLGRDISXuSkAgclTDzFY9-zAO5JoriIGeYO392HNxNx-xQ8NQduRRNW2erESlHHmcUz8h4WTpcc7wku8lcPu0bh7WrTQmOZrPiANLjO5ei61cQcnkGdENn3AGllG98FTl_zTYU9PwxZz-9hbTNMc_uBTsuzLP-loivcGW2Q9cZgpJe1hDfJkku3yGoVuGmLbXJenwo4Wmb5zNKqsQ2gETXzZ_j7cvpSUASqmGYpHX_MMHeHTk0xLc1zsUMmo6vx8MZrGiJ4loMl4FlnRCJcXxnBE9h5Cl78QDorOIvAkwscs4FxbGCZtSKxA2cD5hwW5AE_MFZ8l3TSLHV7hEYD3_IA5KecAJ_OGpVU_YPAPuFxLGSXhC0jtG2qhWPTirmubq2l1MhBjRzUyEHt65qDXcK-JuZ1wYz_p5wBp3WzeYr_yU8WyG8fho-LFDqPky45bAX3Tfq9iPb_Hj4ga310rKukw0PSKd_e3RFYH2V0XC2xT-Kyzo8
  priority: 102
  providerName: ProQuest
Title Improve topic modeling algorithms based on Twitter hashtags
URI https://iopscience.iop.org/article/10.1088/1742-6596/1660/1/012100
https://www.proquest.com/docview/2620836657
Volume 1660
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5uIvgiXnE6R0AfrUuXtEvwSWVzDtyGbri3kKbpJug6bMW_70nbqUNk2IfSwkkbvjQ552vOBaGzgCgV8IA5geECCIofOYKGrqNBuUeRoCwkNnb4vud3Rqw79sY_Y2HiebH0X8Blnig4h7BwiON1sKEbju8Jv-76Pqm7dZuWjABtX6fc53Zy9unTYjWmcDTzoEjbiPOFj9ffD1rSUCXoxa9lOtM97W20VRiN-Crv4g5aM7NdtJE5b-pkD13mfwYMTuP5s8ZZcRvQSFi9TGLg_tPXBFtlFeJ4hocfzzZ-B09VMk3VJNlHo3ZreNNxiqIIjqZgDTjaKBYx0xCK0Qhmn4Ab1-NGM0oCYHOeIdpThjQ10ZpFumm0R4yxSXmAC4aCHqDyLJ6ZQ4SDpqupB2MoDANep5WIshpCYKPQMGS8gvwFEFIXGcNt4YoXme1ccy4tgtIiKC2C0pU5ghVEvhrO86QZq5ucA9KymEDJavHTJfHu4OZxWULOw6iCqouB-xa1Gfg5tRtOR_975zHabFiynQUiVlE5fXs3J2CRpEENlXj7tobWr1u9wUPNagcPznf9QS37GD8BFb3TJQ
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2FVAguiE-RNsBKwA0ra-_asVUhBKFVmrZRBanU23a9XjeR2tjFriL-VH9jZ_xBqJDoqb7Znr28Hc_b8e6bAfgQc63jMJZObMMIE5QgdSKRuI5Bck_TSMiEk3b4cBqMj-XkxD_pwHWrhaFjlW1MrAJ1khn6Rz6gwumhoH2CL_mlQ12jaHe1baFRu8W-_b3ClK34vPcd5_ej5-3uzEZjp-kq4BiBdOoYq2UqrRdpKVJ03whvXD-0RgoeYzrkW258bfnQcGNkaobW-NxaqmqDyVRCxZcw5G9IUrR2YePbzvToRxv7BV7DWoLpOcjtYXuiDNPM5lkUDNwg4AN3QNXUSFj3Fx8-WGT5P6RQMd3uU3jSLFHZ19qnnkHHLp_Dw-qoqClewHb9H8KyMssXhlWtdJD_mD4_Q7zK-UXBiBoTli3ZbLUgtRCb62Je6rPiJRzfC1ivoLvMlvY1sHjoGuGjx0RWYhZpdJRWHYtwRSSSRIY9CFoglGnqk1ObjHNV7ZOHoSIEFSGoCEHlqhrBHvA_A_O6RMfdQz4h0qr5XIu7zd_fMp8cjX7etlB5kvag307c2nTttpv_f_0OHo1nhwfqYG-6vwWPPUrrK8ljH7rlryv7Btc-Zfy2cTgGp_ft4zenGgzr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oHgRn7i6akCP1qabpJvgSVYX3woqegtpmrqCbhe74t930naVRUTsqYWZNnx5zEyT-QZgN6HGJDLhQeKkwgAlzgLF0iiwaNyzTDGeUp87fHkVn9zzs0fxOAHdr1yYfFAv_ft4WxEFVxDWB-JkiD50K4iFisMojmkYhZ6WjNJwkGaTMC1YLDyH_jV7GK3IDK92lRjpFaUcnfP6_WVjVmoSW_JjqS7tT3cB5mvHkRxWzVyECddfgpnyAKctluGg-jvgyDAfPFtSFrhBq0TMy1OO8X_vtSDeYKUk75O7j2efw0N6pugNzVOxAvfd47vOSVAXRggsQ48gsM7wjLuWMpxlOAMVPkRCOssZTTCiE45aYRxtW2otz2zbWUGd88Q8GA-miq3CVD_vuzUgSTuyTGA_KscxtrNGZWUdIfRTWJpy2YB4BIS2NWu4L17xosvdaym1R1B7BLVHUEe6QrAB9EtxUBFn_K2yh0jrehIVf4vvjImf3XRuxyU0DokGNEcd9y3qWfgl85tO6__75jbM3hx19cXp1fkGzLV87F3mJTZhavj27jbRQRkmW-Xo-wT4n9Ku
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improve+topic+modeling+algorithms+based+on+Twitter+hashtags&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Alash%2C+Hayder+M&rft.au=Al-Sultany%2C+Ghaidaa+A&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1660&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1660%2F1%2F012100&rft.externalDocID=JPCS_1660_1_012100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon