Improve topic modeling algorithms based on Twitter hashtags
Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent semantic analysis (LSA) and Latent Dirichlet A...
Saved in:
Published in | Journal of physics. Conference series Vol. 1660; no. 1; pp. 12100 - 12108 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/1660/1/012100 |
Cover
Abstract | Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent semantic analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned from Twitter content without modifying the basic topic model of LSA and LDA. Users who share the same hashtag at most discuss the same topic. We compare the performance of the two methods (LSA and LDA) using the topic coherence ( with and without hashtags). The experiment result on the Twitter dataset showed that LSA has better coherence score with hashtags than that do not incorporate hashtags. In contrast, our experiments show that the LDA has a better coherence score without incorporating hashtags. Finally, LDA has a better coherence score than LSA and the best coherence result obtained from the LDA method was (0.6047) and the LSA method was (0.4744) but the number of topics in LDA was higher than LSA. Thus, LDA may cause the same tweets to discuss the same subject set into different clustering. |
---|---|
AbstractList | Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned from Twitter content without modifying the basic topic model of LSA and LDA. Users who share the same hashtag at most discuss the same topic. We compare the performance of the two methods (LSA and LDA) using the topic coherence (with and without hashtags). The experiment result on the Twitter dataset showed that LSA has better coherence score with hashtags than that do not incorporate hashtags. In contrast, our experiments show that the LDA has a better coherence score without incorporating hashtags. Finally, LDA has a better coherence score than LSA and the best coherence result obtained from the LDA method was (0.6047) and the LSA method was (0.4744) but the number of topics in LDA was higher than LSA. Thus, LDA may cause the same tweets to discuss the same subject set into different clustering. |
Author | Alash, Hayder M Al-Sultany, Ghaidaa A |
Author_xml | – sequence: 1 givenname: Hayder M surname: Alash fullname: Alash, Hayder M email: hayder.albdulhameed@uobabylon.edu.iq organization: Department of Software, College of Information Technology, University of Babylon , Iraq – sequence: 2 givenname: Ghaidaa A surname: Al-Sultany fullname: Al-Sultany, Ghaidaa A email: ghaidaa.almulla@it-net.uobabylon.edu.iq organization: Department of Information Network, College of Information Technology, University of Babylon , Iraq |
BookMark | eNqNkF1LwzAUhoMouE1_gwXvhNp8tUkRL2T4MRkoOK9DlqZbRtvUJFP897ZUJoqguUkOed5zDs8Y7De20QCcIHiOIOcJYhTHWZpnCcoymKAEIowg3AOj3c_-7s35IRh7v4GQdIeNwMWsbp191VGwrVFRbQtdmWYVyWplnQnr2kdL6XUR2SZavJkQtIvW0q-DXPkjcFDKyuvjz3sCnm-uF9O7eP5wO5tezWNFGIKx0pKWVONcUlJSzvOuQCnXihK4xAilGqpUasgUVIqWimmVQq1zRjBOaZGTCTgd-nabvmy1D2Jjt67pRgqcYchJlqWsoy4HSjnrvdOlUCbIYGwTnDSVQFD0vkRvQvRWRO9LIDH46vLsR751ppbu_R_JsyFpbPu12v3j9Ok7KNqi7GDyC_zXiA9GS4xD |
CitedBy_id | crossref_primary_10_1111_exsy_13195 crossref_primary_10_1007_s10462_022_10254_w crossref_primary_10_1186_s12891_024_07687_5 crossref_primary_10_1016_j_procs_2024_03_145 crossref_primary_10_3390_app12189081 crossref_primary_10_32604_csse_2024_045066 crossref_primary_10_1007_s13278_023_01055_2 crossref_primary_10_1142_S0218488524500247 crossref_primary_10_1007_s10579_024_09725_z |
Cites_doi | 10.1007/s11280-018-0584-z 10.1145/3091108 10.1371/journal.pone.0151885 10.1016/j.neucom.2016.10.082 10.3233/IDA-183836 10.1007/s10115-015-0882-z 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 10.1016/j.ipm.2019.04.002 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/1660/1/012100 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Improve topic modeling algorithms based on Twitter hashtags |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_1660_1_012100 JPCS_1660_1_012100 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3710-cea4f4e29a43f4889f4e158ec430b2115e0c5ae07c0cc4fc7ec50ee9732254d93 |
IEDL.DBID | O3W |
ISSN | 1742-6588 |
IngestDate | Fri Jul 25 05:35:52 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 03:13:39 EDT 2025 Wed Aug 21 03:38:31 EDT 2024 Thu Jan 07 14:56:16 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3710-cea4f4e29a43f4889f4e158ec430b2115e0c5ae07c0cc4fc7ec50ee9732254d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/1660/1/012100 |
PQID | 2620836657 |
PQPubID | 4998668 |
PageCount | 9 |
ParticipantIDs | iop_journals_10_1088_1742_6596_1660_1_012100 crossref_citationtrail_10_1088_1742_6596_1660_1_012100 proquest_journals_2620836657 crossref_primary_10_1088_1742_6596_1660_1_012100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Li (JPCS_1660_1_012100bib10) 2016 Zhu (JPCS_1660_1_012100bib12) 2019; 23 Curiskis (JPCS_1660_1_012100bib15) 2020; 57 Deerwester (JPCS_1660_1_012100bib2) 1990; 41 Alvarez-Melis (JPCS_1660_1_012100bib8) 2016 Zhu (JPCS_1660_1_012100bib17) 2017; 254 Pang (JPCS_1660_1_012100bib9) 2016 Blei (JPCS_1660_1_012100bib1) 2003; 3 Zuo (JPCS_1660_1_012100bib13) 2016; 48 Steinskog (JPCS_1660_1_012100bib14) 2017 Anantharaman (JPCS_1660_1_012100bib5) 2019 Nugroho (JPCS_1660_1_012100bib4) 2020 Stevens (JPCS_1660_1_012100bib19) 2012 Hofmann (JPCS_1660_1_012100bib3) 1999 Yıldırım (JPCS_1660_1_012100bib6) 2016; 11 Al-Sultany (JPCS_1660_1_012100bib7) 2019; 8 Li (JPCS_1660_1_012100bib11) 2017; 36 Prateek (JPCS_1660_1_012100bib18) Cui (JPCS_1660_1_012100bib16) 2019; 22 |
References_xml | – volume: 22 start-page: 2589 year: 2019 ident: JPCS_1660_1_012100bib16 article-title: Extended search method based on a semantic hashtag graph combining social and conceptual information publication-title: World Wide Web doi: 10.1007/s11280-018-0584-z – start-page: 1 year: 2020 ident: JPCS_1660_1_012100bib4 article-title: A survey of recent methods on deriving topics from Twitter: algorithm to evaluation – start-page: 704 year: 2019 ident: JPCS_1660_1_012100bib5 article-title: Performance evaluation of topic modeling algorithms for text classification – volume: 8 start-page: 144 year: 2019 ident: JPCS_1660_1_012100bib7 article-title: Enriching Tweets for Topic Modeling via Linking to the Wikipedia publication-title: Int. J. Eng. Technol. – start-page: 1 ident: JPCS_1660_1_012100bib18 article-title: Improved topic models for social media via community detection using user interaction and content similarity – start-page: 952 year: 2012 ident: JPCS_1660_1_012100bib19 article-title: Exploring topic coherence over many models and many topics – volume: 36 start-page: 1 year: 2017 ident: JPCS_1660_1_012100bib11 article-title: Enhancing topic modeling for short texts with auxiliary word embeddings publication-title: ACM Trans. Inf. Syst. doi: 10.1145/3091108 – volume: 11 year: 2016 ident: JPCS_1660_1_012100bib6 article-title: Identifying topics in microblogs using Wikipedia publication-title: PLoS One doi: 10.1371/journal.pone.0151885 – year: 2016 ident: JPCS_1660_1_012100bib8 article-title: Topic modeling in twitter: Aggregating tweets by conversations – start-page: 165 year: 2016 ident: JPCS_1660_1_012100bib10 article-title: Topic modeling for short texts with auxiliary word embeddings – volume: 254 start-page: 13 year: 2017 ident: JPCS_1660_1_012100bib17 article-title: Real-time personalized twitter search based on semantic expansion and quality model publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.082 – volume: 3 start-page: 993 year: 2003 ident: JPCS_1660_1_012100bib1 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – start-page: 50 year: 1999 ident: JPCS_1660_1_012100bib3 article-title: Probabilistic latent semantic indexing – volume: 23 start-page: 681 year: 2019 ident: JPCS_1660_1_012100bib12 article-title: A joint model of extended LDA and IBTM over streaming Chinese short texts publication-title: Intell. Data Anal. doi: 10.3233/IDA-183836 – volume: 48 start-page: 379 year: 2016 ident: JPCS_1660_1_012100bib13 article-title: Word network topic model: a simple but general solution for short and imbalanced texts publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0882-z – volume: 41 start-page: 391 year: 1990 ident: JPCS_1660_1_012100bib2 article-title: Indexing by latent semantic analysis publication-title: J. Am. Soc. Inf. Sci. doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 – start-page: 43 year: 2016 ident: JPCS_1660_1_012100bib9 article-title: SBTM: Topic modeling over short texts – start-page: 77 year: 2017 ident: JPCS_1660_1_012100bib14 article-title: Twitter topic modeling by tweet aggregation – volume: 57 start-page: 102034 year: 2020 ident: JPCS_1660_1_012100bib15 article-title: An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2019.04.002 |
SSID | ssj0033337 |
Score | 2.2606926 |
Snippet | Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12100 |
SubjectTerms | Algorithms Clustering Coherence Data mining Dirichlet problem Hashtag Latent Dirichlet Allocation (LDA) Latent semantic analysis (LSA) Modelling Physics Social networks Topic Derivation Unstructured data |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA86EXwRP3F-EdBHy9Il7RJ8EBlOERTBDXwLaZq6wWyrrfjve9cPdQjatzYXKHfJ_e6S-yDkNGLGRDISXuSkAgclTDzFY9-zAO5JoriIGeYO392HNxNx-xQ8NQduRRNW2erESlHHmcUz8h4WTpcc7wku8lcPu0bh7WrTQmOZrPiANLjO5ei61cQcnkGdENn3AGllG98FTl_zTYU9PwxZz-9hbTNMc_uBTsuzLP-loivcGW2Q9cZgpJe1hDfJkku3yGoVuGmLbXJenwo4Wmb5zNKqsQ2gETXzZ_j7cvpSUASqmGYpHX_MMHeHTk0xLc1zsUMmo6vx8MZrGiJ4loMl4FlnRCJcXxnBE9h5Cl78QDorOIvAkwscs4FxbGCZtSKxA2cD5hwW5AE_MFZ8l3TSLHV7hEYD3_IA5KecAJ_OGpVU_YPAPuFxLGSXhC0jtG2qhWPTirmubq2l1MhBjRzUyEHt65qDXcK-JuZ1wYz_p5wBp3WzeYr_yU8WyG8fho-LFDqPky45bAX3Tfq9iPb_Hj4ga310rKukw0PSKd_e3RFYH2V0XC2xT-Kyzo8 priority: 102 providerName: ProQuest |
Title | Improve topic modeling algorithms based on Twitter hashtags |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1660/1/012100 https://www.proquest.com/docview/2620836657 |
Volume | 1660 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5uIvgiXnE6R0AfrUuXtEvwSWVzDtyGbri3kKbpJug6bMW_70nbqUNk2IfSwkkbvjQ552vOBaGzgCgV8IA5geECCIofOYKGrqNBuUeRoCwkNnb4vud3Rqw79sY_Y2HiebH0X8Blnig4h7BwiON1sKEbju8Jv-76Pqm7dZuWjABtX6fc53Zy9unTYjWmcDTzoEjbiPOFj9ffD1rSUCXoxa9lOtM97W20VRiN-Crv4g5aM7NdtJE5b-pkD13mfwYMTuP5s8ZZcRvQSFi9TGLg_tPXBFtlFeJ4hocfzzZ-B09VMk3VJNlHo3ZreNNxiqIIjqZgDTjaKBYx0xCK0Qhmn4Ab1-NGM0oCYHOeIdpThjQ10ZpFumm0R4yxSXmAC4aCHqDyLJ6ZQ4SDpqupB2MoDANep5WIshpCYKPQMGS8gvwFEFIXGcNt4YoXme1ccy4tgtIiKC2C0pU5ghVEvhrO86QZq5ucA9KymEDJavHTJfHu4OZxWULOw6iCqouB-xa1Gfg5tRtOR_975zHabFiynQUiVlE5fXs3J2CRpEENlXj7tobWr1u9wUPNagcPznf9QS37GD8BFb3TJQ |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2FVAguiE-RNsBKwA0ra-_asVUhBKFVmrZRBanU23a9XjeR2tjFriL-VH9jZ_xBqJDoqb7Znr28Hc_b8e6bAfgQc63jMJZObMMIE5QgdSKRuI5Bck_TSMiEk3b4cBqMj-XkxD_pwHWrhaFjlW1MrAJ1khn6Rz6gwumhoH2CL_mlQ12jaHe1baFRu8W-_b3ClK34vPcd5_ej5-3uzEZjp-kq4BiBdOoYq2UqrRdpKVJ03whvXD-0RgoeYzrkW258bfnQcGNkaobW-NxaqmqDyVRCxZcw5G9IUrR2YePbzvToRxv7BV7DWoLpOcjtYXuiDNPM5lkUDNwg4AN3QNXUSFj3Fx8-WGT5P6RQMd3uU3jSLFHZ19qnnkHHLp_Dw-qoqClewHb9H8KyMssXhlWtdJD_mD4_Q7zK-UXBiBoTli3ZbLUgtRCb62Je6rPiJRzfC1ivoLvMlvY1sHjoGuGjx0RWYhZpdJRWHYtwRSSSRIY9CFoglGnqk1ObjHNV7ZOHoSIEFSGoCEHlqhrBHvA_A_O6RMfdQz4h0qr5XIu7zd_fMp8cjX7etlB5kvag307c2nTttpv_f_0OHo1nhwfqYG-6vwWPPUrrK8ljH7rlryv7Btc-Zfy2cTgGp_ft4zenGgzr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oHgRn7i6akCP1qabpJvgSVYX3woqegtpmrqCbhe74t930naVRUTsqYWZNnx5zEyT-QZgN6HGJDLhQeKkwgAlzgLF0iiwaNyzTDGeUp87fHkVn9zzs0fxOAHdr1yYfFAv_ft4WxEFVxDWB-JkiD50K4iFisMojmkYhZ6WjNJwkGaTMC1YLDyH_jV7GK3IDK92lRjpFaUcnfP6_WVjVmoSW_JjqS7tT3cB5mvHkRxWzVyECddfgpnyAKctluGg-jvgyDAfPFtSFrhBq0TMy1OO8X_vtSDeYKUk75O7j2efw0N6pugNzVOxAvfd47vOSVAXRggsQ48gsM7wjLuWMpxlOAMVPkRCOssZTTCiE45aYRxtW2otz2zbWUGd88Q8GA-miq3CVD_vuzUgSTuyTGA_KscxtrNGZWUdIfRTWJpy2YB4BIS2NWu4L17xosvdaym1R1B7BLVHUEe6QrAB9EtxUBFn_K2yh0jrehIVf4vvjImf3XRuxyU0DokGNEcd9y3qWfgl85tO6__75jbM3hx19cXp1fkGzLV87F3mJTZhavj27jbRQRkmW-Xo-wT4n9Ku |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improve+topic+modeling+algorithms+based+on+Twitter+hashtags&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Alash%2C+Hayder+M&rft.au=Al-Sultany%2C+Ghaidaa+A&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1660&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1660%2F1%2F012100&rft.externalDocID=JPCS_1660_1_012100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |