Optimization of 1,2,4‐butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance
1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate d...
Saved in:
Published in | Biotechnology and bioengineering Vol. 118; no. 1; pp. 175 - 185 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
The NADPH regeneration strategy improved 1,2,4‐butanetriol production from xylose in yeast Saccharomyces cerevisiae. We revealed the integrating the 1,2,4‐butanetriol synthetic pathway strain induced the NADPH depletion. The overexpression of NADH kinase POS5△17 increased up to 2.2 g/L with a molar yield 33%. Sequential supply of glucose relieved the xylonate accumulation is major byproduct and BT production reached at 6.6 g/L after 144 h fermentation. |
---|---|
AbstractList | 1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism. 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism. The NADPH regeneration strategy improved 1,2,4‐butanetriol production from xylose in yeast Saccharomyces cerevisiae. We revealed the integrating the 1,2,4‐butanetriol synthetic pathway strain induced the NADPH depletion. The overexpression of NADH kinase POS5△17 increased up to 2.2 g/L with a molar yield 33%. Sequential supply of glucose relieved the xylonate accumulation is major byproduct and BT production reached at 6.6 g/L after 144 h fermentation. 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism. 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae , BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism. |
Author | Kondo, Akihiko Bamba, Takahiro Guirimand, Gregory Hasunuma, Tomohisa Yukawa, Takahiro Matsuda, Mami |
Author_xml | – sequence: 1 givenname: Takahiro surname: Yukawa fullname: Yukawa, Takahiro organization: Kobe University – sequence: 2 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Kobe University – sequence: 3 givenname: Gregory surname: Guirimand fullname: Guirimand, Gregory organization: Loire Valley Institute for Advanced Studies – sequence: 4 givenname: Mami surname: Matsuda fullname: Matsuda, Mami organization: Kobe University – sequence: 5 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa email: hasunuma@port.kobe-u.ac.jp organization: Kobe University – sequence: 6 givenname: Akihiko orcidid: 0000-0003-1527-5288 surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: RIKEN |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32902873$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1u1DAQAGALFdFt4cALIEtcQGq6_osTH0uh3UoVRaKcI8eZFFeJvdgOEE5cuPcZ-yS4u4VDJbjYsv3NeOzZQzvOO0DoOSWHlBC2bG06ZFUpySO0oERVBWGK7KAFIUQWvFRsF-3FeJ2XVS3lE7TL8zmrK75Avy7WyY72h07WO-x7TA_Ygbj9edNOSTtIwfoBr4PvJrMRffAj_j4PPgK2Dn_UxnzWeW82ELGBAF9ttBpwO-MRkm79YA0Gd2UdQLDu6u6K90dvV8s8fFjhVg_aGXiKHvd6iPDsft5Hn07eXR6vivOL07Pjo_PC8IqSolS9NsqorlVCy77uCAhJuai7rjKkE1Jx6CUHUZa1ptAarmpS84pwwWhPJd9Hr7Z584u-TBBTM9poYMhFgJ9iw4SgTMpK1Zm-fECv_RRcri6rSjDJuCRZvbhXUztC16yDHXWYmz8fnMHrLTDBxxig_0soae6a1-TmNZvmZbt8YI1Nm8akoO3wv4hvdoD536mbN2eX24jfCfOqxQ |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_131996 crossref_primary_10_1016_j_ijbiomac_2023_128303 crossref_primary_10_1186_s12934_024_02317_0 crossref_primary_10_1039_D4GC05241B crossref_primary_10_1186_s12934_022_01828_y crossref_primary_10_1016_j_mec_2024_e00245 crossref_primary_10_1016_j_bbrc_2024_149876 crossref_primary_10_1016_j_synbio_2024_02_004 crossref_primary_10_1016_j_ymben_2021_10_002 crossref_primary_10_3390_foods11071031 crossref_primary_10_1186_s13068_023_02266_7 crossref_primary_10_3390_ijms24021767 crossref_primary_10_1007_s11274_024_03885_4 crossref_primary_10_1016_j_seppur_2023_123436 crossref_primary_10_1186_s13068_023_02414_z crossref_primary_10_1002_bit_28278 crossref_primary_10_1007_s00253_021_11410_y crossref_primary_10_1021_acssuschemeng_2c07418 crossref_primary_10_1016_j_bej_2023_108936 crossref_primary_10_1016_j_enmf_2024_06_002 crossref_primary_10_3389_fbioe_2022_844517 crossref_primary_10_1016_j_apsb_2024_04_032 crossref_primary_10_1016_j_checat_2022_11_006 crossref_primary_10_1016_j_biortech_2024_131396 crossref_primary_10_1021_acssynbio_2c00132 |
Cites_doi | 10.1073/pnas.1323464111 10.1016/j.enzmictec.2016.07.007 10.1074/jbc.M210076200 10.1007/s00894-017-3414-9 10.1186/1754-6834-5-14 10.1038/s41467-020-14830-y 10.1021/ma8009728 10.1038/srep05541 10.1186/s12934-018-0984-x 10.1016/j.biotechadv.2013.03.004 10.1007/s11274-016-2085-5 10.1186/s12934-017-0694-9 10.1007/BF00318659 10.1021/acs.jafc.7b02945 10.1042/bj3610163 10.1016/j.ymben.2011.05.005 10.1039/C8GC03864C 10.1016/j.ymben.2012.03.002 10.3389/fbioe.2019.00464 10.1016/j.ymben.2012.09.003 10.1016/j.ymben.2015.04.007 10.1007/s00253-013-4877-y 10.1016/j.procbio.2013.10.002 10.1186/1475-2859-10-2 10.1371/journal.pone.0052498 10.1007/s00253-017-8547-3 10.1007/s10295-015-1693-7 10.1007/s00253-009-1900-4 10.1021/ja036391 10.1128/EC.2.4.809-820.2003 10.1007/s00253-016-7530-8 10.1021/bp9500627 10.1186/s12934-017-0728-3 10.1016/j.jbiosc.2018.05.019 10.1016/j.biortech.2004.06.025 10.1074/jbc.M110.178947 10.1263/jbb.103.494 10.1007/s00894-017-3541-3 10.1038/nchembio.2020 10.1016/j.ymben.2019.08.012 10.1016/0092-8674(88)90110-9 10.1016/j.biortech.2017.11.062 10.1007/s00253-009-2053-1 10.1093/jb/mvp028 10.1074/jbc.M804100200 10.1007/s00253-019-10073-0 10.1111/lam.12463 10.1007/s00449-015-1417-4 10.1038/s41467-018-07589-w 10.1186/s13568-015-0175-7 10.1016/j.ymben.2017.02.003 10.1093/jxb/ert134 10.1038/s41598-018-34210-3 10.1007/s00253-009-2198-y 10.1186/s13068-020-1662-x 10.1016/j.jbiosc.2011.12.013 10.1016/j.ymben.2019.05.010 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC 2020 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2020 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.27560 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 185 |
ExternalDocumentID | 32902873 10_1002_bit_27560 BIT27560 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Development of Production Techniques for Highly Functional Biomaterials Using SmartCells of Plants and Other Organisms (Smart Cell Project), from the NewEnergy and Industrial Technology Development Organization (NEDO) funderid: P16009 – fundername: Development of Production Techniques for Highly Functional Biomaterials Using SmartCells of Plants and Other Organisms (Smart Cell Project), from the NewEnergy and Industrial Technology Development Organization (NEDO) grantid: P16009 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3710-59fac9c9db94a6f8d0e461348dd7c0d4693ef63e4558a1ebc398083703421f163 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Fri Jul 11 02:53:43 EDT 2025 Fri Jul 25 18:52:54 EDT 2025 Mon Jul 21 05:55:56 EDT 2025 Tue Jul 01 01:09:05 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Jan 22 16:31:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 1,2,4-butanetriol coenzyme balance Saccharomyces cerevisiae xylose |
Language | English |
License | 2020 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3710-59fac9c9db94a6f8d0e461348dd7c0d4693ef63e4558a1ebc398083703421f163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1527-5288 |
PMID | 32902873 |
PQID | 2474262360 |
PQPubID | 48814 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2441266798 proquest_journals_2474262360 pubmed_primary_32902873 crossref_primary_10_1002_bit_27560 crossref_citationtrail_10_1002_bit_27560 wiley_primary_10_1002_bit_27560_BIT27560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol Bioeng |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2007; 103 2009; 84 2015; 38 2019; 55 2009; 82 2019; 56 2015; 30 2013; 64 2018; 126 2003; 13 2016; 32 2016; 100 2011; 10 2011; 13 2020; 13 2020; 11 2012; 14 2003; 278 2010; 22 2020; 7 2018; 9 2018; 8 2013; 15 2018; 250 2019; 21 2013; 97 2003; 2 2016; 43 2009; 284 2003; 125 2015; 5 2015; 4 2016; 93–94 2017; 65 2017; 23 1988; 54 2014; 49 2019; 103 2010; 285 2014; 111 2010; 85 1996; 12 2016; 12 2018; 24 2016; 6 2018; 17 2012; 113 2017; 16 2002; 361 2015; 61 2013; 31 2005; 96 2009; 145 2018 2008; 41 1992; 21 2012; 7 2017; 101 2012; 5 e_1_2_7_5_1 e_1_2_7_3_1 Gouranlou F. (e_1_2_7_15_1) 2010; 22 e_1_2_7_19_1 Lee W.‐J. (e_1_2_7_28_1) 2003; 13 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 Zhang N. (e_1_2_7_59_1) 2016; 93 Liu M.‐H. (e_1_2_7_30_1) 2017; 23 Shen L. (e_1_2_7_46_1) 2020; 11 Cao Y. (e_1_2_7_9_1) 2015; 5 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Larroy C. (e_1_2_7_27_1) 2002; 361 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 Protzko R. J. (e_1_2_7_43_1) 2018; 9 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 Yamada‐Onodera K. (e_1_2_7_58_1) 2007; 103 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 Li X. (e_1_2_7_29_1) 2015; 4 e_1_2_7_14_1 e_1_2_7_44_1 e_1_2_7_10_1 Kwak S. (e_1_2_7_26_1) 2017; 16 e_1_2_7_48_1 Bañares A. B. (e_1_2_7_6_1) 2019; 103 Barrett D. G. (e_1_2_7_7_1) 2008; 41 Nijland J. G. (e_1_2_7_34_1) 2020; 7 Wang X. (e_1_2_7_56_1) 2018; 250 Czajka J. J. (e_1_2_7_12_1) 2018; 17 e_1_2_7_51_1 e_1_2_7_53_1 Zhao Z. (e_1_2_7_61_1) 2020; 13 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Pei L. (e_1_2_7_42_1) 2018; 24 |
References_xml | – volume: 103 start-page: 494 issue: 5 year: 2007 end-page: 496 article-title: Production of optically active 1,2,4‐butanetriol from corresponding racemate by microbial stereoinversion publication-title: Journal of Bioscience and Bioengineering – volume: 8 issue: 1 year: 2018 article-title: Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in publication-title: Scientific Reports – volume: 13 start-page: 725 year: 2003 end-page: 730 article-title: Effects of xylose reductase activity on xylitol production in two‐substrate fermentation of recombinant publication-title: Journal of Microbiology and Biotechnology – volume: 7 issue: 12 year: 2012 article-title: Reconstruction and evaluation of the synthetic bacterial MEP pathway in publication-title: PLoS One – volume: 82 start-page: 909 issue: 5 year: 2009 end-page: 919 article-title: Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose‐utilizing publication-title: Applied Microbiology and Biotechnology – volume: 125 start-page: 12998 year: 2003 end-page: 12999 article-title: Microbial synthesis of the energetic material precursor 1,2,4‐butanetriol publication-title: Journal of the American Chemical Society – volume: 101 start-page: 8151 issue: 22 year: 2017 end-page: 8163 article-title: Production of ethylene glycol or glycolic acid from ‐xylose in publication-title: Applied Microbiology and Biotechnology – volume: 56 start-page: 17 year: 2019 end-page: 27 article-title: Production of 1,2,4‐butanetriol from xylose by through Fe metabolic engineering publication-title: Metabolic Engineering – volume: 4 year: 2015 article-title: Design and construction of a non‐natural malate to 1,2,4‐butanetriol pathway creates possibility to produce 1,2,4‐butanetriol from glucose publication-title: Scientific Reports – volume: 10 start-page: 2 issue: 1 year: 2011 article-title: Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose‐fermenting strain of publication-title: Microbial Cell Factories – volume: 284 start-page: 7553 issue: 12 year: 2009 end-page: 7560 article-title: Two sources of mitochondrial NADPH in the yeast publication-title: The Journal of Biological Chemistry – volume: 9 issue: 1 year: 2018 article-title: Engineering for co‐utilization of ‐galacturonic acid and ‐glucose from citrus peel waste publication-title: Nature Communications – volume: 49 start-page: 25 issue: 1 year: 2014 end-page: 32 article-title: Direct bioconversion of ‐xylose to 1,2,4‐butanetriol in an engineered publication-title: Process Biochemistry – volume: 64 start-page: 2943 issue: 10 year: 2013 end-page: 2954 article-title: Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion publication-title: Journal of Experimental Botany – volume: 145 start-page: 701 issue: 6 year: 2009 end-page: 708 article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast publication-title: The Journal of Biochemistry – volume: 103 start-page: 8063 year: 2019 end-page: 8074 article-title: Discovering a novel ‐xylonate‐responsive promoter: The P ‐driven genetic switch towards better 1,2,4‐butanetriol production publication-title: Applied Microbiology and Biotechnology – volume: 12 start-page: 247 issue: 4 year: 2016 end-page: 253 article-title: Engineering nonphosphorylative metabolism to generate lignocellulose‐derived products publication-title: Nature Chemical Biology – volume: 16 start-page: 82 issue: 1 year: 2017 article-title: Production of fuels and chemicals from xylose by engineered : A review and perspective publication-title: Microbial Cell Factories – volume: 96 start-page: 673 issue: 6 year: 2005 end-page: 686 article-title: Features of promising technologies for pretreatment of lignocellulosic biomass publication-title: Bioresource Technology – volume: 24 start-page: 6 issue: 1 year: 2018 article-title: Theoretical studies of the decomposition mechanisms of 1,2,4‐butanetriol trinitrate publication-title: Journal of Molecular Modeling – volume: 11 start-page: 1098 issue: 1 year: 2020 article-title: A combined experimental and modelling approach for the Weimberg pathway optimisation publication-title: Nature Communications – volume: 22 start-page: 4221 issue: 6 year: 2010 end-page: 4228 article-title: Synthesis and characterization of 1,2,4‐butanetrioltrinitrate publication-title: Asian Journal of Chemistry – year: 2018 – volume: 113 start-page: 665 issue: 5 year: 2012 end-page: 673 article-title: Widely targeted metabolic profiling analysis of yeast central metabolites publication-title: Journal of Bioscience and Bioengineering – volume: 285 start-page: 39409 issue: 50 year: 2010 end-page: 39424 article-title: Mitochondrial NADH kinase, Pos5p, is required for efficient iron‐sulfur cluster biogenesis in publication-title: The Journal of Biological Chemistry – volume: 65 start-page: 8162 issue: 37 year: 2017 end-page: 8170 article-title: Regeneration of NADPH coupled with HMG‐CoA reductase activity increases squalene synthesis in publication-title: Journal of Agricultural and Food Chemistry – volume: 31 start-page: 851 issue: 6 year: 2013 end-page: 861 article-title: Strain engineering of for enhanced xylose metabolism publication-title: Biotechnology Advances – volume: 30 start-page: 79 year: 2015 end-page: 88 article-title: Cloning and characterization of heterologous transporters in and identification of important amino acids for xylose utilization publication-title: Metabolic Engineering – volume: 14 start-page: 427 issue: 4 year: 2012 end-page: 436 article-title: Metabolic engineering of for bioconversion of ‐xylose to ‐xylonate publication-title: Metabolic Engineering – volume: 32 start-page: 149 issue: 9 year: 2016 article-title: Improved 1, 2, 4‐butanetriol production from an engineered by co‐expression of different chaperone proteins publication-title: World Journal of Microbiology and Biotechnology – volume: 100 start-page: 7549 issue: 17 year: 2016 end-page: 7563 article-title: Characterization and mutagenesis of two novel iron–sulphur cluster pentonate dehydratases publication-title: Applied Microbiology and Biotechnology – volume: 5 year: 2015 article-title: Biotechnological production of 1,2,4‐butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass publication-title: Scientific Reports – volume: 126 start-page: 547 year: 2018 end-page: 552 article-title: Modification of an engineered by a combined strategy of deleting branch pathway, fine‐tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4‐butanetriol production publication-title: Journal of Bioscience and Bioengineering – volume: 15 start-page: 226 year: 2013 end-page: 234 article-title: Enhanced xylitol production through simultaneous co‐utilization of cellobiose and xylose by engineered publication-title: Metabolic Engineering – volume: 13 start-page: 508 issue: 5 year: 2011 end-page: 517 article-title: Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant publication-title: Metabolic Engineering – volume: 13 start-page: 21 issue: 1 year: 2020 article-title: Biochemical routes for uptake and conversion of xylose by microorganisms publication-title: Biotechnology for Biofuels – volume: 97 start-page: 5753 issue: 13 year: 2013 end-page: 5769 article-title: Heterologous expression and characterization of bacterial 2‐C‐methyl‐d‐erythritol‐4‐phosphate pathway in publication-title: Applied Microbiology and Biotechnology – volume: 38 start-page: 1761 issue: 9 year: 2015 end-page: 1772 article-title: Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered publication-title: Bioprocess and Biosystems Engineering – volume: 250 start-page: 406 year: 2018 end-page: 412 article-title: ‐1,2,4‐Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered publication-title: Bioresource Technology – volume: 12 start-page: 16 issue: 1 year: 1996 end-page: 21 article-title: An integrating vector for tunable, high copy, stable integration into the dispersed Ty δ sites of publication-title: Biotechnology Progress – volume: 111 start-page: 5159 issue: 14 year: 2014 end-page: 5164 article-title: Engineering of yeast hexose transporters to transport ‐xylose without inhibition by ‐glucose publication-title: Proceedings of the National Academy of Sciences – volume: 61 start-page: 354 issue: 4 year: 2015 end-page: 360 article-title: Overexpression of and improves carotenoid biosynthesis in recombinant publication-title: Letters in Applied Microbiology – volume: 43 start-page: 67 issue: 1 year: 2016 end-page: 78 article-title: Synthetic pathway optimization for improved 1,2,4‐butanetriol production publication-title: Journal of Industrial Microbiology & Biotechnology – volume: 41 start-page: 6347 issue: 17 year: 2008 end-page: 6352 article-title: Poly(triol α‐ketoglutarate) as Biodegradable, Chemoselective, and Mechanically Tunable Elastomers publication-title: Macromolecules – volume: 361 start-page: 163 issue: Pt 1 year: 2002 end-page: 172 article-title: Characterization of the gene product as a broad specificity NADPH‐dependent alcohol dehydrogenase: Relevance in aldehyde reduction publication-title: Biochemical Journal – volume: 5 start-page: 14 issue: 1 year: 2012 article-title: Competition between pentoses and glucose during uptake and catabolism in recombinant publication-title: Biotechnology for Biofuels – volume: 23 start-page: 246 issue: 8 year: 2017 article-title: Computational study of simultaneous synthesis of optically active (RS)‐1,2,4‐butanetriol trinitrate (BTTN) publication-title: Journal of Molecular Modeling – volume: 55 start-page: 1 year: 2019 end-page: 11 article-title: Identification of modifications procuring growth on xylose in recombinant strains carrying the Weimberg pathway publication-title: Metabolic Engineering – volume: 85 start-page: 1491 issue: 5 year: 2010 end-page: 1498 article-title: Novel strategy for yeast construction using δ‐integration and cell fusion to efficiently produce ethanol from raw starch publication-title: Applied Microbiology and Biotechnology – volume: 7 start-page: 464 year: 2020 article-title: Engineering of pentose transport in for biotechnological applications publication-title: Frontiers in Bioengineering and Biotechnology – volume: 84 start-page: 751 issue: 4 year: 2009 end-page: 761 article-title: Carbon fluxes of xylose‐consuming strains are affected differently by NADH and NADPH usage in HMF reduction publication-title: Applied Microbiology and Biotechnology – volume: 2 start-page: 809 issue: 4 year: 2003 end-page: 820 article-title: gene of encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA publication-title: Eukaryotic Cell – volume: 17 issue: 1 year: 2018 article-title: Engineering the oleaginous yeast to produce the aroma compound β‐ionone publication-title: Microbial Cell Factories – volume: 21 start-page: 83 issue: 1 year: 1992 end-page: 84 article-title: One‐step transformation of yeast in stationary phase publication-title: Current Genetics – volume: 6 start-page: 4 year: 2016 article-title: Disruption of improves ethanol production via the xylose isomerase pathway publication-title: AMB Express – volume: 278 start-page: 13984 issue: 16 year: 2003 end-page: 13988 article-title: The gene product is indispensable for providing NADPH in yeast cells lacking glucose‐6‐phosphate dehydrogenase activity publication-title: Journal of Biological Chemistry – volume: 93–94 start-page: 51 year: 2016 end-page: 58 article-title: Metabolic pathway optimization for biosynthesis of 1,2,4‐butanetriol from xylose by engineered publication-title: Enzyme and Microbial Technology – volume: 40 start-page: 148 year: 2017 end-page: 156 article-title: Rational engineering of diol dehydratase enables 1,4‐butanediol biosynthesis from xylose publication-title: Metabolic Engineering – volume: 16 start-page: 115 issue: 1 year: 2017 article-title: Engineering redox homeostasis to develop efficient alcohol‐producing microbial cell factories publication-title: Microbial Cell Factories – volume: 54 start-page: 955 year: 1988 end-page: 966 article-title: The DNA intermediate in yeast Tyl element transposition copurifies with virus‐like particles: Cell‐free Tyl transposition publication-title: Cell – volume: 21 start-page: 1795 issue: 7 year: 2019 end-page: 1808 article-title: Cell‐surface display technology and metabolic engineering of for enhancing xylitol production from woody biomass publication-title: Green Chemistry – ident: e_1_2_7_14_1 doi: 10.1073/pnas.1323464111 – volume: 93 start-page: 51 year: 2016 ident: e_1_2_7_59_1 article-title: Metabolic pathway optimization for biosynthesis of 1,2,4‐butanetriol from xylose by engineered Escherichia coli publication-title: Enzyme and Microbial Technology doi: 10.1016/j.enzmictec.2016.07.007 – ident: e_1_2_7_16_1 doi: 10.1074/jbc.M210076200 – volume: 23 start-page: 246 issue: 8 year: 2017 ident: e_1_2_7_30_1 article-title: Computational study of simultaneous synthesis of optically active (RS)‐1,2,4‐butanetriol trinitrate (BTTN) publication-title: Journal of Molecular Modeling doi: 10.1007/s00894-017-3414-9 – ident: e_1_2_7_48_1 doi: 10.1186/1754-6834-5-14 – volume: 11 start-page: 1098 issue: 1 year: 2020 ident: e_1_2_7_46_1 article-title: A combined experimental and modelling approach for the Weimberg pathway optimisation publication-title: Nature Communications doi: 10.1038/s41467-020-14830-y – volume: 41 start-page: 6347 issue: 17 year: 2008 ident: e_1_2_7_7_1 article-title: Poly(triol α‐ketoglutarate) as Biodegradable, Chemoselective, and Mechanically Tunable Elastomers publication-title: Macromolecules doi: 10.1021/ma8009728 – volume: 4 start-page: 5541 year: 2015 ident: e_1_2_7_29_1 article-title: Design and construction of a non‐natural malate to 1,2,4‐butanetriol pathway creates possibility to produce 1,2,4‐butanetriol from glucose publication-title: Scientific Reports doi: 10.1038/srep05541 – volume: 17 start-page: 136 issue: 1 year: 2018 ident: e_1_2_7_12_1 article-title: Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β‐ionone publication-title: Microbial Cell Factories doi: 10.1186/s12934-018-0984-x – ident: e_1_2_7_25_1 doi: 10.1016/j.biotechadv.2013.03.004 – ident: e_1_2_7_31_1 doi: 10.1007/s11274-016-2085-5 – volume: 16 start-page: 82 issue: 1 year: 2017 ident: e_1_2_7_26_1 article-title: Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective publication-title: Microbial Cell Factories doi: 10.1186/s12934-017-0694-9 – ident: e_1_2_7_11_1 doi: 10.1007/BF00318659 – ident: e_1_2_7_39_1 doi: 10.1021/acs.jafc.7b02945 – volume: 361 start-page: 163 issue: 1 year: 2002 ident: e_1_2_7_27_1 article-title: Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH‐dependent alcohol dehydrogenase: Relevance in aldehyde reduction publication-title: Biochemical Journal doi: 10.1042/bj3610163 – ident: e_1_2_7_38_1 doi: 10.1016/j.ymben.2011.05.005 – ident: e_1_2_7_17_1 doi: 10.1039/C8GC03864C – ident: e_1_2_7_51_1 doi: 10.1016/j.ymben.2012.03.002 – volume: 22 start-page: 4221 issue: 6 year: 2010 ident: e_1_2_7_15_1 article-title: Synthesis and characterization of 1,2,4‐butanetrioltrinitrate publication-title: Asian Journal of Chemistry – volume: 7 start-page: 464 year: 2020 ident: e_1_2_7_34_1 article-title: Engineering of pentose transport in Saccharomyces cerevisiae for biotechnological applications publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2019.00464 – ident: e_1_2_7_36_1 doi: 10.1016/j.ymben.2012.09.003 – volume: 5 year: 2015 ident: e_1_2_7_9_1 article-title: Biotechnological production of 1,2,4‐butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass publication-title: Scientific Reports – ident: e_1_2_7_54_1 doi: 10.1016/j.ymben.2015.04.007 – ident: e_1_2_7_10_1 doi: 10.1007/s00253-013-4877-y – ident: e_1_2_7_53_1 doi: 10.1016/j.procbio.2013.10.002 – ident: e_1_2_7_19_1 doi: 10.1186/1475-2859-10-2 – ident: e_1_2_7_41_1 doi: 10.1371/journal.pone.0052498 – ident: e_1_2_7_45_1 doi: 10.1007/s00253-017-8547-3 – ident: e_1_2_7_49_1 doi: 10.1007/s10295-015-1693-7 – ident: e_1_2_7_20_1 doi: 10.1007/s00253-009-1900-4 – ident: e_1_2_7_35_1 doi: 10.1021/ja036391 – volume: 13 start-page: 725 year: 2003 ident: e_1_2_7_28_1 article-title: Effects of xylose reductase activity on xylitol production in two‐substrate fermentation of recombinant Saccharomyces cerevisiae publication-title: Journal of Microbiology and Biotechnology – ident: e_1_2_7_47_1 doi: 10.1128/EC.2.4.809-820.2003 – ident: e_1_2_7_3_1 doi: 10.1007/s00253-016-7530-8 – ident: e_1_2_7_40_1 doi: 10.1021/bp9500627 – ident: e_1_2_7_62_1 doi: 10.1186/s12934-017-0728-3 – ident: e_1_2_7_44_1 – ident: e_1_2_7_22_1 doi: 10.1016/j.jbiosc.2018.05.019 – ident: e_1_2_7_33_1 doi: 10.1016/j.biortech.2004.06.025 – ident: e_1_2_7_37_1 doi: 10.1074/jbc.M110.178947 – volume: 103 start-page: 494 issue: 5 year: 2007 ident: e_1_2_7_58_1 article-title: Production of optically active 1,2,4‐butanetriol from corresponding racemate by microbial stereoinversion publication-title: Journal of Bioscience and Bioengineering doi: 10.1263/jbb.103.494 – volume: 24 start-page: 6 issue: 1 year: 2018 ident: e_1_2_7_42_1 article-title: Theoretical studies of the decomposition mechanisms of 1,2,4‐butanetriol trinitrate publication-title: Journal of Molecular Modeling doi: 10.1007/s00894-017-3541-3 – ident: e_1_2_7_50_1 doi: 10.1038/nchembio.2020 – ident: e_1_2_7_5_1 doi: 10.1016/j.ymben.2019.08.012 – ident: e_1_2_7_13_1 doi: 10.1016/0092-8674(88)90110-9 – volume: 250 start-page: 406 year: 2018 ident: e_1_2_7_56_1 article-title: d‐1,2,4‐Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli publication-title: Bioresource Technology doi: 10.1016/j.biortech.2017.11.062 – ident: e_1_2_7_2_1 doi: 10.1007/s00253-009-2053-1 – ident: e_1_2_7_21_1 doi: 10.1093/jb/mvp028 – ident: e_1_2_7_32_1 doi: 10.1074/jbc.M804100200 – volume: 103 start-page: 8063 year: 2019 ident: e_1_2_7_6_1 article-title: Discovering a novel d‐xylonate‐responsive promoter: The PyjhI‐driven genetic switch towards better 1,2,4‐butanetriol production publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-019-10073-0 – ident: e_1_2_7_60_1 doi: 10.1111/lam.12463 – ident: e_1_2_7_52_1 doi: 10.1007/s00449-015-1417-4 – volume: 9 start-page: 5059 issue: 1 year: 2018 ident: e_1_2_7_43_1 article-title: Engineering Saccharomyces cerevisiae for co‐utilization of d‐galacturonic acid and d‐glucose from citrus peel waste publication-title: Nature Communications doi: 10.1038/s41467-018-07589-w – ident: e_1_2_7_4_1 doi: 10.1186/s13568-015-0175-7 – ident: e_1_2_7_55_1 doi: 10.1016/j.ymben.2017.02.003 – ident: e_1_2_7_18_1 doi: 10.1093/jxb/ert134 – ident: e_1_2_7_24_1 doi: 10.1038/s41598-018-34210-3 – ident: e_1_2_7_57_1 doi: 10.1007/s00253-009-2198-y – volume: 13 start-page: 21 issue: 1 year: 2020 ident: e_1_2_7_61_1 article-title: Biochemical routes for uptake and conversion of xylose by microorganisms publication-title: Biotechnology for Biofuels doi: 10.1186/s13068-020-1662-x – ident: e_1_2_7_23_1 doi: 10.1016/j.jbiosc.2011.12.013 – ident: e_1_2_7_8_1 doi: 10.1016/j.ymben.2019.05.010 |
SSID | ssj0007866 |
Score | 2.4543428 |
Snippet | 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In... 1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 175 |
SubjectTerms | 1,2,4‐butanetriol Alcohol dehydrogenase Chemical reactions coenzyme balance Dehydration Dehydrogenase Dehydrogenases Genetic engineering Genomes Glucose Kinases Low concentrations Metabolic engineering Metabolism Mitochondria NADH NADH kinase Nicotinamide adenine dinucleotide Optimization Saccharomyces cerevisiae Xylonate dehydratase Xylose Yeast |
Title | Optimization of 1,2,4‐butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27560 https://www.ncbi.nlm.nih.gov/pubmed/32902873 https://www.proquest.com/docview/2474262360 https://www.proquest.com/docview/2441266798 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSgg48NhCWWiRQQhxaHY3thPb6mlbqBYOBUEr9YAUxY4jrdhNKjYrsZy4cO9v7C9hxnks5SEhLpEVTzROPON8Y48_E_JMGR5mXItAGR0HgP9dYFhkA8mllFEsHLgUZlscx5NT8eYsOtsg--1emJofoptwQ8_w4zU6eGoWwzVpqJlWA-Qux3gdc7UQEL1fU0dJVa9TYsTMI81aVqERG3ZPXv0X_QYwr-JV_8M5uk0-tk2t80w-DZaVGdivv7A4_ue73CG3GiBKx7Xl3CUbruiRrXEBQfh8RZ9Tnxrq59x75NpBW7p-2B4Q1yM3f-Iy3CLf38LgM292ddIyp-Ee2xOX3y7MEvAnnttVzuh5zS-LErivhX5ZzcqFo9OCfkgtbgAD3TBwUeuzjxfT1FGzonNXganOppa6tUZUcTx-ORnC5d2EGkzRtO4eOT16dXI4CZozHgLLAdwEkc5Tq63OjBZpnKts5AQgDKGyTNpRBsE7d3nMnYgilYbOWK7VCAl7uGBhDmDyPtksysI9IDQVaeSEhdscaQwlItsY6dZUnmeAo_rkRdvbiW0I0PEcjllSUzezBLoh8d3QJ0870fOa9eNPQjutySSN4y8SJiRy_HOsftJVQ8fgOgx87XKJMiIEXCS16pPt2tQ6LZwhnY7k0FhvMH9Xnxy8PvGFh_8u-ojcYJiT46eQdshm9XnpdgFUVeax954f2MEcBA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIlQ48Eh5BAoYBIhDN9nY3teBQ9pQJbQEBKnU27L2eqWIJFuRjSCcuHDnh_BX-BP8Emb2FcpD4tIDl9VqPdqx7Bn7sz3-BuCBr0QnFoG0fBW4FuJ_YynuaMsTnuc5rjToUhRtMXT7h_LZkXO0Bl-ruzAFP0S94UaekY_X5OC0Id1esYaqcdYi8nK7DKncN8v3uGCbPxn0sHcfcr73dLTbt8qcApYWOJlaTpBEOtBBrAIZuYkf20bijCb9OPa0HeNiUZjEFUY6jh91jNIi8G0iiBGSdxIEL_jfM3CWMogTU3_v1YqsyvOLk1Faowsn4BWPkc3bdVVPzn6_QdqTCDmf4vYuwbeqcYrIlretRaZa-uMvvJH_S-tdhosl1mbdwjmuwJqZNWCzO4uydLpkj1ge_ZofKzTg3E71trFb5cBrwIWf6Bo34fMLHF-n5cVVliass8235fdPX9QCITalJksn7Lig0CUJurrDPiwn6dyw8Yy9jjTdcUPdODYznQdYz8eRYWrJpiZDb5yMNTMrjaRi2O312_h42WeKolC1uQqHp9Jo12B9ls7MDWCRjBwjNX4WxNToEXh3iVHOT5IYoWITHlfmFeqS451SjUzCgp2ah9jtYd7tTbhfix4XxCZ_EtqqbDQsx7Z5yKVHaQwEFd-ri7Fj6KgJWztdkIzsIPTzAr8J1wvbrrUIToxBnsDK5hb6d_XhzmCUv9z8d9G7sNEfPT8IDwbD_VtwnlMIUr5jtgXr2buFuY0YMlN3ctdl8Oa0rf0HhNt4Vw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIigceKQUAgUMAsShm2xs7-vAIW2IEopCVVqpt2Xt9UoRSTYiG0E4ceHO_-Cv8Cv4JczsI6E8JC49cFmt1qMdy56xP9vjbwAe-Uq0YhFIy1eBayH-N5bijrY84Xme40qDLkXRFgO3dyxfnDgna_C1ugtT8EMsN9zIM_Lxmhx8GifNFWmoGmYN4i63y4jKfbN4j-u12bN-Bzv3Mefd50d7PatMKWBpgXOp5QRJpAMdxCqQkZv4sW0kTmjSj2NP2zGuFYVJXGGk4_hRyygtAt8mfhgheStB7IL_PQfnpWsHlCeic7jiqvL84mCUlujCCXhFY2Tz5rKqpye_3xDtaYCcz3Ddq_CtapsisOVtY56phv74C23kf9J41-BKibRZu3CN67BmJjXYbE-iLB0v2BOWx77mhwo1uLBbvW3sVRnwanD5J7LGTfj8CkfXcXltlaUJa-3wHfn90xc1R4BNicnSEZsWBLokQRd32IfFKJ0ZNpyw15GmG26oG0dmpvPw6tkwMkwt2Nhk6IujoWZmpZFUDNqdXhMfBz2mKAZVmxtwfCaNtgXrk3RibgGLZOQYqfGzIJ5Gj6C7S3xyfpLECBTr8LSyrlCXDO-UaGQUFtzUPMRuD_Nur8PDpei0oDX5k9B2ZaJhObLNQi49SmIgqPjBshg7hg6asLXTOcnIFgI_L_DrcLMw7aUWwYkvyBNY2dxA_64-3O0f5S-3_130Plw86HTDl_3B_h24xCn-KN8u24b17N3c3EUAmal7ueMyeHPWxv4DiTN3Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+1%2C2%2C4-butanetriol+production+from+xylose+in+Saccharomyces+cerevisiae+by+metabolic+engineering+of+NADH%2FNADPH+balance&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Yukawa%2C+Takahiro&rft.au=Bamba%2C+Takahiro&rft.au=Guirimand%2C+Gregory&rft.au=Matsuda%2C+Mami&rft.date=2021-01-01&rft.eissn=1097-0290&rft.volume=118&rft.issue=1&rft.spage=175&rft_id=info:doi/10.1002%2Fbit.27560&rft_id=info%3Apmid%2F32902873&rft.externalDocID=32902873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |