Optimization of 1,2,4‐butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance

1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate d...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 118; no. 1; pp. 175 - 185
Main Authors Yukawa, Takahiro, Bamba, Takahiro, Guirimand, Gregory, Matsuda, Mami, Hasunuma, Tomohisa, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism. The NADPH regeneration strategy improved 1,2,4‐butanetriol production from xylose in yeast Saccharomyces cerevisiae. We revealed the integrating the 1,2,4‐butanetriol synthetic pathway strain induced the NADPH depletion. The overexpression of NADH kinase POS5△17 increased up to 2.2 g/L with a molar yield 33%. Sequential supply of glucose relieved the xylonate accumulation is major byproduct and BT production reached at 6.6 g/L after 144 h fermentation.
AbstractList 1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism. The NADPH regeneration strategy improved 1,2,4‐butanetriol production from xylose in yeast Saccharomyces cerevisiae. We revealed the integrating the 1,2,4‐butanetriol synthetic pathway strain induced the NADPH depletion. The overexpression of NADH kinase POS5△17 increased up to 2.2 g/L with a molar yield 33%. Sequential supply of glucose relieved the xylonate accumulation is major byproduct and BT production reached at 6.6 g/L after 144 h fermentation.
1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae , BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
Author Kondo, Akihiko
Bamba, Takahiro
Guirimand, Gregory
Hasunuma, Tomohisa
Yukawa, Takahiro
Matsuda, Mami
Author_xml – sequence: 1
  givenname: Takahiro
  surname: Yukawa
  fullname: Yukawa, Takahiro
  organization: Kobe University
– sequence: 2
  givenname: Takahiro
  surname: Bamba
  fullname: Bamba, Takahiro
  organization: Kobe University
– sequence: 3
  givenname: Gregory
  surname: Guirimand
  fullname: Guirimand, Gregory
  organization: Loire Valley Institute for Advanced Studies
– sequence: 4
  givenname: Mami
  surname: Matsuda
  fullname: Matsuda, Mami
  organization: Kobe University
– sequence: 5
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  email: hasunuma@port.kobe-u.ac.jp
  organization: Kobe University
– sequence: 6
  givenname: Akihiko
  orcidid: 0000-0003-1527-5288
  surname: Kondo
  fullname: Kondo, Akihiko
  email: akondo@kobe-u.ac.jp
  organization: RIKEN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32902873$$D View this record in MEDLINE/PubMed
BookMark eNp90c1u1DAQAGALFdFt4cALIEtcQGq6_osTH0uh3UoVRaKcI8eZFFeJvdgOEE5cuPcZ-yS4u4VDJbjYsv3NeOzZQzvOO0DoOSWHlBC2bG06ZFUpySO0oERVBWGK7KAFIUQWvFRsF-3FeJ2XVS3lE7TL8zmrK75Avy7WyY72h07WO-x7TA_Ygbj9edNOSTtIwfoBr4PvJrMRffAj_j4PPgK2Dn_UxnzWeW82ELGBAF9ttBpwO-MRkm79YA0Gd2UdQLDu6u6K90dvV8s8fFjhVg_aGXiKHvd6iPDsft5Hn07eXR6vivOL07Pjo_PC8IqSolS9NsqorlVCy77uCAhJuai7rjKkE1Jx6CUHUZa1ptAarmpS84pwwWhPJd9Hr7Z584u-TBBTM9poYMhFgJ9iw4SgTMpK1Zm-fECv_RRcri6rSjDJuCRZvbhXUztC16yDHXWYmz8fnMHrLTDBxxig_0soae6a1-TmNZvmZbt8YI1Nm8akoO3wv4hvdoD536mbN2eX24jfCfOqxQ
CitedBy_id crossref_primary_10_1016_j_biortech_2024_131996
crossref_primary_10_1016_j_ijbiomac_2023_128303
crossref_primary_10_1186_s12934_024_02317_0
crossref_primary_10_1039_D4GC05241B
crossref_primary_10_1186_s12934_022_01828_y
crossref_primary_10_1016_j_mec_2024_e00245
crossref_primary_10_1016_j_bbrc_2024_149876
crossref_primary_10_1016_j_synbio_2024_02_004
crossref_primary_10_1016_j_ymben_2021_10_002
crossref_primary_10_3390_foods11071031
crossref_primary_10_1186_s13068_023_02266_7
crossref_primary_10_3390_ijms24021767
crossref_primary_10_1007_s11274_024_03885_4
crossref_primary_10_1016_j_seppur_2023_123436
crossref_primary_10_1186_s13068_023_02414_z
crossref_primary_10_1002_bit_28278
crossref_primary_10_1007_s00253_021_11410_y
crossref_primary_10_1021_acssuschemeng_2c07418
crossref_primary_10_1016_j_bej_2023_108936
crossref_primary_10_1016_j_enmf_2024_06_002
crossref_primary_10_3389_fbioe_2022_844517
crossref_primary_10_1016_j_apsb_2024_04_032
crossref_primary_10_1016_j_checat_2022_11_006
crossref_primary_10_1016_j_biortech_2024_131396
crossref_primary_10_1021_acssynbio_2c00132
Cites_doi 10.1073/pnas.1323464111
10.1016/j.enzmictec.2016.07.007
10.1074/jbc.M210076200
10.1007/s00894-017-3414-9
10.1186/1754-6834-5-14
10.1038/s41467-020-14830-y
10.1021/ma8009728
10.1038/srep05541
10.1186/s12934-018-0984-x
10.1016/j.biotechadv.2013.03.004
10.1007/s11274-016-2085-5
10.1186/s12934-017-0694-9
10.1007/BF00318659
10.1021/acs.jafc.7b02945
10.1042/bj3610163
10.1016/j.ymben.2011.05.005
10.1039/C8GC03864C
10.1016/j.ymben.2012.03.002
10.3389/fbioe.2019.00464
10.1016/j.ymben.2012.09.003
10.1016/j.ymben.2015.04.007
10.1007/s00253-013-4877-y
10.1016/j.procbio.2013.10.002
10.1186/1475-2859-10-2
10.1371/journal.pone.0052498
10.1007/s00253-017-8547-3
10.1007/s10295-015-1693-7
10.1007/s00253-009-1900-4
10.1021/ja036391
10.1128/EC.2.4.809-820.2003
10.1007/s00253-016-7530-8
10.1021/bp9500627
10.1186/s12934-017-0728-3
10.1016/j.jbiosc.2018.05.019
10.1016/j.biortech.2004.06.025
10.1074/jbc.M110.178947
10.1263/jbb.103.494
10.1007/s00894-017-3541-3
10.1038/nchembio.2020
10.1016/j.ymben.2019.08.012
10.1016/0092-8674(88)90110-9
10.1016/j.biortech.2017.11.062
10.1007/s00253-009-2053-1
10.1093/jb/mvp028
10.1074/jbc.M804100200
10.1007/s00253-019-10073-0
10.1111/lam.12463
10.1007/s00449-015-1417-4
10.1038/s41467-018-07589-w
10.1186/s13568-015-0175-7
10.1016/j.ymben.2017.02.003
10.1093/jxb/ert134
10.1038/s41598-018-34210-3
10.1007/s00253-009-2198-y
10.1186/s13068-020-1662-x
10.1016/j.jbiosc.2011.12.013
10.1016/j.ymben.2019.05.010
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.27560
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 185
ExternalDocumentID 32902873
10_1002_bit_27560
BIT27560
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Development of Production Techniques for Highly Functional Biomaterials Using SmartCells of Plants and Other Organisms (Smart Cell Project), from the NewEnergy and Industrial Technology Development Organization (NEDO)
  funderid: P16009
– fundername: Development of Production Techniques for Highly Functional Biomaterials Using SmartCells of Plants and Other Organisms (Smart Cell Project), from the NewEnergy and Industrial Technology Development Organization (NEDO)
  grantid: P16009
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3710-59fac9c9db94a6f8d0e461348dd7c0d4693ef63e4558a1ebc398083703421f163
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 02:53:43 EDT 2025
Fri Jul 25 18:52:54 EDT 2025
Mon Jul 21 05:55:56 EDT 2025
Tue Jul 01 01:09:05 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Jan 22 16:31:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 1,2,4-butanetriol
coenzyme balance
Saccharomyces cerevisiae
xylose
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3710-59fac9c9db94a6f8d0e461348dd7c0d4693ef63e4558a1ebc398083703421f163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1527-5288
PMID 32902873
PQID 2474262360
PQPubID 48814
PageCount 11
ParticipantIDs proquest_miscellaneous_2441266798
proquest_journals_2474262360
pubmed_primary_32902873
crossref_primary_10_1002_bit_27560
crossref_citationtrail_10_1002_bit_27560
wiley_primary_10_1002_bit_27560_BIT27560
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2007; 103
2009; 84
2015; 38
2019; 55
2009; 82
2019; 56
2015; 30
2013; 64
2018; 126
2003; 13
2016; 32
2016; 100
2011; 10
2011; 13
2020; 13
2020; 11
2012; 14
2003; 278
2010; 22
2020; 7
2018; 9
2018; 8
2013; 15
2018; 250
2019; 21
2013; 97
2003; 2
2016; 43
2009; 284
2003; 125
2015; 5
2015; 4
2016; 93–94
2017; 65
2017; 23
1988; 54
2014; 49
2019; 103
2010; 285
2014; 111
2010; 85
1996; 12
2016; 12
2018; 24
2016; 6
2018; 17
2012; 113
2017; 16
2002; 361
2015; 61
2013; 31
2005; 96
2009; 145
2018
2008; 41
1992; 21
2012; 7
2017; 101
2012; 5
e_1_2_7_5_1
e_1_2_7_3_1
Gouranlou F. (e_1_2_7_15_1) 2010; 22
e_1_2_7_19_1
Lee W.‐J. (e_1_2_7_28_1) 2003; 13
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
Zhang N. (e_1_2_7_59_1) 2016; 93
Liu M.‐H. (e_1_2_7_30_1) 2017; 23
Shen L. (e_1_2_7_46_1) 2020; 11
Cao Y. (e_1_2_7_9_1) 2015; 5
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
Larroy C. (e_1_2_7_27_1) 2002; 361
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
Protzko R. J. (e_1_2_7_43_1) 2018; 9
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
Yamada‐Onodera K. (e_1_2_7_58_1) 2007; 103
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Li X. (e_1_2_7_29_1) 2015; 4
e_1_2_7_14_1
e_1_2_7_44_1
e_1_2_7_10_1
Kwak S. (e_1_2_7_26_1) 2017; 16
e_1_2_7_48_1
Bañares A. B. (e_1_2_7_6_1) 2019; 103
Barrett D. G. (e_1_2_7_7_1) 2008; 41
Nijland J. G. (e_1_2_7_34_1) 2020; 7
Wang X. (e_1_2_7_56_1) 2018; 250
Czajka J. J. (e_1_2_7_12_1) 2018; 17
e_1_2_7_51_1
e_1_2_7_53_1
Zhao Z. (e_1_2_7_61_1) 2020; 13
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Pei L. (e_1_2_7_42_1) 2018; 24
References_xml – volume: 103
  start-page: 494
  issue: 5
  year: 2007
  end-page: 496
  article-title: Production of optically active 1,2,4‐butanetriol from corresponding racemate by microbial stereoinversion
  publication-title: Journal of Bioscience and Bioengineering
– volume: 8
  issue: 1
  year: 2018
  article-title: Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in
  publication-title: Scientific Reports
– volume: 13
  start-page: 725
  year: 2003
  end-page: 730
  article-title: Effects of xylose reductase activity on xylitol production in two‐substrate fermentation of recombinant
  publication-title: Journal of Microbiology and Biotechnology
– volume: 7
  issue: 12
  year: 2012
  article-title: Reconstruction and evaluation of the synthetic bacterial MEP pathway in
  publication-title: PLoS One
– volume: 82
  start-page: 909
  issue: 5
  year: 2009
  end-page: 919
  article-title: Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose‐utilizing
  publication-title: Applied Microbiology and Biotechnology
– volume: 125
  start-page: 12998
  year: 2003
  end-page: 12999
  article-title: Microbial synthesis of the energetic material precursor 1,2,4‐butanetriol
  publication-title: Journal of the American Chemical Society
– volume: 101
  start-page: 8151
  issue: 22
  year: 2017
  end-page: 8163
  article-title: Production of ethylene glycol or glycolic acid from ‐xylose in
  publication-title: Applied Microbiology and Biotechnology
– volume: 56
  start-page: 17
  year: 2019
  end-page: 27
  article-title: Production of 1,2,4‐butanetriol from xylose by through Fe metabolic engineering
  publication-title: Metabolic Engineering
– volume: 4
  year: 2015
  article-title: Design and construction of a non‐natural malate to 1,2,4‐butanetriol pathway creates possibility to produce 1,2,4‐butanetriol from glucose
  publication-title: Scientific Reports
– volume: 10
  start-page: 2
  issue: 1
  year: 2011
  article-title: Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose‐fermenting strain of
  publication-title: Microbial Cell Factories
– volume: 284
  start-page: 7553
  issue: 12
  year: 2009
  end-page: 7560
  article-title: Two sources of mitochondrial NADPH in the yeast
  publication-title: The Journal of Biological Chemistry
– volume: 9
  issue: 1
  year: 2018
  article-title: Engineering for co‐utilization of ‐galacturonic acid and ‐glucose from citrus peel waste
  publication-title: Nature Communications
– volume: 49
  start-page: 25
  issue: 1
  year: 2014
  end-page: 32
  article-title: Direct bioconversion of ‐xylose to 1,2,4‐butanetriol in an engineered
  publication-title: Process Biochemistry
– volume: 64
  start-page: 2943
  issue: 10
  year: 2013
  end-page: 2954
  article-title: Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion
  publication-title: Journal of Experimental Botany
– volume: 145
  start-page: 701
  issue: 6
  year: 2009
  end-page: 708
  article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
  publication-title: The Journal of Biochemistry
– volume: 103
  start-page: 8063
  year: 2019
  end-page: 8074
  article-title: Discovering a novel ‐xylonate‐responsive promoter: The P ‐driven genetic switch towards better 1,2,4‐butanetriol production
  publication-title: Applied Microbiology and Biotechnology
– volume: 12
  start-page: 247
  issue: 4
  year: 2016
  end-page: 253
  article-title: Engineering nonphosphorylative metabolism to generate lignocellulose‐derived products
  publication-title: Nature Chemical Biology
– volume: 16
  start-page: 82
  issue: 1
  year: 2017
  article-title: Production of fuels and chemicals from xylose by engineered : A review and perspective
  publication-title: Microbial Cell Factories
– volume: 96
  start-page: 673
  issue: 6
  year: 2005
  end-page: 686
  article-title: Features of promising technologies for pretreatment of lignocellulosic biomass
  publication-title: Bioresource Technology
– volume: 24
  start-page: 6
  issue: 1
  year: 2018
  article-title: Theoretical studies of the decomposition mechanisms of 1,2,4‐butanetriol trinitrate
  publication-title: Journal of Molecular Modeling
– volume: 11
  start-page: 1098
  issue: 1
  year: 2020
  article-title: A combined experimental and modelling approach for the Weimberg pathway optimisation
  publication-title: Nature Communications
– volume: 22
  start-page: 4221
  issue: 6
  year: 2010
  end-page: 4228
  article-title: Synthesis and characterization of 1,2,4‐butanetrioltrinitrate
  publication-title: Asian Journal of Chemistry
– year: 2018
– volume: 113
  start-page: 665
  issue: 5
  year: 2012
  end-page: 673
  article-title: Widely targeted metabolic profiling analysis of yeast central metabolites
  publication-title: Journal of Bioscience and Bioengineering
– volume: 285
  start-page: 39409
  issue: 50
  year: 2010
  end-page: 39424
  article-title: Mitochondrial NADH kinase, Pos5p, is required for efficient iron‐sulfur cluster biogenesis in
  publication-title: The Journal of Biological Chemistry
– volume: 65
  start-page: 8162
  issue: 37
  year: 2017
  end-page: 8170
  article-title: Regeneration of NADPH coupled with HMG‐CoA reductase activity increases squalene synthesis in
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 31
  start-page: 851
  issue: 6
  year: 2013
  end-page: 861
  article-title: Strain engineering of for enhanced xylose metabolism
  publication-title: Biotechnology Advances
– volume: 30
  start-page: 79
  year: 2015
  end-page: 88
  article-title: Cloning and characterization of heterologous transporters in and identification of important amino acids for xylose utilization
  publication-title: Metabolic Engineering
– volume: 14
  start-page: 427
  issue: 4
  year: 2012
  end-page: 436
  article-title: Metabolic engineering of for bioconversion of ‐xylose to ‐xylonate
  publication-title: Metabolic Engineering
– volume: 32
  start-page: 149
  issue: 9
  year: 2016
  article-title: Improved 1, 2, 4‐butanetriol production from an engineered by co‐expression of different chaperone proteins
  publication-title: World Journal of Microbiology and Biotechnology
– volume: 100
  start-page: 7549
  issue: 17
  year: 2016
  end-page: 7563
  article-title: Characterization and mutagenesis of two novel iron–sulphur cluster pentonate dehydratases
  publication-title: Applied Microbiology and Biotechnology
– volume: 5
  year: 2015
  article-title: Biotechnological production of 1,2,4‐butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass
  publication-title: Scientific Reports
– volume: 126
  start-page: 547
  year: 2018
  end-page: 552
  article-title: Modification of an engineered by a combined strategy of deleting branch pathway, fine‐tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4‐butanetriol production
  publication-title: Journal of Bioscience and Bioengineering
– volume: 15
  start-page: 226
  year: 2013
  end-page: 234
  article-title: Enhanced xylitol production through simultaneous co‐utilization of cellobiose and xylose by engineered
  publication-title: Metabolic Engineering
– volume: 13
  start-page: 508
  issue: 5
  year: 2011
  end-page: 517
  article-title: Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant
  publication-title: Metabolic Engineering
– volume: 13
  start-page: 21
  issue: 1
  year: 2020
  article-title: Biochemical routes for uptake and conversion of xylose by microorganisms
  publication-title: Biotechnology for Biofuels
– volume: 97
  start-page: 5753
  issue: 13
  year: 2013
  end-page: 5769
  article-title: Heterologous expression and characterization of bacterial 2‐C‐methyl‐d‐erythritol‐4‐phosphate pathway in
  publication-title: Applied Microbiology and Biotechnology
– volume: 38
  start-page: 1761
  issue: 9
  year: 2015
  end-page: 1772
  article-title: Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered
  publication-title: Bioprocess and Biosystems Engineering
– volume: 250
  start-page: 406
  year: 2018
  end-page: 412
  article-title: ‐1,2,4‐Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered
  publication-title: Bioresource Technology
– volume: 12
  start-page: 16
  issue: 1
  year: 1996
  end-page: 21
  article-title: An integrating vector for tunable, high copy, stable integration into the dispersed Ty δ sites of
  publication-title: Biotechnology Progress
– volume: 111
  start-page: 5159
  issue: 14
  year: 2014
  end-page: 5164
  article-title: Engineering of yeast hexose transporters to transport  ‐xylose without inhibition by ‐glucose
  publication-title: Proceedings of the National Academy of Sciences
– volume: 61
  start-page: 354
  issue: 4
  year: 2015
  end-page: 360
  article-title: Overexpression of and improves carotenoid biosynthesis in recombinant
  publication-title: Letters in Applied Microbiology
– volume: 43
  start-page: 67
  issue: 1
  year: 2016
  end-page: 78
  article-title: Synthetic pathway optimization for improved 1,2,4‐butanetriol production
  publication-title: Journal of Industrial Microbiology & Biotechnology
– volume: 41
  start-page: 6347
  issue: 17
  year: 2008
  end-page: 6352
  article-title: Poly(triol α‐ketoglutarate) as Biodegradable, Chemoselective, and Mechanically Tunable Elastomers
  publication-title: Macromolecules
– volume: 361
  start-page: 163
  issue: Pt 1
  year: 2002
  end-page: 172
  article-title: Characterization of the gene product as a broad specificity NADPH‐dependent alcohol dehydrogenase: Relevance in aldehyde reduction
  publication-title: Biochemical Journal
– volume: 5
  start-page: 14
  issue: 1
  year: 2012
  article-title: Competition between pentoses and glucose during uptake and catabolism in recombinant
  publication-title: Biotechnology for Biofuels
– volume: 23
  start-page: 246
  issue: 8
  year: 2017
  article-title: Computational study of simultaneous synthesis of optically active (RS)‐1,2,4‐butanetriol trinitrate (BTTN)
  publication-title: Journal of Molecular Modeling
– volume: 55
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Identification of modifications procuring growth on xylose in recombinant strains carrying the Weimberg pathway
  publication-title: Metabolic Engineering
– volume: 85
  start-page: 1491
  issue: 5
  year: 2010
  end-page: 1498
  article-title: Novel strategy for yeast construction using δ‐integration and cell fusion to efficiently produce ethanol from raw starch
  publication-title: Applied Microbiology and Biotechnology
– volume: 7
  start-page: 464
  year: 2020
  article-title: Engineering of pentose transport in for biotechnological applications
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 84
  start-page: 751
  issue: 4
  year: 2009
  end-page: 761
  article-title: Carbon fluxes of xylose‐consuming strains are affected differently by NADH and NADPH usage in HMF reduction
  publication-title: Applied Microbiology and Biotechnology
– volume: 2
  start-page: 809
  issue: 4
  year: 2003
  end-page: 820
  article-title: gene of encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA
  publication-title: Eukaryotic Cell
– volume: 17
  issue: 1
  year: 2018
  article-title: Engineering the oleaginous yeast to produce the aroma compound β‐ionone
  publication-title: Microbial Cell Factories
– volume: 21
  start-page: 83
  issue: 1
  year: 1992
  end-page: 84
  article-title: One‐step transformation of yeast in stationary phase
  publication-title: Current Genetics
– volume: 6
  start-page: 4
  year: 2016
  article-title: Disruption of improves ethanol production via the xylose isomerase pathway
  publication-title: AMB Express
– volume: 278
  start-page: 13984
  issue: 16
  year: 2003
  end-page: 13988
  article-title: The gene product is indispensable for providing NADPH in yeast cells lacking glucose‐6‐phosphate dehydrogenase activity
  publication-title: Journal of Biological Chemistry
– volume: 93–94
  start-page: 51
  year: 2016
  end-page: 58
  article-title: Metabolic pathway optimization for biosynthesis of 1,2,4‐butanetriol from xylose by engineered
  publication-title: Enzyme and Microbial Technology
– volume: 40
  start-page: 148
  year: 2017
  end-page: 156
  article-title: Rational engineering of diol dehydratase enables 1,4‐butanediol biosynthesis from xylose
  publication-title: Metabolic Engineering
– volume: 16
  start-page: 115
  issue: 1
  year: 2017
  article-title: Engineering redox homeostasis to develop efficient alcohol‐producing microbial cell factories
  publication-title: Microbial Cell Factories
– volume: 54
  start-page: 955
  year: 1988
  end-page: 966
  article-title: The DNA intermediate in yeast Tyl element transposition copurifies with virus‐like particles: Cell‐free Tyl transposition
  publication-title: Cell
– volume: 21
  start-page: 1795
  issue: 7
  year: 2019
  end-page: 1808
  article-title: Cell‐surface display technology and metabolic engineering of for enhancing xylitol production from woody biomass
  publication-title: Green Chemistry
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.1323464111
– volume: 93
  start-page: 51
  year: 2016
  ident: e_1_2_7_59_1
  article-title: Metabolic pathway optimization for biosynthesis of 1,2,4‐butanetriol from xylose by engineered Escherichia coli
  publication-title: Enzyme and Microbial Technology
  doi: 10.1016/j.enzmictec.2016.07.007
– ident: e_1_2_7_16_1
  doi: 10.1074/jbc.M210076200
– volume: 23
  start-page: 246
  issue: 8
  year: 2017
  ident: e_1_2_7_30_1
  article-title: Computational study of simultaneous synthesis of optically active (RS)‐1,2,4‐butanetriol trinitrate (BTTN)
  publication-title: Journal of Molecular Modeling
  doi: 10.1007/s00894-017-3414-9
– ident: e_1_2_7_48_1
  doi: 10.1186/1754-6834-5-14
– volume: 11
  start-page: 1098
  issue: 1
  year: 2020
  ident: e_1_2_7_46_1
  article-title: A combined experimental and modelling approach for the Weimberg pathway optimisation
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-14830-y
– volume: 41
  start-page: 6347
  issue: 17
  year: 2008
  ident: e_1_2_7_7_1
  article-title: Poly(triol α‐ketoglutarate) as Biodegradable, Chemoselective, and Mechanically Tunable Elastomers
  publication-title: Macromolecules
  doi: 10.1021/ma8009728
– volume: 4
  start-page: 5541
  year: 2015
  ident: e_1_2_7_29_1
  article-title: Design and construction of a non‐natural malate to 1,2,4‐butanetriol pathway creates possibility to produce 1,2,4‐butanetriol from glucose
  publication-title: Scientific Reports
  doi: 10.1038/srep05541
– volume: 17
  start-page: 136
  issue: 1
  year: 2018
  ident: e_1_2_7_12_1
  article-title: Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β‐ionone
  publication-title: Microbial Cell Factories
  doi: 10.1186/s12934-018-0984-x
– ident: e_1_2_7_25_1
  doi: 10.1016/j.biotechadv.2013.03.004
– ident: e_1_2_7_31_1
  doi: 10.1007/s11274-016-2085-5
– volume: 16
  start-page: 82
  issue: 1
  year: 2017
  ident: e_1_2_7_26_1
  article-title: Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective
  publication-title: Microbial Cell Factories
  doi: 10.1186/s12934-017-0694-9
– ident: e_1_2_7_11_1
  doi: 10.1007/BF00318659
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.jafc.7b02945
– volume: 361
  start-page: 163
  issue: 1
  year: 2002
  ident: e_1_2_7_27_1
  article-title: Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH‐dependent alcohol dehydrogenase: Relevance in aldehyde reduction
  publication-title: Biochemical Journal
  doi: 10.1042/bj3610163
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ymben.2011.05.005
– ident: e_1_2_7_17_1
  doi: 10.1039/C8GC03864C
– ident: e_1_2_7_51_1
  doi: 10.1016/j.ymben.2012.03.002
– volume: 22
  start-page: 4221
  issue: 6
  year: 2010
  ident: e_1_2_7_15_1
  article-title: Synthesis and characterization of 1,2,4‐butanetrioltrinitrate
  publication-title: Asian Journal of Chemistry
– volume: 7
  start-page: 464
  year: 2020
  ident: e_1_2_7_34_1
  article-title: Engineering of pentose transport in Saccharomyces cerevisiae for biotechnological applications
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2019.00464
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ymben.2012.09.003
– volume: 5
  year: 2015
  ident: e_1_2_7_9_1
  article-title: Biotechnological production of 1,2,4‐butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass
  publication-title: Scientific Reports
– ident: e_1_2_7_54_1
  doi: 10.1016/j.ymben.2015.04.007
– ident: e_1_2_7_10_1
  doi: 10.1007/s00253-013-4877-y
– ident: e_1_2_7_53_1
  doi: 10.1016/j.procbio.2013.10.002
– ident: e_1_2_7_19_1
  doi: 10.1186/1475-2859-10-2
– ident: e_1_2_7_41_1
  doi: 10.1371/journal.pone.0052498
– ident: e_1_2_7_45_1
  doi: 10.1007/s00253-017-8547-3
– ident: e_1_2_7_49_1
  doi: 10.1007/s10295-015-1693-7
– ident: e_1_2_7_20_1
  doi: 10.1007/s00253-009-1900-4
– ident: e_1_2_7_35_1
  doi: 10.1021/ja036391
– volume: 13
  start-page: 725
  year: 2003
  ident: e_1_2_7_28_1
  article-title: Effects of xylose reductase activity on xylitol production in two‐substrate fermentation of recombinant Saccharomyces cerevisiae
  publication-title: Journal of Microbiology and Biotechnology
– ident: e_1_2_7_47_1
  doi: 10.1128/EC.2.4.809-820.2003
– ident: e_1_2_7_3_1
  doi: 10.1007/s00253-016-7530-8
– ident: e_1_2_7_40_1
  doi: 10.1021/bp9500627
– ident: e_1_2_7_62_1
  doi: 10.1186/s12934-017-0728-3
– ident: e_1_2_7_44_1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jbiosc.2018.05.019
– ident: e_1_2_7_33_1
  doi: 10.1016/j.biortech.2004.06.025
– ident: e_1_2_7_37_1
  doi: 10.1074/jbc.M110.178947
– volume: 103
  start-page: 494
  issue: 5
  year: 2007
  ident: e_1_2_7_58_1
  article-title: Production of optically active 1,2,4‐butanetriol from corresponding racemate by microbial stereoinversion
  publication-title: Journal of Bioscience and Bioengineering
  doi: 10.1263/jbb.103.494
– volume: 24
  start-page: 6
  issue: 1
  year: 2018
  ident: e_1_2_7_42_1
  article-title: Theoretical studies of the decomposition mechanisms of 1,2,4‐butanetriol trinitrate
  publication-title: Journal of Molecular Modeling
  doi: 10.1007/s00894-017-3541-3
– ident: e_1_2_7_50_1
  doi: 10.1038/nchembio.2020
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ymben.2019.08.012
– ident: e_1_2_7_13_1
  doi: 10.1016/0092-8674(88)90110-9
– volume: 250
  start-page: 406
  year: 2018
  ident: e_1_2_7_56_1
  article-title: d‐1,2,4‐Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2017.11.062
– ident: e_1_2_7_2_1
  doi: 10.1007/s00253-009-2053-1
– ident: e_1_2_7_21_1
  doi: 10.1093/jb/mvp028
– ident: e_1_2_7_32_1
  doi: 10.1074/jbc.M804100200
– volume: 103
  start-page: 8063
  year: 2019
  ident: e_1_2_7_6_1
  article-title: Discovering a novel d‐xylonate‐responsive promoter: The PyjhI‐driven genetic switch towards better 1,2,4‐butanetriol production
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-019-10073-0
– ident: e_1_2_7_60_1
  doi: 10.1111/lam.12463
– ident: e_1_2_7_52_1
  doi: 10.1007/s00449-015-1417-4
– volume: 9
  start-page: 5059
  issue: 1
  year: 2018
  ident: e_1_2_7_43_1
  article-title: Engineering Saccharomyces cerevisiae for co‐utilization of d‐galacturonic acid and d‐glucose from citrus peel waste
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-07589-w
– ident: e_1_2_7_4_1
  doi: 10.1186/s13568-015-0175-7
– ident: e_1_2_7_55_1
  doi: 10.1016/j.ymben.2017.02.003
– ident: e_1_2_7_18_1
  doi: 10.1093/jxb/ert134
– ident: e_1_2_7_24_1
  doi: 10.1038/s41598-018-34210-3
– ident: e_1_2_7_57_1
  doi: 10.1007/s00253-009-2198-y
– volume: 13
  start-page: 21
  issue: 1
  year: 2020
  ident: e_1_2_7_61_1
  article-title: Biochemical routes for uptake and conversion of xylose by microorganisms
  publication-title: Biotechnology for Biofuels
  doi: 10.1186/s13068-020-1662-x
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jbiosc.2011.12.013
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ymben.2019.05.010
SSID ssj0007866
Score 2.4543428
Snippet 1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In...
1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 175
SubjectTerms 1,2,4‐butanetriol
Alcohol dehydrogenase
Chemical reactions
coenzyme balance
Dehydration
Dehydrogenase
Dehydrogenases
Genetic engineering
Genomes
Glucose
Kinases
Low concentrations
Metabolic engineering
Metabolism
Mitochondria
NADH
NADH kinase
Nicotinamide adenine dinucleotide
Optimization
Saccharomyces cerevisiae
Xylonate dehydratase
Xylose
Yeast
Title Optimization of 1,2,4‐butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27560
https://www.ncbi.nlm.nih.gov/pubmed/32902873
https://www.proquest.com/docview/2474262360
https://www.proquest.com/docview/2441266798
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSgg48NhCWWiRQQhxaHY3thPb6mlbqBYOBUEr9YAUxY4jrdhNKjYrsZy4cO9v7C9hxnks5SEhLpEVTzROPON8Y48_E_JMGR5mXItAGR0HgP9dYFhkA8mllFEsHLgUZlscx5NT8eYsOtsg--1emJofoptwQ8_w4zU6eGoWwzVpqJlWA-Qux3gdc7UQEL1fU0dJVa9TYsTMI81aVqERG3ZPXv0X_QYwr-JV_8M5uk0-tk2t80w-DZaVGdivv7A4_ue73CG3GiBKx7Xl3CUbruiRrXEBQfh8RZ9Tnxrq59x75NpBW7p-2B4Q1yM3f-Iy3CLf38LgM292ddIyp-Ee2xOX3y7MEvAnnttVzuh5zS-LErivhX5ZzcqFo9OCfkgtbgAD3TBwUeuzjxfT1FGzonNXganOppa6tUZUcTx-ORnC5d2EGkzRtO4eOT16dXI4CZozHgLLAdwEkc5Tq63OjBZpnKts5AQgDKGyTNpRBsE7d3nMnYgilYbOWK7VCAl7uGBhDmDyPtksysI9IDQVaeSEhdscaQwlItsY6dZUnmeAo_rkRdvbiW0I0PEcjllSUzezBLoh8d3QJ0870fOa9eNPQjutySSN4y8SJiRy_HOsftJVQ8fgOgx87XKJMiIEXCS16pPt2tQ6LZwhnY7k0FhvMH9Xnxy8PvGFh_8u-ojcYJiT46eQdshm9XnpdgFUVeax954f2MEcBA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIlQ48Eh5BAoYBIhDN9nY3teBQ9pQJbQEBKnU27L2eqWIJFuRjSCcuHDnh_BX-BP8Emb2FcpD4tIDl9VqPdqx7Bn7sz3-BuCBr0QnFoG0fBW4FuJ_YynuaMsTnuc5rjToUhRtMXT7h_LZkXO0Bl-ruzAFP0S94UaekY_X5OC0Id1esYaqcdYi8nK7DKncN8v3uGCbPxn0sHcfcr73dLTbt8qcApYWOJlaTpBEOtBBrAIZuYkf20bijCb9OPa0HeNiUZjEFUY6jh91jNIi8G0iiBGSdxIEL_jfM3CWMogTU3_v1YqsyvOLk1Faowsn4BWPkc3bdVVPzn6_QdqTCDmf4vYuwbeqcYrIlretRaZa-uMvvJH_S-tdhosl1mbdwjmuwJqZNWCzO4uydLpkj1ge_ZofKzTg3E71trFb5cBrwIWf6Bo34fMLHF-n5cVVliass8235fdPX9QCITalJksn7Lig0CUJurrDPiwn6dyw8Yy9jjTdcUPdODYznQdYz8eRYWrJpiZDb5yMNTMrjaRi2O312_h42WeKolC1uQqHp9Jo12B9ls7MDWCRjBwjNX4WxNToEXh3iVHOT5IYoWITHlfmFeqS451SjUzCgp2ah9jtYd7tTbhfix4XxCZ_EtqqbDQsx7Z5yKVHaQwEFd-ri7Fj6KgJWztdkIzsIPTzAr8J1wvbrrUIToxBnsDK5hb6d_XhzmCUv9z8d9G7sNEfPT8IDwbD_VtwnlMIUr5jtgXr2buFuY0YMlN3ctdl8Oa0rf0HhNt4Vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIigceKQUAgUMAsShm2xs7-vAIW2IEopCVVqpt2Xt9UoRSTYiG0E4ceHO_-Cv8Cv4JczsI6E8JC49cFmt1qMdy56xP9vjbwAe-Uq0YhFIy1eBayH-N5bijrY84Xme40qDLkXRFgO3dyxfnDgna_C1ugtT8EMsN9zIM_Lxmhx8GifNFWmoGmYN4i63y4jKfbN4j-u12bN-Bzv3Mefd50d7PatMKWBpgXOp5QRJpAMdxCqQkZv4sW0kTmjSj2NP2zGuFYVJXGGk4_hRyygtAt8mfhgheStB7IL_PQfnpWsHlCeic7jiqvL84mCUlujCCXhFY2Tz5rKqpye_3xDtaYCcz3Ddq_CtapsisOVtY56phv74C23kf9J41-BKibRZu3CN67BmJjXYbE-iLB0v2BOWx77mhwo1uLBbvW3sVRnwanD5J7LGTfj8CkfXcXltlaUJa-3wHfn90xc1R4BNicnSEZsWBLokQRd32IfFKJ0ZNpyw15GmG26oG0dmpvPw6tkwMkwt2Nhk6IujoWZmpZFUDNqdXhMfBz2mKAZVmxtwfCaNtgXrk3RibgGLZOQYqfGzIJ5Gj6C7S3xyfpLECBTr8LSyrlCXDO-UaGQUFtzUPMRuD_Nur8PDpei0oDX5k9B2ZaJhObLNQi49SmIgqPjBshg7hg6asLXTOcnIFgI_L_DrcLMw7aUWwYkvyBNY2dxA_64-3O0f5S-3_130Plw86HTDl_3B_h24xCn-KN8u24b17N3c3EUAmal7ueMyeHPWxv4DiTN3Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+1%2C2%2C4-butanetriol+production+from+xylose+in+Saccharomyces+cerevisiae+by+metabolic+engineering+of+NADH%2FNADPH+balance&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Yukawa%2C+Takahiro&rft.au=Bamba%2C+Takahiro&rft.au=Guirimand%2C+Gregory&rft.au=Matsuda%2C+Mami&rft.date=2021-01-01&rft.eissn=1097-0290&rft.volume=118&rft.issue=1&rft.spage=175&rft_id=info:doi/10.1002%2Fbit.27560&rft_id=info%3Apmid%2F32902873&rft.externalDocID=32902873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon