Assessment of artificial intelligence to detect gasoline in fire debris using HS‐SPME‐GC/MS and transfer learning

Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural ne...

Full description

Saved in:
Bibliographic Details
Published inJournal of forensic sciences Vol. 69; no. 4; pp. 1222 - 1234
Main Authors Huang, Ting‐Yu, Chung Yu, Jorn Chi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine‐tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid‐phase microextraction (HS‐SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS‐SPME‐GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass‐to‐charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as “gasoline present” and “gasoline absent” classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.
AbstractList Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine‐tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid‐phase microextraction (HS‐SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS‐SPME‐GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass‐to‐charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as “gasoline present” and “gasoline absent” classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.
Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine-tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS-SPME-GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass-to-charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as "gasoline present" and "gasoline absent" classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic data poses challenges to analysts. In this work, artificial intelligence (AI) was developed by transfer learning in a convolutional neural network (CNN), GoogLeNet. The image classification AI was fine-tuned to create intelligent classification systems to discriminate samples containing gasoline residues from burned substrates. All ground truth samples were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with a gas chromatograph and mass spectrometer (GC/MS). The HS-SPME-GC/MS data were transformed into three types of image presentations, that is, heatmaps, extracted ion heatmaps, and total ion chromatograms. The abundance and mass-to-charge ratios of each scan were converted into image patterns that are characteristic of the chemical profiles of gasoline. The transfer learning data were labeled as "gasoline present" and "gasoline absent" classes. The assessment results demonstrated that all AI models achieved 100 ± 0% accuracy in identifying neat gasoline. When the models were assessed using the spiked samples, the AI model developed using the extracted ion heatmap obtained the highest accuracy rate (95.9 ± 0.4%), which was greater than those obtained by other machine learning models, ranging from 17.3 ± 0.7% to 78.7 ± 0.7%. The proposed work demonstrated that the heatmaps created from GC/MS data can represent chemical features from the samples. Additionally, the pretrained CNN models are readily available in the transfer learning workflow to develop AI for GC/MS data interpretation in fire debris analysis.
Author Huang, Ting‐Yu
Chung Yu, Jorn Chi
Author_xml – sequence: 1
  givenname: Ting‐Yu
  surname: Huang
  fullname: Huang, Ting‐Yu
  organization: Ming Chuan University
– sequence: 2
  givenname: Jorn Chi
  orcidid: 0000-0002-4899-7909
  surname: Chung Yu
  fullname: Chung Yu, Jorn Chi
  email: jornyu@shsu.edu
  organization: Sam Houston State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38798027$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OGzEUhS1EBQG6ZocsddPNEP_N2FmiiJ8iEJVC15bHcycymtjU9gix4xH6jDwJThNYIFX15lrX37m2zzlAuz54QOiYklNa1pTWdVMJwmanZVeTHTT56OyiCSGMVZTO1D46SOmBENLQhu6hfa7kTBEmJ2g8SwlSWoHPOPTYxOx6Z50ZsPMZhsEtwVvAOeAOMtiMlyaFwXko57h3EUq_jS7hMTm_xFeL15c_i5-356Vczqe3C2x8h3M0PvUQ8QAm-sIdoS-9GRJ83dZD9Ovi_H5-Vd3cXf6Yn91UlktKKtrZWpmWm7q1Sgra0YYLACNYTQUXTBowbac4dJIwkDMhiWKUU9bRtigVP0TfN3MfY_g9Qsp65ZIt3zIewpg0Jw2RNRFNU9Bvn9CHMEZfXlcoSYtbiotCnWypsV1Bpx-jW5n4rN8NLUC9AWwMKUXotXXZZBd8McENmhK9Dk6vY9LrmPTf4Ipu-kn3Pvrfiu1NT26A5__h-vribqN7A0_TqHs
CitedBy_id crossref_primary_10_1016_j_forc_2024_100633
Cites_doi 10.1016/j.forsciint.2021.111146
10.1016/j.forc.2021.100313
10.1016/j.forc.2022.100419
10.1016/j.mlwa.2020.100003
10.1007/s00500‐022‐06805‐6
10.1186/s40537‐019‐0276‐2
10.1007/s11042‐018‐6695‐9
10.1109/tnnls.2021.3084827
10.1007/s11053‐021‐09934‐1
10.1016/j.resconrec.2020.105132
10.3389/frans.2023.1125049
10.1016/j.forsciint.2023.111646
10.1016/j.neucom.2020.04.157
10.1016/j.envsoft.2021.105285
10.1007/s00521‐023‐08265‐x
10.1186/s40537‐021‐00444‐8
10.1016/j.forc.2021.100358
10.3390/separations3030026
10.1109/tvcg.2016.2598831
10.1016/j.forsciint.2022.111177
10.1007/s11154‐023‐09795‐4
10.3390/chemosensors10100377
10.1109/RTEICT42901.2018.9012507
10.1016/j.chemolab.2021.104269
10.3390/separations5030043
10.1016/j.forsciint.2014.08.006
10.1016/j.egyr.2021.08.028
10.1007/s13755‐018‐0057‐x
10.1371/journal.pone.0224365
10.1109/jbhi.2020.3032060
10.1016/j.forc.2022.100435
10.1007/s00138‐020‐01069‐2
10.1016/j.compag.2018.08.013
10.1111/1556‐4029.12342
10.1016/j.jag.2013.12.016
10.1016/j.trac.2006.10.010
10.1021/ac0707028
ContentType Journal Article
Copyright 2024 American Academy of Forensic Sciences.
2024 American Academy of Forensic Sciences
Copyright_xml – notice: 2024 American Academy of Forensic Sciences.
– notice: 2024 American Academy of Forensic Sciences
DBID AAYXX
CITATION
NPM
K7.
K9.
NAPCQ
7X8
DOI 10.1111/1556-4029.15550
DatabaseName CrossRef
PubMed
ProQuest Criminal Justice (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
ProQuest Criminal Justice (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1556-4029
EndPage 1234
ExternalDocumentID 38798027
10_1111_1556_4029_15550
JFO15550
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: 2022‐2023 Forensic Sciences Foundation (FSF) Lucas Research Grants
– fundername: 2022-2023 Forensic Sciences Foundation (FSF) Lucas Research Grants
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1KJ
1OC
1UQ
1US
29K
31~
33P
36Y
3O-
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABGFU
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFHKK
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIACR
AIAGR
AIDAL
AIDQK
AIDYY
AITYG
AIURR
AJUXI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
D0L
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
EV9
EX3
EYL
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MQT
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NHB
NP-
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QJJ
R.K
RNS
ROL
RSM
RX1
SJN
SUPJJ
SV3
TEORI
TN5
TWZ
UB1
ULE
URZ
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WHG
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
YR5
YRY
YYQ
YZZ
ZCG
ZGI
ZHY
ZUP
ZXP
ZZTAW
~02
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
UAO
UCJ
YCJ
ZKG
K7.
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c3710-1dc58ab3a5bc8741d1634eea425143427aeabd83ed702e79470821312d1bc5883
IEDL.DBID DR2
ISSN 0022-1198
1556-4029
IngestDate Fri Jul 11 07:16:24 EDT 2025
Fri Jul 25 09:54:58 EDT 2025
Thu Apr 03 07:08:12 EDT 2025
Tue Jul 01 02:46:17 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Wed Aug 20 07:26:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fire debris analysis
solid phase microextraction and SPME
convolutional neural network and CNN
transfer learning
heatmaps
gas chromatography–mass spectrometry and GCMS
Language English
License 2024 American Academy of Forensic Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3710-1dc58ab3a5bc8741d1634eea425143427aeabd83ed702e79470821312d1bc5883
Notes Presented at the 75th Annual Scientific Conference of the American Academy of Forensic Sciences, February 13–18, 2023, in Orlando, FL.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4899-7909
PMID 38798027
PQID 3071802834
PQPubID 49292
PageCount 13
ParticipantIDs proquest_miscellaneous_3060750466
proquest_journals_3071802834
pubmed_primary_38798027
crossref_citationtrail_10_1111_1556_4029_15550
crossref_primary_10_1111_1556_4029_15550
wiley_primary_10_1111_1556_4029_15550_JFO15550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Colorado Springs
PublicationTitle Journal of forensic sciences
PublicationTitleAlternate J Forensic Sci
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 331
2021; 25
2021; 8
2022; 332
2021; 7
2021; 26
2023; 35
2021; 23
2019; 6
2021; 444
2017; 23
2019; 14
2023; 346
2022; 26
2021; 164
2014; 29
2023; 3
2021; 30
2007; 79
2022; 29
2018; 153
2018; 6
2013; 59
2023; 24
2018; 5
2020; 2
2016; 3
2020; 31
2022
2021; 211
2006; 25
2017
2022; 30
2022; 10
2022; 33
2018; 78
2022; 148
2014; 244
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
American Society for Testing and Materials (e_1_2_8_6_1) 2022
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
Sharma J (e_1_2_8_22_1) 2017
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 31
  start-page: 20
  issue: 3
  year: 2020
  article-title: Deep convolutional neural networks with transfer learning for automated brain image classification
  publication-title: Mach Learn Appl
– volume: 6
  start-page: 18
  issue: 1
  year: 2018
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health Inf Sci Syst
– volume: 148
  year: 2022
  article-title: Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
  publication-title: Environ Model Software
– volume: 211
  year: 2021
  article-title: Investigation of transfer learning for image classification and impact on training sample size
  publication-title: Chemom Intel Lab Syst
– volume: 244
  start-page: e12
  year: 2014
  end-page: e20
  article-title: A review of modern challenges in fire debris analysis
  publication-title: Forensic Sci Int
– volume: 26
  year: 2021
  article-title: Validation of ground truth fire debris classification by supervised machine learning
  publication-title: Forensic Chem
– volume: 23
  year: 2021
  article-title: Classification of ground‐truth fire debris samples using artificial neural networks
  publication-title: Forensic Chem
– volume: 26
  start-page: 7831
  issue: 16
  year: 2022
  end-page: 7845
  article-title: Convolutional neural network based hurricane damage detection using satellite images
  publication-title: Soft Comput
– volume: 59
  start-page: 743
  issue: 3
  year: 2013
  end-page: 749
  article-title: Evaluation of a headspace solid‐phase microextraction method for the analysis of ignitable liquids in fire debris
  publication-title: J Forensic Sci
– volume: 24
  start-page: 633
  issue: 4
  year: 2023
  end-page: 653
  article-title: Deep neural network for food image classification and nutrient identification: a systematic review
  publication-title: Rev Endocr Metab Disord
– volume: 25
  start-page: 1112
  issue: 11
  year: 2006
  end-page: 1124
  article-title: Statistical validation of classification and calibration models using bootstrapped Latin partitions
  publication-title: Trends Anal Chem
– volume: 6
  start-page: 113
  issue: 1
  year: 2019
  article-title: Deep convolutional neural network based medical image classification for disease diagnosis
  publication-title: J Big Data
– volume: 23
  start-page: 91
  issue: 1
  year: 2017
  end-page: 100
  article-title: Towards better analysis of deep convolutional neural networks
  publication-title: IEEE Trans Vis Comput Graph
– volume: 33
  start-page: 6999
  issue: 12
  year: 2022
  end-page: 7019
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 78
  start-page: 11155
  issue: 9
  year: 2018
  end-page: 11172
  article-title: Recognition of Chinese food using convolutional neural network
  publication-title: Multimed Tools Appl
– volume: 2
  year: 2020
  article-title: A transfer learning approach for AI‐based classification of brain tumors
  publication-title: Mach Learn Appl
– volume: 79
  start-page: 6752
  year: 2007
  end-page: 6759
  article-title: Forensic application of gas chromatography–differential mobility spectrometry with two‐way classification of ignitable liquids from fire debris
  publication-title: Anal Chem
– volume: 25
  start-page: 325
  issue: 2
  year: 2021
  end-page: 336
  article-title: Measuring domain shift for deep learning in histopathology
  publication-title: IEEE J Biomed Health Inform
– volume: 35
  start-page: 10801
  year: 2023
  end-page: 10819
  article-title: Identification of untrained class data using neuron clusters
  publication-title: Neural Comput Applic
– volume: 332
  year: 2022
  article-title: Recognition of gasoline in fire debris using machine learning: part II, application of a neural network
  publication-title: Forensic Sci Int
– volume: 444
  start-page: 92
  year: 2021
  end-page: 110
  article-title: Convolutional neural networks for medical image analysis: state‐of‐the‐art, comparisons, improvement and perspectives
  publication-title: Neurocomputing
– volume: 346
  year: 2023
  article-title: Fire accelerant classification from GC–MS data of suspected arson cases using machine–learning models
  publication-title: Forensic Sci Int
– volume: 10
  issue: 10
  year: 2022
  article-title: Convolutional neural network applications in fire debris classification
  publication-title: Chemosensors
– volume: 14
  issue: 11
  year: 2019
  article-title: Machine learning algorithm validation with a limited sample size
  publication-title: PLoS One
– volume: 29
  year: 2022
  article-title: Automatic detection and classification of ignitable liquids from GC–MS data of casework samples in forensic fire‐debris analysis
  publication-title: Forensic Chem
– volume: 30
  start-page: 3905
  issue: 6
  year: 2021
  end-page: 3923
  article-title: A convolutional neural network of GoogLeNET applied in mineral prospectivity prediction based on multi‐source geoinformation
  publication-title: Nat Resour Res
– volume: 29
  start-page: 44
  year: 2014
  end-page: 52
  article-title: A bootstrap method for assessing classification accuracy and confidence for agricultural land use mapping in Canada
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 331
  year: 2022
  article-title: Recognition of gasoline in fire debris using machine learning: part I, application of random forest, gradient boosting, support vector machine, and naive bayes
  publication-title: Forensic Sci Int
– volume: 5
  issue: 3
  year: 2018
  article-title: Detection and characterization of ignitable liquid residues in forensic fire debris samples by comprehensive two‐dimensional gas chromatography
  publication-title: Separations
– year: 2022
– volume: 164
  year: 2021
  article-title: Recycling waste classification using optimized convolutional neural network
  publication-title: Resour Conserv Recycl
– volume: 8
  start-page: 53
  issue: 1
  year: 2021
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J Big Data
– volume: 7
  start-page: 5248
  year: 2021
  end-page: 5256
  article-title: Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks
  publication-title: Energy Rep
– volume: 3
  issue: 3
  year: 2016
  article-title: Achieving a near‐theoretical maximum in peak capacity gain for the forensic analysis of ignitable liquids using GC×GC‐TOFMS
  publication-title: Separations
– volume: 30
  year: 2022
  article-title: Rapid GC–MS as a screening tool for forensic fire debris analysis
  publication-title: Forensic Chem
– volume: 3
  year: 2023
  article-title: Intelligent framework for cannabis classification using visualization of gas chromatography/mass spectrometry data and transfer learning
  publication-title: Front Anal Sci
– volume: 153
  start-page: 46
  year: 2018
  end-page: 53
  article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification
  publication-title: Comput Electron Agric
– start-page: 183
  year: 2017
  end-page: 193
– ident: e_1_2_8_12_1
  doi: 10.1016/j.forsciint.2021.111146
– ident: e_1_2_8_11_1
  doi: 10.1016/j.forc.2021.100313
– ident: e_1_2_8_2_1
  doi: 10.1016/j.forc.2022.100419
– ident: e_1_2_8_33_1
  doi: 10.1016/j.mlwa.2020.100003
– ident: e_1_2_8_37_1
– ident: e_1_2_8_24_1
  doi: 10.1007/s00500‐022‐06805‐6
– ident: e_1_2_8_20_1
  doi: 10.1186/s40537‐019‐0276‐2
– ident: e_1_2_8_28_1
  doi: 10.1007/s11042‐018‐6695‐9
– start-page: 183
  volume-title: Proceedings of the 2017 International Conference on Engineering Applications of Neural Networks (EANN 2017); 2017 Aug 25–27; Athens, Greece. Communications in Computer and Information Science, vol 744
  year: 2017
  ident: e_1_2_8_22_1
– ident: e_1_2_8_17_1
  doi: 10.1109/tnnls.2021.3084827
– ident: e_1_2_8_36_1
  doi: 10.1007/s11053‐021‐09934‐1
– ident: e_1_2_8_39_1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.resconrec.2020.105132
– ident: e_1_2_8_32_1
  doi: 10.3389/frans.2023.1125049
– ident: e_1_2_8_40_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.forsciint.2023.111646
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neucom.2020.04.157
– ident: e_1_2_8_23_1
  doi: 10.1016/j.envsoft.2021.105285
– ident: e_1_2_8_19_1
  doi: 10.1007/s00521‐023‐08265‐x
– ident: e_1_2_8_4_1
– ident: e_1_2_8_14_1
  doi: 10.1186/s40537‐021‐00444‐8
– ident: e_1_2_8_10_1
  doi: 10.1016/j.forc.2021.100358
– ident: e_1_2_8_8_1
  doi: 10.3390/separations3030026
– ident: e_1_2_8_15_1
  doi: 10.1109/tvcg.2016.2598831
– ident: e_1_2_8_31_1
  doi: 10.1016/j.forsciint.2022.111177
– ident: e_1_2_8_27_1
  doi: 10.1007/s11154‐023‐09795‐4
– ident: e_1_2_8_29_1
  doi: 10.3390/chemosensors10100377
– ident: e_1_2_8_16_1
  doi: 10.1109/RTEICT42901.2018.9012507
– ident: e_1_2_8_35_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.chemolab.2021.104269
– volume-title: ASTM method E1618–19 standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography‐mass spectrometry
  year: 2022
  ident: e_1_2_8_6_1
– ident: e_1_2_8_38_1
– ident: e_1_2_8_7_1
  doi: 10.3390/separations5030043
– ident: e_1_2_8_9_1
  doi: 10.1016/j.forsciint.2014.08.006
– ident: e_1_2_8_26_1
  doi: 10.1016/j.egyr.2021.08.028
– ident: e_1_2_8_34_1
  doi: 10.1007/s13755‐018‐0057‐x
– ident: e_1_2_8_45_1
  doi: 10.1371/journal.pone.0224365
– ident: e_1_2_8_44_1
  doi: 10.1109/jbhi.2020.3032060
– ident: e_1_2_8_3_1
  doi: 10.1016/j.forc.2022.100435
– ident: e_1_2_8_18_1
  doi: 10.1007/s00138‐020‐01069‐2
– ident: e_1_2_8_13_1
  doi: 10.1016/j.compag.2018.08.013
– ident: e_1_2_8_5_1
  doi: 10.1111/1556‐4029.12342
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jag.2013.12.016
– ident: e_1_2_8_41_1
  doi: 10.1016/j.trac.2006.10.010
– ident: e_1_2_8_43_1
  doi: 10.1021/ac0707028
SSID ssj0006161
Score 2.41071
Snippet Due to the complex nature of the chemical compositions of ignitable liquids (IL) and the interferences from fire debris matrices, interpreting chromatographic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1222
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Chemical composition
convolutional neural network and CNN
Debris
fire debris analysis
Forensic chemistry
Gas chromatography
gas chromatography–mass spectrometry and GCMS
Gasoline
heatmaps
Image classification
Machine learning
solid phase microextraction and SPME
Substrates
transfer learning
Workflow
Title Assessment of artificial intelligence to detect gasoline in fire debris using HS‐SPME‐GC/MS and transfer learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1556-4029.15550
https://www.ncbi.nlm.nih.gov/pubmed/38798027
https://www.proquest.com/docview/3071802834
https://www.proquest.com/docview/3060750466
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJyTEvpRNRuLAJaVpUts9oqqlQmIRBYlb5C0VAqWoTS-c-AS-kS9hxk7CJoQQp0SxR3GcmfEbe_xMyAHTkgnDRCBF2wZxasNAShEHPOXCArxlXDq2z3PWv4lPb1tlNiHuhfH8ENWEG1qG89do4FJNPhg5DIQMo592He5c1I4ZWwiLrt4JpFjIwpIvPIT4uiD3wVyeL_Kfx6VvYPMzdnWDT2-RqLLZPufkvj7NVV0_fWF0_Nd3LZGFAprSY69Ly2TGZitk3s_rUb9daZVMjysqTzpKKSqe56Cgdx_IPWk-osbi-gQdygmeC2ShnKbgX-E5bjKgmHA_pP3B6_PL4PKsC5eTztHZgMrM0NyhaTumxZkWwzVy0-ted_pBcXRDoCOO-R5Gt4RUkWwpLQC0GIB9sbUSPAQAtLjJpZXKiMga3mha8AkcoEgYhU0TKpAU0TqZzUaZ3SRUqljLRgqOxkA0o9sitAzCRJPyyDSYbtVIvfxxiS54zfF4jYekjG-wRxPs0cT1aI0cVgKPntLj56o7pSYkhW1PEvCKSJsnorhG9qtisEpcapGZHU2xDkMsFjNWIxteg6p3RYK3QZ5Dw50e_NaI5LR34W62_iqwTeaagMF8dvEOmc3HU7sLGCpXe85M3gDGJA7W
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hOICECuV3C7RG4tBLls0ma3uPCLEslKUVCxK3yLGdVVWUrSB76YlH4Bn7JJ2xk7CAKoQ4xUrsxHFmxt84428A9rhWXBouAyW7NogzGwZKyTgQmZAW4S0XyrF9nvP-VXx63bme2gvj-SHqBTfSDGevScFpQXpKy3Em5OT-dJtYIrd9jvJ6O7fq4pFCioc8rBjDQ_SwS3ofiuZ5doOnM9MLuPkUvbrpp7cEuuq4jzr51ZwUaVP_ecbp-L43W4YPJTplB16cPsKMzVdg0S_tMb9jaRUmBzWbJxtnjGTP01Cwn1P8nqwYM2PpFwUbqTtKDWTxOsvQxOJ52mfAKOZ-xPrDv_cPwx-DIzwcH-4PhkzlhhUOUNtbVqa1GK3BVe_o8rAflNkbAh0JCvkwuiNVGqlOqiXiFoPIL7ZWoZFAjBa3hbIqNTKyRrTaFs2CQDQSRmHbhCm2lNE6zObj3G4CU2msVStDW2PQodFdGVqOnqLJRGRaXHca0Ky-XKJLanPKsHGTVC4OjWhCI5q4EW3A17rBb8_q8f-q25UoJKV63yVoGIk5T0ZxA3bry6iY9LdF5XY8oTqc4FjMeQM2vAjVz4qk6GJ7gR13gvBaJ5LT3ndX-PTWBl9gvn85OEvOTs6_bcFCGyGZDzbehtnidmJ3EFIV6WenM_8Au9US8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VIFVIFdBCYSkUV-LAJdvNxmt7jwjYLlAoYkHiFjm2s0Kg7AqyF048As_YJ2EmTsKfKlRxihXbiePMjL-xx58BNoTRQlmhAq26LuCpCwOtFQ9kKpVDeCukLtg-j0T_jO-fd6poQtoL4_kh6gk30ozCXpOCj236RMlxIBTk_XSbmCKvfZqLliLB3jl5ZJASoQgrwvAQHeyS3YeCeV484PnA9AptPgevxejTm4OkarcPOrlsTvKkaW5fUDq-68PmYbbEpmzLC9Nn-OCyL_DJT-wxv19pASZbNZcnG6WMJM-TULCLJ-yeLB8x62iBgg31DR0M5DCfpWhg8T7tMmAUcT9k_cHfu_vB8eEuXn5t_zwcMJ1Zlhdw2l2z8lCL4SKc9XZPt_tBeXZDYCJJAR_WdJROIt1JjELUYhH3cec0mghEaLwttdOJVZGzstV2aBQkYpEwCts2TLCmir7CVDbK3DIwnXCjWylaGovujOmq0An0E20qI9sSptOAZvXjYlMSm9P5Gldx5eBQj8bUo3HRow3YrCuMPafHv4uuVpIQl8p9E6NZJN48FfEG_KizUS1prUVnbjShMoLAGBeiAUtegup3RUp2sb7Ehhdy8FYj4v3enyKx8r8V1uHj8U4v_r13dPANZtqIx3yk8SpM5dcTt4Z4Kk--FxrzAIDCEak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+artificial+intelligence+to+detect+gasoline+in+fire+debris+using+HS-SPME-GC%2FMS+and+transfer+learning&rft.jtitle=Journal+of+forensic+sciences&rft.au=Huang%2C+Ting-Yu&rft.au=Chung+Yu%2C+Jorn+Chi&rft.date=2024-07-01&rft.issn=1556-4029&rft.eissn=1556-4029&rft.volume=69&rft.issue=4&rft.spage=1222&rft_id=info:doi/10.1111%2F1556-4029.15550&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1198&client=summon