Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features
The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinite biological half-lives, potentially toxic metal...
Saved in:
Published in | Soil and water research Vol. 10; no. 4; pp. 218 - 227 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Prague
Czech Academy of Agricultural Sciences (CAAS)
01.01.2015
Czech Academy of Agricultural Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinite biological half-lives, potentially toxic metals can accumulate in the food chain and can eventually endanger human health. Monitoring and spatial information of these elements require a large number of samples and cumbersome and time-consuming laboratory measurements. A faster method has been developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR) were employed after smoothing with Savitzky-Golay to improve the robustness and performance of the calibration models. According to the criteria of maximal coefficient of determination (R2cv) and minimal root mean square error of prediction in cross-validation (RMSEPcv), the SVMR algorithm with FD preprocessing was determined as the best method for predicting Cu, Mn, Pb, and Zn concentration, whereas the SVMR model with CR preprocessing was chosen as the final method for predicting Cd. Overall, this study indicated that the Vis-NIR reflectance spectroscopy technique combined with a continuously enriched soil spectral library as well as a suitable preprocessing method could be a nondestructive alternative for monitoring of the soil environment. The future possibilities of multivariate calibration and preprocessing with real-time remote sensing data have to be explored. |
---|---|
AbstractList | The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinite biological half-lives, potentially toxic metals can accumulate in the food chain and can eventually endanger human health. Monitoring and spatial information of these elements require a large number of samples and cumbersome and time-consuming laboratory measurements. A faster method has been developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR) were employed after smoothing with Savitzky-Golay to improve the robustness and performance of the calibration models. According to the criteria of maximal coefficient of determination (R2cv) and minimal root mean square error of prediction in cross-validation (RMSEPcv), the SVMR algorithm with FD preprocessing was determined as the best method for predicting Cu, Mn, Pb, and Zn concentration, whereas the SVMR model with CR preprocessing was chosen as the final method for predicting Cd. Overall, this study indicated that the Vis-NIR reflectance spectroscopy technique combined with a continuously enriched soil spectral library as well as a suitable preprocessing method could be a nondestructive alternative for monitoring of the soil environment. The future possibilities of multivariate calibration and preprocessing with real-time remote sensing data have to be explored. |
Author | Saberioon, Mohammad Mehdi Gholizadeh, Asa Borůvka, Luboš Vašát, Radim Kozák, Josef Němeček, Karel |
Author_xml | – sequence: 1 givenname: Asa surname: Gholizadeh fullname: Gholizadeh, Asa – sequence: 2 givenname: Luboš surname: Borůvka fullname: Borůvka, Luboš – sequence: 3 givenname: Mohammad Mehdi surname: Saberioon fullname: Saberioon, Mohammad Mehdi – sequence: 4 givenname: Josef surname: Kozák fullname: Kozák, Josef – sequence: 5 givenname: Radim surname: Vašát fullname: Vašát, Radim – sequence: 6 givenname: Karel surname: Němeček fullname: Němeček, Karel |
BookMark | eNptkUtrHDEQhEWwIY7to--CnCfWc0ZzDEseBoMhD3wUPVLL1jI7mkjagP99tLvJxeSkRv1V0VS9I2dLWpCQG84-8EEIfsu5vBWM6-7747c35IIbprtRGnV2nHmn5ajfkutStowxPgomDbsgaZN2K-S4PFEfQ8CMS6UeKtA145qTw1IOyx3W5-QLDSnTXVpiTUdNSXGmzwi_Xw4EzIVOUNDTtJxWZUVXM8w0INR9xnJFzkPD8Prve0l-fv70Y_O1u3_4crf5eN85ObDahaCCYMLpyfQ970E5gb4PmgcdBu-mgUutWN_D5I2bjB8MDFL4fgg9V2iMvCR3J1-fYGvXHHeQX2yCaI8fKT9ZyDW6GS1wLVErp4xgik3aCNPS4cGMEpmWoXm9P3m1PH7tsVS7Tfu8tPOt0GyQSo0ja5Q8US6nUjIG62KFGtPSAoiz5cwei7KtKHsoyraimqp7pfp36__5P5F4ltQ |
CitedBy_id | crossref_primary_10_1080_00103624_2020_1784922 crossref_primary_10_1007_s12665_017_7058_y crossref_primary_10_1093_jaoacint_qsac146 crossref_primary_10_1109_MGRS_2024_3394040 crossref_primary_10_1080_00103624_2020_1820027 crossref_primary_10_1016_j_compag_2024_109494 crossref_primary_10_1080_17480272_2021_2012821 crossref_primary_10_3389_fbioe_2023_1116735 crossref_primary_10_1002_ansa_202400018 crossref_primary_10_1007_s13369_024_08776_2 crossref_primary_10_3390_rs15102508 crossref_primary_10_1016_j_trac_2020_116166 crossref_primary_10_1007_s10661_020_08642_2 crossref_primary_10_1016_j_geoderma_2019_113972 crossref_primary_10_1134_S1064229322090071 crossref_primary_10_3390_app14114673 crossref_primary_10_3389_feart_2023_1083043 crossref_primary_10_3390_rs9060632 crossref_primary_10_1007_s11270_017_3609_9 crossref_primary_10_2478_quageo_2022_0029 crossref_primary_10_3390_min12060661 crossref_primary_10_1016_j_scitotenv_2023_161996 crossref_primary_10_3390_land13040517 crossref_primary_10_1016_j_geoderma_2020_114228 crossref_primary_10_1016_j_geoderma_2017_12_025 crossref_primary_10_3390_rs14071558 crossref_primary_10_1016_j_hazadv_2024_100442 crossref_primary_10_1007_s12524_018_0890_z crossref_primary_10_3390_rs12223765 crossref_primary_10_1016_j_geoderma_2016_11_024 crossref_primary_10_1111_ejss_13398 crossref_primary_10_1016_j_microc_2022_107544 crossref_primary_10_3390_math10224250 crossref_primary_10_3390_land13081279 crossref_primary_10_1016_j_heliyon_2024_e30228 crossref_primary_10_1016_j_geoderma_2017_02_015 crossref_primary_10_1002_agj2_20934 crossref_primary_10_3390_rs8040341 crossref_primary_10_1016_j_psep_2021_10_028 crossref_primary_10_3389_fpls_2019_01380 crossref_primary_10_3390_rs15225294 crossref_primary_10_1007_s11368_022_03337_2 crossref_primary_10_3390_s20216325 crossref_primary_10_1016_j_saa_2021_120186 crossref_primary_10_1016_j_geoderma_2024_117151 crossref_primary_10_1364_OE_502709 crossref_primary_10_1038_s41598_021_98143_0 crossref_primary_10_3390_rs16030565 crossref_primary_10_3390_su141912318 crossref_primary_10_1016_j_biosystemseng_2016_06_011 crossref_primary_10_1016_j_microc_2024_111815 crossref_primary_10_1080_15320383_2023_2172381 crossref_primary_10_3390_su11113197 crossref_primary_10_3390_s21206745 crossref_primary_10_1016_j_saa_2019_117639 crossref_primary_10_3390_rs11040450 crossref_primary_10_1007_s11631_019_00388_0 crossref_primary_10_1007_s42452_021_04175_6 crossref_primary_10_3390_rs13122273 crossref_primary_10_3390_rs10111747 crossref_primary_10_1039_D0AY01389G crossref_primary_10_1177_09670335211047959 crossref_primary_10_1007_s12665_017_6793_4 crossref_primary_10_1016_j_compag_2019_104949 crossref_primary_10_1016_j_rse_2018_09_015 crossref_primary_10_3390_agriculture13101983 crossref_primary_10_1016_j_trac_2025_118142 crossref_primary_10_1080_15320383_2021_1963211 crossref_primary_10_1080_17480272_2022_2039960 crossref_primary_10_1016_j_gexplo_2017_06_020 crossref_primary_10_3390_math13010099 crossref_primary_10_2139_ssrn_3981248 crossref_primary_10_1177_09670335241269168 crossref_primary_10_3390_rs15041106 crossref_primary_10_3390_min10020089 crossref_primary_10_1016_j_scitotenv_2024_172741 crossref_primary_10_3390_agriengineering3010005 crossref_primary_10_1016_j_geoderma_2019_07_033 crossref_primary_10_1016_j_infrared_2022_104170 crossref_primary_10_3390_rs13224615 crossref_primary_10_1080_19475683_2024_2309868 crossref_primary_10_3390_toxics11030268 crossref_primary_10_1007_s11694_022_01717_3 crossref_primary_10_3390_land12091789 crossref_primary_10_3390_rs14122917 crossref_primary_10_1186_s43141_021_00251_x crossref_primary_10_1016_j_compag_2025_110214 crossref_primary_10_3390_rs14041008 crossref_primary_10_1007_s40808_016_0259_7 crossref_primary_10_3389_fpls_2020_00755 crossref_primary_10_1088_1742_6596_1840_1_012011 crossref_primary_10_3390_rs10081172 crossref_primary_10_3389_fsoil_2024_1364426 crossref_primary_10_3390_en15207557 crossref_primary_10_1016_j_saa_2023_122653 crossref_primary_10_3390_toxics12070467 crossref_primary_10_1007_s12145_023_01168_4 crossref_primary_10_1007_s11629_019_5789_9 crossref_primary_10_1016_j_geoderma_2020_114875 crossref_primary_10_3390_rs12233850 crossref_primary_10_3390_rs9101078 crossref_primary_10_1016_j_stress_2024_100615 crossref_primary_10_1111_ijfs_13232 crossref_primary_10_17221_107_2016_SWR crossref_primary_10_3390_rs12203394 crossref_primary_10_3390_math6120330 crossref_primary_10_1080_00450618_2021_1892187 crossref_primary_10_1007_s12665_023_11073_0 crossref_primary_10_3389_fpls_2022_940327 crossref_primary_10_1016_j_saa_2022_120949 crossref_primary_10_3390_app9050916 crossref_primary_10_1016_j_scitotenv_2018_12_458 crossref_primary_10_1080_02757540_2022_2119960 crossref_primary_10_3390_rs9111099 crossref_primary_10_1007_s11368_023_03480_4 crossref_primary_10_1016_j_chemolab_2021_104445 crossref_primary_10_3390_app9091943 crossref_primary_10_1007_s10812_023_01491_0 crossref_primary_10_3390_land12010044 crossref_primary_10_1016_j_algal_2025_104009 crossref_primary_10_1016_j_compag_2024_109101 crossref_primary_10_1016_j_geoderma_2021_115512 crossref_primary_10_1016_j_still_2017_09_006 crossref_primary_10_1016_j_vibspec_2018_05_002 crossref_primary_10_1111_jfpp_15576 crossref_primary_10_3390_land10010063 crossref_primary_10_1111_jfpe_13092 crossref_primary_10_3390_s24175612 crossref_primary_10_1007_s10712_019_09524_0 |
Cites_doi | 10.1016/j.geoderma.2009.11.032 10.1029/JB095iB08p12653 10.1109/87.974338 10.2134/agronmonogr44.c6 10.1002/jsfa.2740360906 10.1016/S0003-2670(03)00331-3 10.1016/S1002-0160(09)60167-3 10.1016/j.trac.2009.07.007 10.1016/j.geoderma.2012.07.020 10.1097/00010694-199703000-00007 10.1016/j.geoderma.2009.04.005 10.1016/j.geoderma.2009.12.025 10.1016/S0003-2670(01)01265-X 10.1366/0003702904086821 10.1016/j.apgeochem.2005.01.009 10.1016/j.geoderma.2008.04.007 10.1366/13-07288 10.1016/S1002-0160(12)60022-8 10.1016/S0034-4257(99)00110-8 10.1021/ac60214a047 10.1371/journal.pone.0117457 10.1016/j.clay.2011.09.010 10.1016/S0169-2046(00)00099-2 10.1007/s12034-007-0042-5 10.1016/j.jpba.2011.10.020 10.1029/JB089iB07p06329 10.1016/j.gexplo.2011.11.004 10.2136/sssaj1986.03615995005000010023x 10.1016/S0034-4257(96)00120-4 10.1346/000986002760832801 10.1021/es9005898 10.2136/sssaj1995.03615995005900020014x 10.6090/jarq.45.63 10.1007/978-1-4757-2440-0 10.1016/S0034-4257(02)00133-5 10.1346/CCMN.2001.0490508 10.1016/j.scitotenv.2008.12.047 10.1016/S0959-1524(02)00068-9 10.1021/es015747j |
ContentType | Journal Article |
Copyright | 2015. This work is published under https://www.agriculturejournals.cz/web/about/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2015. This work is published under https://www.agriculturejournals.cz/web/about/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.17221/113/2015-SWR |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1805-9384 |
EndPage | 227 |
ExternalDocumentID | oai_doaj_org_article_a153e54c482040b58289201f893e053f 10_17221_113_2015_SWR |
GroupedDBID | 4P2 5UV 5VS AAYXX ABDBF ACUHS ADBBV AENEX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION DYU EBD ECGQY EOJEC GROUPED_DOAJ HCIFZ KQ8 M7P OBODZ OK1 OZF PATMY PHGZM PHGZT PIMPY PQGLB PYCSY 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c370t-ff4f202c5b86616a4c2ed6f51f5f7dcb71354066abd8cb8d78a732d67f614e883 |
IEDL.DBID | BENPR |
ISSN | 1801-5395 |
IngestDate | Wed Aug 27 01:09:29 EDT 2025 Fri Jul 25 09:43:47 EDT 2025 Wed Jul 16 16:48:54 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-ff4f202c5b86616a4c2ed6f51f5f7dcb71354066abd8cb8d78a732d67f614e883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2507344990?pq-origsite=%requestingapplication% |
PQID | 2507344990 |
PQPubID | 5009630 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a153e54c482040b58289201f893e053f proquest_journals_2507344990 crossref_citationtrail_10_17221_113_2015_SWR crossref_primary_10_17221_113_2015_SWR |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Prague |
PublicationPlace_xml | – name: Prague |
PublicationTitle | Soil and water research |
PublicationYear | 2015 |
Publisher | Czech Academy of Agricultural Sciences (CAAS) Czech Academy of Agricultural Sciences |
Publisher_xml | – name: Czech Academy of Agricultural Sciences (CAAS) – name: Czech Academy of Agricultural Sciences |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 White (ref43) 1971; 56 ref11 ref33 ref10 ref0 ref2 ref1 Meyer (ref25) 2012 ref39 ref16 ref38 ref19 ref18 Reeves III (ref34) 2002; 10 Ji (ref17) 2012; 32 ref24 ref46 ref23 ref45 ref26 ref20 ref42 ref41 ref22 ref21 ref28 ref29 ref7 ref9 ref4 ref3 ref6 ref5 Murray (ref27) 1988 ref40 Chu (ref8) 2004; 16 |
References_xml | – ident: ref39 doi: 10.1016/j.geoderma.2009.11.032 – ident: ref10 doi: 10.1029/JB095iB08p12653 – ident: ref31 doi: 10.1109/87.974338 – ident: ref12 doi: 10.2134/agronmonogr44.c6 – ident: ref24 doi: 10.1002/jsfa.2740360906 – ident: ref21 doi: 10.1016/S0003-2670(03)00331-3 – ident: ref35 doi: 10.1016/S1002-0160(09)60167-3 – ident: ref36 doi: 10.1016/j.trac.2009.07.007 – volume-title: e1071: Misc Functions of the Department of Statistics (e1071), R Package Version 1 year: 2012 ident: ref25 – ident: ref30 doi: 10.1016/j.geoderma.2012.07.020 – ident: ref5 doi: 10.1097/00010694-199703000-00007 – ident: ref33 doi: 10.1016/j.geoderma.2009.04.005 – ident: ref42 doi: 10.1016/j.geoderma.2009.12.025 – ident: ref20 doi: 10.1016/S0003-2670(01)01265-X – ident: ref0 doi: 10.1366/0003702904086821 – volume-title: Analytical Application of Spectroscopy year: 1988 ident: ref27 article-title: Aspects of interpretation of NIR spectra – ident: ref45 doi: 10.1016/j.apgeochem.2005.01.009 – volume: 32 start-page: 2393 year: 2012 ident: ref17 article-title: Using different data mining algorithms to predict soil organic matter based on visible near infrared spectroscopy publication-title: Spectroscopy and Spectral Analysis – ident: ref41 doi: 10.1016/j.geoderma.2008.04.007 – volume: 10 start-page: 1 year: 2002 ident: ref34 article-title: Spectroscopic calibrations for the determination of C in soils. Transactions of the 17th World Congress of publication-title: Soil Science – volume: 16 start-page: 528 year: 2004 ident: ref8 article-title: Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique publication-title: Progress in Chemistry – ident: ref13 doi: 10.1366/13-07288 – ident: ref46 doi: 10.1016/S1002-0160(12)60022-8 – ident: ref22 doi: 10.1016/S0034-4257(99)00110-8 – ident: ref37 doi: 10.1021/ac60214a047 – ident: ref14 doi: 10.1371/journal.pone.0117457 – ident: ref38 doi: 10.1016/j.clay.2011.09.010 – ident: ref4 doi: 10.1016/S0169-2046(00)00099-2 – ident: ref28 doi: 10.1007/s12034-007-0042-5 – ident: ref6 doi: 10.1016/j.jpba.2011.10.020 – ident: ref9 doi: 10.1029/JB089iB07p06329 – ident: ref3 doi: 10.1016/j.gexplo.2011.11.004 – ident: ref11 doi: 10.2136/sssaj1986.03615995005000010023x – ident: ref2 doi: 10.1016/S0034-4257(96)00120-4 – ident: ref16 doi: 10.1346/000986002760832801 – volume: 56 start-page: 46 year: 1971 ident: ref43 article-title: Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals publication-title: American Mineralogist – ident: ref26 doi: 10.1021/es9005898 – ident: ref1 doi: 10.2136/sssaj1995.03615995005900020014x – ident: ref15 doi: 10.6090/jarq.45.63 – ident: ref40 doi: 10.1007/978-1-4757-2440-0 – ident: ref19 doi: 10.1016/S0034-4257(02)00133-5 – ident: ref23 doi: 10.1346/CCMN.2001.0490508 – ident: ref29 doi: 10.1016/j.scitotenv.2008.12.047 – ident: ref7 doi: 10.1016/S0959-1524(02)00068-9 – ident: ref18 doi: 10.1021/es015747j |
SSID | ssj0001920380 ssib044761328 |
Score | 2.3870113 |
Snippet | The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 218 |
SubjectTerms | Algorithms Cadmium Calibration Chromium Copper Environmental monitoring Food chains Heavy metals Infrared spectra Lead Manganese Metal concentrations Metals Monitoring methods Multivariate analysis Near infrared radiation Nondestructive testing Preprocessing Reflectance Remote sensing Soil environment Soil pollution Soil quality Spatial data Spectroscopy Spectrum analysis support vector machine regression Support vector machines Time measurement visible-near infrared spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXyUE8WbbNo-keVRTx4EFd9FbyFEW7y3YV_PfOpO2yIuLFa5O2YTLJN9NOvo-QIy-0lzqwZBiChARF6cRkOSSuw2ACswByLhbI3uRXI3H9KB8XpL6wJqyhB24MN9CwJL0UVgBUidTgX54hgFYAnEVVg4C7L2DeQjIFniQEZOcdC81LE8ekPMqoZbAlJ5IPZUu4qRjLBlnGB_BQmdw93H4DqMjj_2ObjthzuU7W2qCRnjaD3SBLvtokq6dP05Y4w2-R8XkjKFg90U7zZEax_JNOkLcyngbAxkYxuqYQq9K3uJ7jPfX4-ZXCvvzxiT3AJSnCm6PjqmmKBzKnMIbgIxNovU1Glxf351dJK6aQWK7SWRKCCCxlVpoCIDnXwjLv8iCzIINy1qBUH4B7ro0rrCmcKrTizOUqAID7ouA7ZLkaV36X0EK7wmepNYJbgcVUeWqcdV7pzEnHQo-cdBYsbcs0joIXryVmHGhwyDt4iQYvweA9cjzvPmkoNn7reIbTMe-EzNjxAvhL2fpL-Ze_9Ei_m8yyXa51CXGg4gKSv3TvP96xT1aiN8UvNX2yPJu--wOIXWbmMLrpF_1R6Kg priority: 102 providerName: Directory of Open Access Journals |
Title | Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features |
URI | https://www.proquest.com/docview/2507344990 https://doaj.org/article/a153e54c482040b58289201f893e053f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcChKi9RWiofECeijV-x91S1VauKQ4UKK8op8nMFKsmy2Vbi3zPjOEUIwSWH2JEiezzfjD3-PkLeRGmjsolX85QUJCjaVo41kLjOk0vcA8iFXCB72Vws5PtrdV023IZSVjn5xOyoQ-9xj3wGUK2FhPi8Plr9qFA1Ck9Xi4TGQ7INLthA8rV9cnb54WqyKCkhS5_YaL6N8UwtspwaA9dcKTFXhXhTc85mjIkZIKKqPn6--gOoMp__X-46Y9D5LtkpwSM9Hmf7CXkQu6fk8fFyXQg04jPSn47Cgt2STtonG4ploHSF_JX5VgA2jsrRA4WYlX7P6zp_M_Rfbyj457uf2ANMkyLMBdp3Y1O-mLmGf0gxM4IOz8ni_OzT6UVVRBUqL3S9qVKSidfcK2cAmhsrPY-hSYollXTwDiX7AOQb64LxzgRtrBY8NDoBkEdjxAuy1fVdfEmoscFEVnsnhZdYVNXULvgQtWVBBZ72yLtpBFtfGMdR-OKmxcwDBxzyD9HigLcw4Hvk7X331Ui18a-OJzgd952QITu_6NfLtiy41oIrj0p6CSGOrB2eDsLcswTxGaphwM8dTJPZlmU7tL-N7NX_m_fJo2wneS_mgGxt1rfxNUQnG3dYTPAwZ_f4_LL4BQnG5WU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE9RKOADcCLaJLbj7AGhtrTa0rJCpRW9GT9XoJIsmwXUP8VvZMZxihCCW6-xE1kz4_lm4vF8hDz1XHuhQ5lNQhCQoEidmaKCxHUSTCgtgJyLBbKzanrC35yK0zXyc7gLg2WVg0-Mjtq1Fv-RjwGqJeMQn-evFl8zZI3C09WBQqM3iwN__gNStu7l_mvQ77Oy3Ns93plmiVUgs0zmqywEHiDjt8LUgE2V5rb0rgqiCCJIZw1y1gHKVdq42prayVpLVrpKBkAyX9cMvnuFrHMGqcyIrG_vzt4dDRbMuQR4TAH95z5-ylmkbysACjLBJiI1-pRlWYyLgo0BgUX2_sPRH8AY-QP-goeIeXs3yY0UrNKt3rpukTXf3CbXt-bL1LDD3yHtTk9k2MzpwLWyolh2ShfYLzPeQsDBnqm6oxAj0y_Rj8R3uvbTGQU8-H6OM2ArUIRVR9umH4oXQZewhuBjB9LuLjm5FHHfI6Ombfx9Qmvtal_k1nBmORZxVblx1nmpCydcGTbIi0GCyqYO50i0caYw00GBQ77DFApcgcA3yPOL6Yu-tce_Jm6jOi4mYUfu-KBdzlXa4EoDdHjBLYeQiucGTyNB90WAeBDZN2Bxm4MyVXITnfpt1A_-P_yEXJ0evz1Uh_uzg4fkWrSZ-B9ok4xWy2_-EURGK_M4mSMlHy97B_wCGt4gkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+different+data+preprocessing+methods+for+monitoring+soil+heavy+metals+based+on+soil+spectral+features&rft.jtitle=Soil+and+water+research&rft.au=Gholizadeh%2C+A&rft.au=Bor%C5%AFvka%2C+L&rft.au=Saberioon%2C+M+M&rft.au=Koz%C3%A1k%2C+J&rft.date=2015-01-01&rft.pub=Czech+Academy+of+Agricultural+Sciences+%28CAAS%29&rft.issn=1801-5395&rft.eissn=1805-9384&rft.volume=10&rft.issue=4&rft.spage=218&rft_id=info:doi/10.17221%2F113%2F2015-SWR |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1801-5395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1801-5395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1801-5395&client=summon |