Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features

The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinite biological half-lives, potentially toxic metal...

Full description

Saved in:
Bibliographic Details
Published inSoil and water research Vol. 10; no. 4; pp. 218 - 227
Main Authors Gholizadeh, Asa, Borůvka, Luboš, Saberioon, Mohammad Mehdi, Kozák, Josef, Vašát, Radim, Němeček, Karel
Format Journal Article
LanguageEnglish
Published Prague Czech Academy of Agricultural Sciences (CAAS) 01.01.2015
Czech Academy of Agricultural Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinite biological half-lives, potentially toxic metals can accumulate in the food chain and can eventually endanger human health. Monitoring and spatial information of these elements require a large number of samples and cumbersome and time-consuming laboratory measurements. A faster method has been developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR) were employed after smoothing with Savitzky-Golay to improve the robustness and performance of the calibration models. According to the criteria of maximal coefficient of determination (R2cv) and minimal root mean square error of prediction in cross-validation (RMSEPcv), the SVMR algorithm with FD preprocessing was determined as the best method for predicting Cu, Mn, Pb, and Zn concentration, whereas the SVMR model with CR preprocessing was chosen as the final method for predicting Cd. Overall, this study indicated that the Vis-NIR reflectance spectroscopy technique combined with a continuously enriched soil spectral library as well as a suitable preprocessing method could be a nondestructive alternative for monitoring of the soil environment. The future possibilities of multivariate calibration and preprocessing with real-time remote sensing data have to be explored.
AbstractList The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not only dramatically impact the soil quality, but also due to their persistent nature and indefinite biological half-lives, potentially toxic metals can accumulate in the food chain and can eventually endanger human health. Monitoring and spatial information of these elements require a large number of samples and cumbersome and time-consuming laboratory measurements. A faster method has been developed based on a multivariate calibration procedure using support vector machine regression (SVMR) with cross-validation, to establish a relationship between reflectance spectra in the visible-near infrared (Vis-NIR) region and concentration of Mn, Cu, Cd, Zn, and Pb in soil. Spectral preprocessing methods, first and second derivatives (FD and SD), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR) were employed after smoothing with Savitzky-Golay to improve the robustness and performance of the calibration models. According to the criteria of maximal coefficient of determination (R2cv) and minimal root mean square error of prediction in cross-validation (RMSEPcv), the SVMR algorithm with FD preprocessing was determined as the best method for predicting Cu, Mn, Pb, and Zn concentration, whereas the SVMR model with CR preprocessing was chosen as the final method for predicting Cd. Overall, this study indicated that the Vis-NIR reflectance spectroscopy technique combined with a continuously enriched soil spectral library as well as a suitable preprocessing method could be a nondestructive alternative for monitoring of the soil environment. The future possibilities of multivariate calibration and preprocessing with real-time remote sensing data have to be explored.
Author Saberioon, Mohammad Mehdi
Gholizadeh, Asa
Borůvka, Luboš
Vašát, Radim
Kozák, Josef
Němeček, Karel
Author_xml – sequence: 1
  givenname: Asa
  surname: Gholizadeh
  fullname: Gholizadeh, Asa
– sequence: 2
  givenname: Luboš
  surname: Borůvka
  fullname: Borůvka, Luboš
– sequence: 3
  givenname: Mohammad Mehdi
  surname: Saberioon
  fullname: Saberioon, Mohammad Mehdi
– sequence: 4
  givenname: Josef
  surname: Kozák
  fullname: Kozák, Josef
– sequence: 5
  givenname: Radim
  surname: Vašát
  fullname: Vašát, Radim
– sequence: 6
  givenname: Karel
  surname: Němeček
  fullname: Němeček, Karel
BookMark eNptkUtrHDEQhEWwIY7to--CnCfWc0ZzDEseBoMhD3wUPVLL1jI7mkjagP99tLvJxeSkRv1V0VS9I2dLWpCQG84-8EEIfsu5vBWM6-7747c35IIbprtRGnV2nHmn5ajfkutStowxPgomDbsgaZN2K-S4PFEfQ8CMS6UeKtA145qTw1IOyx3W5-QLDSnTXVpiTUdNSXGmzwi_Xw4EzIVOUNDTtJxWZUVXM8w0INR9xnJFzkPD8Prve0l-fv70Y_O1u3_4crf5eN85ObDahaCCYMLpyfQ970E5gb4PmgcdBu-mgUutWN_D5I2bjB8MDFL4fgg9V2iMvCR3J1-fYGvXHHeQX2yCaI8fKT9ZyDW6GS1wLVErp4xgik3aCNPS4cGMEpmWoXm9P3m1PH7tsVS7Tfu8tPOt0GyQSo0ja5Q8US6nUjIG62KFGtPSAoiz5cwei7KtKHsoyraimqp7pfp36__5P5F4ltQ
CitedBy_id crossref_primary_10_1080_00103624_2020_1784922
crossref_primary_10_1007_s12665_017_7058_y
crossref_primary_10_1093_jaoacint_qsac146
crossref_primary_10_1109_MGRS_2024_3394040
crossref_primary_10_1080_00103624_2020_1820027
crossref_primary_10_1016_j_compag_2024_109494
crossref_primary_10_1080_17480272_2021_2012821
crossref_primary_10_3389_fbioe_2023_1116735
crossref_primary_10_1002_ansa_202400018
crossref_primary_10_1007_s13369_024_08776_2
crossref_primary_10_3390_rs15102508
crossref_primary_10_1016_j_trac_2020_116166
crossref_primary_10_1007_s10661_020_08642_2
crossref_primary_10_1016_j_geoderma_2019_113972
crossref_primary_10_1134_S1064229322090071
crossref_primary_10_3390_app14114673
crossref_primary_10_3389_feart_2023_1083043
crossref_primary_10_3390_rs9060632
crossref_primary_10_1007_s11270_017_3609_9
crossref_primary_10_2478_quageo_2022_0029
crossref_primary_10_3390_min12060661
crossref_primary_10_1016_j_scitotenv_2023_161996
crossref_primary_10_3390_land13040517
crossref_primary_10_1016_j_geoderma_2020_114228
crossref_primary_10_1016_j_geoderma_2017_12_025
crossref_primary_10_3390_rs14071558
crossref_primary_10_1016_j_hazadv_2024_100442
crossref_primary_10_1007_s12524_018_0890_z
crossref_primary_10_3390_rs12223765
crossref_primary_10_1016_j_geoderma_2016_11_024
crossref_primary_10_1111_ejss_13398
crossref_primary_10_1016_j_microc_2022_107544
crossref_primary_10_3390_math10224250
crossref_primary_10_3390_land13081279
crossref_primary_10_1016_j_heliyon_2024_e30228
crossref_primary_10_1016_j_geoderma_2017_02_015
crossref_primary_10_1002_agj2_20934
crossref_primary_10_3390_rs8040341
crossref_primary_10_1016_j_psep_2021_10_028
crossref_primary_10_3389_fpls_2019_01380
crossref_primary_10_3390_rs15225294
crossref_primary_10_1007_s11368_022_03337_2
crossref_primary_10_3390_s20216325
crossref_primary_10_1016_j_saa_2021_120186
crossref_primary_10_1016_j_geoderma_2024_117151
crossref_primary_10_1364_OE_502709
crossref_primary_10_1038_s41598_021_98143_0
crossref_primary_10_3390_rs16030565
crossref_primary_10_3390_su141912318
crossref_primary_10_1016_j_biosystemseng_2016_06_011
crossref_primary_10_1016_j_microc_2024_111815
crossref_primary_10_1080_15320383_2023_2172381
crossref_primary_10_3390_su11113197
crossref_primary_10_3390_s21206745
crossref_primary_10_1016_j_saa_2019_117639
crossref_primary_10_3390_rs11040450
crossref_primary_10_1007_s11631_019_00388_0
crossref_primary_10_1007_s42452_021_04175_6
crossref_primary_10_3390_rs13122273
crossref_primary_10_3390_rs10111747
crossref_primary_10_1039_D0AY01389G
crossref_primary_10_1177_09670335211047959
crossref_primary_10_1007_s12665_017_6793_4
crossref_primary_10_1016_j_compag_2019_104949
crossref_primary_10_1016_j_rse_2018_09_015
crossref_primary_10_3390_agriculture13101983
crossref_primary_10_1016_j_trac_2025_118142
crossref_primary_10_1080_15320383_2021_1963211
crossref_primary_10_1080_17480272_2022_2039960
crossref_primary_10_1016_j_gexplo_2017_06_020
crossref_primary_10_3390_math13010099
crossref_primary_10_2139_ssrn_3981248
crossref_primary_10_1177_09670335241269168
crossref_primary_10_3390_rs15041106
crossref_primary_10_3390_min10020089
crossref_primary_10_1016_j_scitotenv_2024_172741
crossref_primary_10_3390_agriengineering3010005
crossref_primary_10_1016_j_geoderma_2019_07_033
crossref_primary_10_1016_j_infrared_2022_104170
crossref_primary_10_3390_rs13224615
crossref_primary_10_1080_19475683_2024_2309868
crossref_primary_10_3390_toxics11030268
crossref_primary_10_1007_s11694_022_01717_3
crossref_primary_10_3390_land12091789
crossref_primary_10_3390_rs14122917
crossref_primary_10_1186_s43141_021_00251_x
crossref_primary_10_1016_j_compag_2025_110214
crossref_primary_10_3390_rs14041008
crossref_primary_10_1007_s40808_016_0259_7
crossref_primary_10_3389_fpls_2020_00755
crossref_primary_10_1088_1742_6596_1840_1_012011
crossref_primary_10_3390_rs10081172
crossref_primary_10_3389_fsoil_2024_1364426
crossref_primary_10_3390_en15207557
crossref_primary_10_1016_j_saa_2023_122653
crossref_primary_10_3390_toxics12070467
crossref_primary_10_1007_s12145_023_01168_4
crossref_primary_10_1007_s11629_019_5789_9
crossref_primary_10_1016_j_geoderma_2020_114875
crossref_primary_10_3390_rs12233850
crossref_primary_10_3390_rs9101078
crossref_primary_10_1016_j_stress_2024_100615
crossref_primary_10_1111_ijfs_13232
crossref_primary_10_17221_107_2016_SWR
crossref_primary_10_3390_rs12203394
crossref_primary_10_3390_math6120330
crossref_primary_10_1080_00450618_2021_1892187
crossref_primary_10_1007_s12665_023_11073_0
crossref_primary_10_3389_fpls_2022_940327
crossref_primary_10_1016_j_saa_2022_120949
crossref_primary_10_3390_app9050916
crossref_primary_10_1016_j_scitotenv_2018_12_458
crossref_primary_10_1080_02757540_2022_2119960
crossref_primary_10_3390_rs9111099
crossref_primary_10_1007_s11368_023_03480_4
crossref_primary_10_1016_j_chemolab_2021_104445
crossref_primary_10_3390_app9091943
crossref_primary_10_1007_s10812_023_01491_0
crossref_primary_10_3390_land12010044
crossref_primary_10_1016_j_algal_2025_104009
crossref_primary_10_1016_j_compag_2024_109101
crossref_primary_10_1016_j_geoderma_2021_115512
crossref_primary_10_1016_j_still_2017_09_006
crossref_primary_10_1016_j_vibspec_2018_05_002
crossref_primary_10_1111_jfpp_15576
crossref_primary_10_3390_land10010063
crossref_primary_10_1111_jfpe_13092
crossref_primary_10_3390_s24175612
crossref_primary_10_1007_s10712_019_09524_0
Cites_doi 10.1016/j.geoderma.2009.11.032
10.1029/JB095iB08p12653
10.1109/87.974338
10.2134/agronmonogr44.c6
10.1002/jsfa.2740360906
10.1016/S0003-2670(03)00331-3
10.1016/S1002-0160(09)60167-3
10.1016/j.trac.2009.07.007
10.1016/j.geoderma.2012.07.020
10.1097/00010694-199703000-00007
10.1016/j.geoderma.2009.04.005
10.1016/j.geoderma.2009.12.025
10.1016/S0003-2670(01)01265-X
10.1366/0003702904086821
10.1016/j.apgeochem.2005.01.009
10.1016/j.geoderma.2008.04.007
10.1366/13-07288
10.1016/S1002-0160(12)60022-8
10.1016/S0034-4257(99)00110-8
10.1021/ac60214a047
10.1371/journal.pone.0117457
10.1016/j.clay.2011.09.010
10.1016/S0169-2046(00)00099-2
10.1007/s12034-007-0042-5
10.1016/j.jpba.2011.10.020
10.1029/JB089iB07p06329
10.1016/j.gexplo.2011.11.004
10.2136/sssaj1986.03615995005000010023x
10.1016/S0034-4257(96)00120-4
10.1346/000986002760832801
10.1021/es9005898
10.2136/sssaj1995.03615995005900020014x
10.6090/jarq.45.63
10.1007/978-1-4757-2440-0
10.1016/S0034-4257(02)00133-5
10.1346/CCMN.2001.0490508
10.1016/j.scitotenv.2008.12.047
10.1016/S0959-1524(02)00068-9
10.1021/es015747j
ContentType Journal Article
Copyright 2015. This work is published under https://www.agriculturejournals.cz/web/about/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2015. This work is published under https://www.agriculturejournals.cz/web/about/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.17221/113/2015-SWR
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1805-9384
EndPage 227
ExternalDocumentID oai_doaj_org_article_a153e54c482040b58289201f893e053f
10_17221_113_2015_SWR
GroupedDBID 4P2
5UV
5VS
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DYU
EBD
ECGQY
EOJEC
GROUPED_DOAJ
HCIFZ
KQ8
M7P
OBODZ
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PYCSY
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c370t-ff4f202c5b86616a4c2ed6f51f5f7dcb71354066abd8cb8d78a732d67f614e883
IEDL.DBID BENPR
ISSN 1801-5395
IngestDate Wed Aug 27 01:09:29 EDT 2025
Fri Jul 25 09:43:47 EDT 2025
Wed Jul 16 16:48:54 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-ff4f202c5b86616a4c2ed6f51f5f7dcb71354066abd8cb8d78a732d67f614e883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2507344990?pq-origsite=%requestingapplication%
PQID 2507344990
PQPubID 5009630
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a153e54c482040b58289201f893e053f
proquest_journals_2507344990
crossref_citationtrail_10_17221_113_2015_SWR
crossref_primary_10_17221_113_2015_SWR
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Prague
PublicationPlace_xml – name: Prague
PublicationTitle Soil and water research
PublicationYear 2015
Publisher Czech Academy of Agricultural Sciences (CAAS)
Czech Academy of Agricultural Sciences
Publisher_xml – name: Czech Academy of Agricultural Sciences (CAAS)
– name: Czech Academy of Agricultural Sciences
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
White (ref43) 1971; 56
ref11
ref33
ref10
ref0
ref2
ref1
Meyer (ref25) 2012
ref39
ref16
ref38
ref19
ref18
Reeves III (ref34) 2002; 10
Ji (ref17) 2012; 32
ref24
ref46
ref23
ref45
ref26
ref20
ref42
ref41
ref22
ref21
ref28
ref29
ref7
ref9
ref4
ref3
ref6
ref5
Murray (ref27) 1988
ref40
Chu (ref8) 2004; 16
References_xml – ident: ref39
  doi: 10.1016/j.geoderma.2009.11.032
– ident: ref10
  doi: 10.1029/JB095iB08p12653
– ident: ref31
  doi: 10.1109/87.974338
– ident: ref12
  doi: 10.2134/agronmonogr44.c6
– ident: ref24
  doi: 10.1002/jsfa.2740360906
– ident: ref21
  doi: 10.1016/S0003-2670(03)00331-3
– ident: ref35
  doi: 10.1016/S1002-0160(09)60167-3
– ident: ref36
  doi: 10.1016/j.trac.2009.07.007
– volume-title: e1071: Misc Functions of the Department of Statistics (e1071), R Package Version 1
  year: 2012
  ident: ref25
– ident: ref30
  doi: 10.1016/j.geoderma.2012.07.020
– ident: ref5
  doi: 10.1097/00010694-199703000-00007
– ident: ref33
  doi: 10.1016/j.geoderma.2009.04.005
– ident: ref42
  doi: 10.1016/j.geoderma.2009.12.025
– ident: ref20
  doi: 10.1016/S0003-2670(01)01265-X
– ident: ref0
  doi: 10.1366/0003702904086821
– volume-title: Analytical Application of Spectroscopy
  year: 1988
  ident: ref27
  article-title: Aspects of interpretation of NIR spectra
– ident: ref45
  doi: 10.1016/j.apgeochem.2005.01.009
– volume: 32
  start-page: 2393
  year: 2012
  ident: ref17
  article-title: Using different data mining algorithms to predict soil organic matter based on visible near infrared spectroscopy
  publication-title: Spectroscopy and Spectral Analysis
– ident: ref41
  doi: 10.1016/j.geoderma.2008.04.007
– volume: 10
  start-page: 1
  year: 2002
  ident: ref34
  article-title: Spectroscopic calibrations for the determination of C in soils. Transactions of the 17th World Congress of
  publication-title: Soil Science
– volume: 16
  start-page: 528
  year: 2004
  ident: ref8
  article-title: Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique
  publication-title: Progress in Chemistry
– ident: ref13
  doi: 10.1366/13-07288
– ident: ref46
  doi: 10.1016/S1002-0160(12)60022-8
– ident: ref22
  doi: 10.1016/S0034-4257(99)00110-8
– ident: ref37
  doi: 10.1021/ac60214a047
– ident: ref14
  doi: 10.1371/journal.pone.0117457
– ident: ref38
  doi: 10.1016/j.clay.2011.09.010
– ident: ref4
  doi: 10.1016/S0169-2046(00)00099-2
– ident: ref28
  doi: 10.1007/s12034-007-0042-5
– ident: ref6
  doi: 10.1016/j.jpba.2011.10.020
– ident: ref9
  doi: 10.1029/JB089iB07p06329
– ident: ref3
  doi: 10.1016/j.gexplo.2011.11.004
– ident: ref11
  doi: 10.2136/sssaj1986.03615995005000010023x
– ident: ref2
  doi: 10.1016/S0034-4257(96)00120-4
– ident: ref16
  doi: 10.1346/000986002760832801
– volume: 56
  start-page: 46
  year: 1971
  ident: ref43
  article-title: Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals
  publication-title: American Mineralogist
– ident: ref26
  doi: 10.1021/es9005898
– ident: ref1
  doi: 10.2136/sssaj1995.03615995005900020014x
– ident: ref15
  doi: 10.6090/jarq.45.63
– ident: ref40
  doi: 10.1007/978-1-4757-2440-0
– ident: ref19
  doi: 10.1016/S0034-4257(02)00133-5
– ident: ref23
  doi: 10.1346/CCMN.2001.0490508
– ident: ref29
  doi: 10.1016/j.scitotenv.2008.12.047
– ident: ref7
  doi: 10.1016/S0959-1524(02)00068-9
– ident: ref18
  doi: 10.1021/es015747j
SSID ssj0001920380
ssib044761328
Score 2.3870113
Snippet The lands near mining industries in the Czech Republic are subjected to soil pollution with heavy metals. Excessive heavy metal concentrations in soils not...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 218
SubjectTerms Algorithms
Cadmium
Calibration
Chromium
Copper
Environmental monitoring
Food chains
Heavy metals
Infrared spectra
Lead
Manganese
Metal concentrations
Metals
Monitoring methods
Multivariate analysis
Near infrared radiation
Nondestructive testing
Preprocessing
Reflectance
Remote sensing
Soil environment
Soil pollution
Soil quality
Spatial data
Spectroscopy
Spectrum analysis
support vector machine regression
Support vector machines
Time measurement
visible-near infrared spectroscopy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXyUE8WbbNo-keVRTx4EFd9FbyFEW7y3YV_PfOpO2yIuLFa5O2YTLJN9NOvo-QIy-0lzqwZBiChARF6cRkOSSuw2ACswByLhbI3uRXI3H9KB8XpL6wJqyhB24MN9CwJL0UVgBUidTgX54hgFYAnEVVg4C7L2DeQjIFniQEZOcdC81LE8ekPMqoZbAlJ5IPZUu4qRjLBlnGB_BQmdw93H4DqMjj_2ObjthzuU7W2qCRnjaD3SBLvtokq6dP05Y4w2-R8XkjKFg90U7zZEax_JNOkLcyngbAxkYxuqYQq9K3uJ7jPfX4-ZXCvvzxiT3AJSnCm6PjqmmKBzKnMIbgIxNovU1Glxf351dJK6aQWK7SWRKCCCxlVpoCIDnXwjLv8iCzIINy1qBUH4B7ro0rrCmcKrTizOUqAID7ouA7ZLkaV36X0EK7wmepNYJbgcVUeWqcdV7pzEnHQo-cdBYsbcs0joIXryVmHGhwyDt4iQYvweA9cjzvPmkoNn7reIbTMe-EzNjxAvhL2fpL-Ze_9Ei_m8yyXa51CXGg4gKSv3TvP96xT1aiN8UvNX2yPJu--wOIXWbmMLrpF_1R6Kg
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features
URI https://www.proquest.com/docview/2507344990
https://doaj.org/article/a153e54c482040b58289201f893e053f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcChKi9RWiofECeijV-x91S1VauKQ4UKK8op8nMFKsmy2Vbi3zPjOEUIwSWH2JEiezzfjD3-PkLeRGmjsolX85QUJCjaVo41kLjOk0vcA8iFXCB72Vws5PtrdV023IZSVjn5xOyoQ-9xj3wGUK2FhPi8Plr9qFA1Ck9Xi4TGQ7INLthA8rV9cnb54WqyKCkhS5_YaL6N8UwtspwaA9dcKTFXhXhTc85mjIkZIKKqPn6--gOoMp__X-46Y9D5LtkpwSM9Hmf7CXkQu6fk8fFyXQg04jPSn47Cgt2STtonG4ploHSF_JX5VgA2jsrRA4WYlX7P6zp_M_Rfbyj457uf2ANMkyLMBdp3Y1O-mLmGf0gxM4IOz8ni_OzT6UVVRBUqL3S9qVKSidfcK2cAmhsrPY-hSYollXTwDiX7AOQb64LxzgRtrBY8NDoBkEdjxAuy1fVdfEmoscFEVnsnhZdYVNXULvgQtWVBBZ72yLtpBFtfGMdR-OKmxcwDBxzyD9HigLcw4Hvk7X331Ui18a-OJzgd952QITu_6NfLtiy41oIrj0p6CSGOrB2eDsLcswTxGaphwM8dTJPZlmU7tL-N7NX_m_fJo2wneS_mgGxt1rfxNUQnG3dYTPAwZ_f4_LL4BQnG5WU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE9RKOADcCLaJLbj7AGhtrTa0rJCpRW9GT9XoJIsmwXUP8VvZMZxihCCW6-xE1kz4_lm4vF8hDz1XHuhQ5lNQhCQoEidmaKCxHUSTCgtgJyLBbKzanrC35yK0zXyc7gLg2WVg0-Mjtq1Fv-RjwGqJeMQn-evFl8zZI3C09WBQqM3iwN__gNStu7l_mvQ77Oy3Ns93plmiVUgs0zmqywEHiDjt8LUgE2V5rb0rgqiCCJIZw1y1gHKVdq42prayVpLVrpKBkAyX9cMvnuFrHMGqcyIrG_vzt4dDRbMuQR4TAH95z5-ylmkbysACjLBJiI1-pRlWYyLgo0BgUX2_sPRH8AY-QP-goeIeXs3yY0UrNKt3rpukTXf3CbXt-bL1LDD3yHtTk9k2MzpwLWyolh2ShfYLzPeQsDBnqm6oxAj0y_Rj8R3uvbTGQU8-H6OM2ArUIRVR9umH4oXQZewhuBjB9LuLjm5FHHfI6Ombfx9Qmvtal_k1nBmORZxVblx1nmpCydcGTbIi0GCyqYO50i0caYw00GBQ77DFApcgcA3yPOL6Yu-tce_Jm6jOi4mYUfu-KBdzlXa4EoDdHjBLYeQiucGTyNB90WAeBDZN2Bxm4MyVXITnfpt1A_-P_yEXJ0evz1Uh_uzg4fkWrSZ-B9ok4xWy2_-EURGK_M4mSMlHy97B_wCGt4gkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+different+data+preprocessing+methods+for+monitoring+soil+heavy+metals+based+on+soil+spectral+features&rft.jtitle=Soil+and+water+research&rft.au=Gholizadeh%2C+A&rft.au=Bor%C5%AFvka%2C+L&rft.au=Saberioon%2C+M+M&rft.au=Koz%C3%A1k%2C+J&rft.date=2015-01-01&rft.pub=Czech+Academy+of+Agricultural+Sciences+%28CAAS%29&rft.issn=1801-5395&rft.eissn=1805-9384&rft.volume=10&rft.issue=4&rft.spage=218&rft_id=info:doi/10.17221%2F113%2F2015-SWR
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1801-5395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1801-5395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1801-5395&client=summon