Screening and Testing for Endocrine Disruption in Fish—Biomarkers As “Signposts,” Not “Traffic Lights,” in Risk Assessment
Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful too...
Saved in:
Published in | Environmental health perspectives Vol. 114; no. Suppl 1; pp. 106 - 114 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Institute of Environmental Health Sciences
01.04.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs. |
---|---|
AbstractList | Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs. Biomarkers are currently best used as mechanistic “signposts” rather than as “traffic lights” in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverse NOEC (no observed effect oncentration) or adverse EC 10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarker NOEC or biomarker EC 10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38–55% (comparable to published CVs of 19–58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the “biomarkers as signposts” approach is a pragmatic way forward in the current risk assessment of EDCs. Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs. |
Author | Segner, Helmut Tyler, Charles R. Hutchinson, Thomas H. Ankley, Gerald T. |
AuthorAffiliation | 1 AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, United Kingdom 4 School of Biological Sciences, University of Exeter, United Kingdom 2 National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota, USA 3 Centre for Fish and Wildlife Health, University of Bern, Switzerland |
AuthorAffiliation_xml | – name: 4 School of Biological Sciences, University of Exeter, United Kingdom – name: 3 Centre for Fish and Wildlife Health, University of Bern, Switzerland – name: 1 AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, United Kingdom – name: 2 National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota, USA |
Author_xml | – sequence: 1 givenname: Thomas H. surname: Hutchinson fullname: Hutchinson, Thomas H. organization: AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, United Kingdom – sequence: 2 givenname: Gerald T. surname: Ankley fullname: Ankley, Gerald T. organization: National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota, USA – sequence: 3 givenname: Helmut surname: Segner fullname: Segner, Helmut organization: Centre for Fish and Wildlife Health, University of Bern, Switzerland – sequence: 4 givenname: Charles R. surname: Tyler fullname: Tyler, Charles R. organization: School of Biological Sciences, University of Exeter, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16818255$$D View this record in MEDLINE/PubMed |
BookMark | eNplkc1u1DAUhS1URKcFiSdAXiEWZLCd2LE3SKW0gDQCiQ5ry3GcGdOMnfpmkNjNgkdgCS83T4KjDv8rW77fPef6nhN0FGJwCD2kZE6ZVM_cephLItgdNKOcs0IpVh2hGSGKFqIW_BidAHwkhFApxD10TIWkknE-Q1-ubHIu-LDCJrR46WCc7l1M-CK00SYfHH7pIW2H0ceAfcCXHtb73dcXPm5MunYJ8Bng_e7blV-FIcIIT_e77_htHKfHZTJd5y1e-NX6UMkS7z1c5y5wABsXxvvobmd6cA8O5yn6cHmxPH9dLN69enN-tihsWZOx6FpqrWWMNa1qSFM5ozophXGUKVWVdSlVJdtalrymxnS2cY7SKhe4EVVDy_IUPb_VHbbNxrU2WyfT6yH5_JPPOhqv_64Ev9ar-ElTWVdU0izw-CCQ4s0270pvPFjX9ya4uAUtpCCq4jyDj_50-mXxc_EZeHIL2BQBkut-I0RPmeqcqZ4yzej8H9T60Uxp5Bl9_3_DD882qtY |
CitedBy_id | crossref_primary_10_1016_j_aquatox_2018_01_019 crossref_primary_10_1016_j_scitotenv_2021_146087 crossref_primary_10_1016_j_envres_2024_119844 crossref_primary_10_1016_j_aquatox_2019_03_021 crossref_primary_10_1002_etc_2006 crossref_primary_10_1177_009286150704100213 crossref_primary_10_1002_etc_3336 crossref_primary_10_1007_s11356_021_14136_6 crossref_primary_10_1016_j_scitotenv_2023_165958 crossref_primary_10_1002_etc_3456 crossref_primary_10_1016_j_aquaculture_2018_10_066 crossref_primary_10_1016_j_aquatox_2008_07_018 crossref_primary_10_1016_j_chemosphere_2014_04_073 crossref_primary_10_1016_j_aquatox_2008_11_009 crossref_primary_10_1016_j_scitotenv_2018_07_252 crossref_primary_10_1016_j_aquatox_2014_01_009 crossref_primary_10_1002_etc_1966 crossref_primary_10_1002_jat_4437 crossref_primary_10_3390_agriculture5030697 crossref_primary_10_1897_06_318R_1 crossref_primary_10_1016_j_envpol_2017_09_057 crossref_primary_10_5402_2012_942804 crossref_primary_10_1002_etc_4555 crossref_primary_10_3390_ani14091296 crossref_primary_10_1007_s11356_023_30721_3 crossref_primary_10_1016_j_jsbmb_2019_105448 crossref_primary_10_1186_gb_2008_9_2_r40 crossref_primary_10_1016_j_chemosphere_2010_11_011 crossref_primary_10_1016_j_chemosphere_2018_04_068 crossref_primary_10_2139_ssrn_4156481 crossref_primary_10_3390_su14095597 crossref_primary_10_1002_etc_5640 crossref_primary_10_1007_s11356_021_16778_y crossref_primary_10_1016_j_aaf_2020_07_013 crossref_primary_10_1016_j_etap_2016_09_018 crossref_primary_10_1016_j_marpolbul_2011_10_005 crossref_primary_10_1371_journal_pone_0075553 crossref_primary_10_1016_j_taap_2009_04_004 crossref_primary_10_3390_app10051737 crossref_primary_10_1002_etc_1976 crossref_primary_10_1002_etc_2708 crossref_primary_10_1016_j_envpol_2007_07_018 crossref_primary_10_1111_j_1749_6632_2009_04453_x crossref_primary_10_1093_toxsci_kfn030 crossref_primary_10_1002_etc_3475 crossref_primary_10_1002_etc_3239 crossref_primary_10_1016_j_aquatox_2007_10_011 crossref_primary_10_1016_j_ygcen_2009_02_013 crossref_primary_10_1007_s11356_015_5565_5 crossref_primary_10_3109_10408444_2012_692114 crossref_primary_10_1016_j_ecoenv_2011_07_036 crossref_primary_10_1111_raq_12369 crossref_primary_10_1016_j_cbpc_2022_109531 crossref_primary_10_1016_j_ecoenv_2021_113102 crossref_primary_10_3390_su9101734 crossref_primary_10_1111_brv_12589 crossref_primary_10_1139_S08_011 crossref_primary_10_1007_s40264_013_0049_3 crossref_primary_10_1002_aheh_200400550 crossref_primary_10_1016_j_ecoenv_2016_08_002 crossref_primary_10_1016_j_marenvres_2017_04_006 crossref_primary_10_1002_bdrb_21096 crossref_primary_10_1007_s00441_007_0543_y crossref_primary_10_2108_zsj_26_870 crossref_primary_10_1016_j_ecoenv_2012_08_010 crossref_primary_10_1016_j_toxlet_2011_01_016 crossref_primary_10_1111_j_1863_2378_2009_01309_x crossref_primary_10_1007_s00128_016_1731_9 crossref_primary_10_1021_acs_est_5b03849 crossref_primary_10_1021_acsestwater_1c00252 crossref_primary_10_1897_08_082_1 crossref_primary_10_1016_j_envres_2020_110125 crossref_primary_10_1016_j_fsi_2017_07_001 crossref_primary_10_1897_07_482_1 crossref_primary_10_3389_fendo_2020_619361 crossref_primary_10_1007_s10646_014_1244_4 crossref_primary_10_1897_IEAM_2009_044_1 crossref_primary_10_1002_ieam_43 crossref_primary_10_1016_j_aquatox_2011_06_016 crossref_primary_10_1016_j_scitotenv_2016_11_021 crossref_primary_10_1289_ehp_8046 crossref_primary_10_3390_md12084474 crossref_primary_10_1016_j_aquatox_2011_02_019 crossref_primary_10_1093_toxsci_kfu200 crossref_primary_10_1016_j_aquatox_2014_04_026 crossref_primary_10_1111_j_1095_8649_2010_02605_x crossref_primary_10_1016_j_anbehav_2013_10_032 crossref_primary_10_1016_j_ygcen_2015_01_013 crossref_primary_10_1016_j_chemosphere_2019_124943 crossref_primary_10_1016_j_ecoenv_2013_11_005 crossref_primary_10_1007_s10661_011_2266_5 crossref_primary_10_1016_j_etap_2009_03_011 crossref_primary_10_1016_j_cbpc_2009_10_003 crossref_primary_10_1016_j_scitotenv_2015_09_061 crossref_primary_10_1016_j_ecoenv_2016_09_022 crossref_primary_10_1016_j_watres_2016_05_079 crossref_primary_10_1016_j_ecoenv_2006_02_011 crossref_primary_10_1021_acs_est_8b00569 crossref_primary_10_1016_j_ygcen_2008_10_025 crossref_primary_10_1016_j_aquatox_2019_105290 crossref_primary_10_1016_j_marpolbul_2020_111931 crossref_primary_10_1016_j_aquatox_2015_05_002 crossref_primary_10_1007_s00343_018_7100_2 crossref_primary_10_1897_IEAM_2008_092_1 crossref_primary_10_1139_er_2013_0047 crossref_primary_10_1016_j_aquatox_2023_106677 crossref_primary_10_1038_s41598_017_01935_6 crossref_primary_10_1016_j_aquatox_2010_12_008 crossref_primary_10_1016_j_marpolbul_2019_06_044 crossref_primary_10_1021_acs_estlett_8b00486 crossref_primary_10_1080_10937404_2011_578558 crossref_primary_10_1016_j_jes_2021_11_012 crossref_primary_10_1021_tx100167x crossref_primary_10_1016_j_yrtph_2012_06_013 crossref_primary_10_1002_etc_3799 crossref_primary_10_1002_etc_5732 crossref_primary_10_1016_j_cbpc_2016_02_002 crossref_primary_10_1016_j_envpol_2019_02_056 crossref_primary_10_1016_j_ygcen_2013_08_014 crossref_primary_10_1016_j_ygcen_2012_06_004 crossref_primary_10_1016_j_ecoenv_2021_112698 crossref_primary_10_1007_s11430_012_4426_z crossref_primary_10_1021_es800633q crossref_primary_10_1186_2190_4715_25_10 crossref_primary_10_1007_s00216_007_1808_8 crossref_primary_10_3109_10408444_2015_1018409 crossref_primary_10_1002_etc_1825 crossref_primary_10_1007_s11356_013_1817_4 crossref_primary_10_3390_app11041837 crossref_primary_10_1016_j_chemosphere_2019_124970 crossref_primary_10_1016_j_aquatox_2024_107000 crossref_primary_10_1016_j_aquatox_2015_05_019 crossref_primary_10_1021_envhealth_4c00235 crossref_primary_10_1016_j_envpol_2019_07_082 crossref_primary_10_1016_j_yrtph_2014_05_021 crossref_primary_10_1016_j_aquatox_2024_107008 crossref_primary_10_1007_s11270_016_2748_8 crossref_primary_10_1002_dvdy_24579 crossref_primary_10_1016_j_aquatox_2016_03_022 crossref_primary_10_1016_j_aquatox_2015_01_018 crossref_primary_10_1002_etc_4024 crossref_primary_10_1139_F09_125 crossref_primary_10_1016_j_chemosphere_2011_07_048 crossref_primary_10_1039_C0EM00102C crossref_primary_10_2134_jeq2017_01_0012 crossref_primary_10_1016_j_aquatox_2014_11_022 crossref_primary_10_1016_j_etap_2022_104042 crossref_primary_10_1016_j_envpol_2011_11_036 crossref_primary_10_1002_ieam_92 crossref_primary_10_1016_j_steroids_2015_06_011 crossref_primary_10_1093_biolre_ioac001 crossref_primary_10_1155_2020_1309183 crossref_primary_10_1002_ieam_1268 crossref_primary_10_1016_j_cej_2023_144447 crossref_primary_10_1021_acs_est_7b00498 crossref_primary_10_1016_j_chemosphere_2015_09_106 crossref_primary_10_1016_j_chemosphere_2020_127221 crossref_primary_10_1016_j_aquatox_2023_106511 crossref_primary_10_1016_j_tice_2019_101327 crossref_primary_10_1021_es9039049 crossref_primary_10_1016_j_aquatox_2016_06_010 crossref_primary_10_1007_s10646_010_0533_9 crossref_primary_10_1021_es404027n crossref_primary_10_1016_j_scitotenv_2015_11_102 crossref_primary_10_1021_es304345s crossref_primary_10_1016_j_aquatox_2008_08_002 crossref_primary_10_1111_brv_13154 crossref_primary_10_1093_toxsci_kfu064 crossref_primary_10_1007_s10661_016_5292_5 crossref_primary_10_1016_j_cbpc_2007_09_005 crossref_primary_10_1111_raq_12402 crossref_primary_10_1016_j_mrgentox_2007_01_010 crossref_primary_10_1016_j_jhazmat_2023_131493 crossref_primary_10_1016_j_envint_2020_105836 crossref_primary_10_1038_srep20884 crossref_primary_10_1016_j_jhazmat_2024_135379 crossref_primary_10_1002_ieam_4561 crossref_primary_10_1080_10934529_2023_2273690 crossref_primary_10_1016_j_mce_2008_06_008 crossref_primary_10_1897_05_646R1_1 crossref_primary_10_1002_etc_3526 crossref_primary_10_1016_j_scitotenv_2024_174789 crossref_primary_10_1016_j_envint_2022_107536 crossref_primary_10_1016_j_chemosphere_2019_124414 crossref_primary_10_1016_j_chemosphere_2010_01_055 crossref_primary_10_1080_10408444_2017_1367756 crossref_primary_10_1016_j_aquatox_2013_05_017 crossref_primary_10_1016_j_chemosphere_2018_12_100 crossref_primary_10_1016_j_cbpc_2008_10_099 crossref_primary_10_1021_es5051343 crossref_primary_10_1289_ehp_0901107 crossref_primary_10_1016_j_cbpc_2015_10_013 crossref_primary_10_1016_j_chemosphere_2013_01_102 crossref_primary_10_1016_j_aquatox_2008_04_009 crossref_primary_10_1016_j_jhazmat_2020_124135 crossref_primary_10_1111_brv_12360 crossref_primary_10_1002_etc_3259 crossref_primary_10_1098_rstb_2013_0569 crossref_primary_10_1016_j_envres_2020_109310 crossref_primary_10_1016_j_ecoenv_2022_113446 crossref_primary_10_1039_c1em10298b crossref_primary_10_1007_s12302_009_0072_2 crossref_primary_10_1016_j_chemosphere_2019_03_007 crossref_primary_10_1093_toxsci_kft067 crossref_primary_10_1016_j_yrtph_2019_104424 crossref_primary_10_1897_08_126_1 crossref_primary_10_1007_s11356_013_1667_0 crossref_primary_10_1016_j_aquatox_2010_07_003 crossref_primary_10_1016_j_etap_2012_02_007 crossref_primary_10_3390_fishes7040189 crossref_primary_10_1016_j_jhazmat_2023_130832 crossref_primary_10_1007_s11356_017_8993_6 crossref_primary_10_1016_j_sjbs_2017_10_004 crossref_primary_10_1007_s10641_012_0064_8 crossref_primary_10_1016_j_chemosphere_2017_05_063 crossref_primary_10_1002_etc_2503 crossref_primary_10_1002_jat_3014 crossref_primary_10_1002_tox_22371 crossref_primary_10_1080_03067319_2015_1048434 crossref_primary_10_1007_s11356_015_5101_7 crossref_primary_10_1016_j_aquatox_2006_01_018 crossref_primary_10_1039_C8EN00174J crossref_primary_10_1002_etc_4921 crossref_primary_10_1021_es204590d crossref_primary_10_1016_j_ecoenv_2020_111566 crossref_primary_10_1021_es403781z crossref_primary_10_3389_fenvs_2022_1027062 crossref_primary_10_1016_j_scitotenv_2021_150959 crossref_primary_10_1080_10807039_2010_512254 crossref_primary_10_3390_w13101347 crossref_primary_10_1016_j_jhazmat_2022_130525 crossref_primary_10_1016_j_yrtph_2018_09_002 crossref_primary_10_1007_s10646_006_0107_z crossref_primary_10_1016_j_cbpc_2017_06_002 crossref_primary_10_1016_j_envpol_2014_03_006 crossref_primary_10_1016_j_etap_2016_04_014 crossref_primary_10_1002_etc_660 crossref_primary_10_1016_j_cbpc_2008_05_017 crossref_primary_10_1371_journal_pone_0196425 crossref_primary_10_1016_j_tiv_2014_05_002 |
Cites_doi | 10.1007/s00216-003-2241-2 10.1016/S0166-445X(03)00134-6 10.1023/A:1008992932155 10.1677/joe.0.1580259 10.1016/S0166-445X(02)00060-7 10.1016/S1532-0456(03)00006-1 10.1086/409052 10.1016/j.aquatox.2003.09.004 10.1002/etc.5620210412 10.1016/S0166-445X(99)00084-3 10.1289/ehp.6862 10.1006/gcen.2001.7743 10.1021/es020086r 10.1016/S1873-0140(05)80019-0 10.1016/S0166-445X(01)00238-7 10.1016/j.ecoenv.2003.07.019 10.1007/s002440010272 10.1289/ehp.99107349 10.1016/S1532-0456(02)00111-4 10.1002/etc.5620210822 10.1016/j.ecoenv.2004.05.005 10.1021/es991292a 10.1016/S1382-6689(02)00126-6 10.2307/1444443 10.1016/j.aquatox.2003.10.008 10.1080/01926230252824716 10.1002/etc.5620201122 10.1016/S1096-4959(03)00228-8 10.1023/A:1022527432252 10.1007/BF01701871 10.1016/S0141-1136(99)00047-1 10.1023/B:ECTX.0000003030.67752.04 10.1289/ehp.99107s4613 10.1021/es0488939 10.1002/etc.5620220431 10.1289/ehp.001081007 10.1021/es049771j 10.1248/jhs.50.301 10.1023/A:1021053217513 10.1021/es015848h 10.1016/S0166-445X(02)00011-5 10.1016/S0300-483X(03)00340-8 10.1289/ehp.97105418 10.1095/biolreprod43.2.202 10.1046/j.1095-8649.2003.00074.x 10.1016/j.marpolbul.2004.02.032 10.1289/ehp.8050 10.1351/pac200375112335 10.1016/S1532-0456(01)00194-6 10.1016/S0378-4274(02)00070-X 10.1139/f92-242 10.1093/toxsci/67.1.121 10.1016/S1096-4959(01)00319-0 10.1016/j.aquatox.2003.06.004 10.1002/etc.5620200930 10.1080/10408449891344236 10.1007/s004380000247 10.2331/fishsci.68.sup1_694 10.1016/S0147-6513(02)00040-4 10.1002/etc.5620200616 10.1016/S0303-7207(96)03960-3 10.1023/A:1008972330318 10.1095/biolreprod.105.039701 10.1016/S0166-445X(03)00177-2 10.1093/toxsci/62.2.257 10.1016/S0166-445X(98)00112-X 10.1021/es010186h 10.1016/0044-8486(88)90156-1 10.1002/etc.5620210213 10.1002/dvdy.10366 10.1016/j.jtbi.2003.10.010 10.1016/S0378-4274(02)00043-7 10.1016/S0166-445X(02)00049-8 10.1002/etc.5620200610 10.1080/10408440091159176 10.1016/S1532-0456(00)00185-X 10.1093/mutage/5.2.159 10.1016/j.ygcen.2003.10.004 10.1002/etc.5620210924 10.1080/713609966 10.1289/ehp.961041096 10.1080/01926230252824725 10.1080/15287390490253633 10.1021/es9710870 10.1016/S0303-7207(02)00305-2 10.1002/etc.5620220623 10.1016/S0166-445X(99)00076-4 10.1080/20018091094835 10.1002/etc.5620170113 10.1016/0043-1354(88)90026-7 10.1289/ehp.95103s7173 10.1016/S0166-445X(00)00090-4 10.1006/eesa.2002.2172 10.1897/03-31 10.1016/0166-445X(88)90015-X 10.1093/nar/gkg017 10.1897/04-096R1.1 10.1016/S0303-7207(03)00118-7 10.1289/ehp.7209 10.1002/etc.5620191128 10.2307/1312253 10.1023/A:1007754123787 |
ContentType | Journal Article |
Copyright | This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI 2006 |
Copyright_xml | – notice: This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI 2006 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1289/ehp.8062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1552-9924 |
EndPage | 114 |
ExternalDocumentID | PMC1874181 16818255 10_1289_ehp_8062 |
Genre | Journal Article Comparative Study Review |
GroupedDBID | --- -~X .GJ 04C 29G 2WC 2XV 36B 3O- 42X 4P2 53G 5GY 5RE 5VS 6PF 7RV 7WY 7X7 7XC 85S 88E 8AO 8C1 8FE 8FG 8FH 8FI 8FJ 8FL 8G5 8R4 8R5 9K5 AACGO AAFWJ AANCE AAWTL AAYXX ABBHK ABDBF ABJCF ABOCM ABPLY ABPPZ ABTLG ABUWG ABXSQ ACGFO ACHIC ACIHN ACIWK ACNCT ACPRK ACUHS ADBBV ADOJX ADQXQ ADRAZ ADULT AEAQA AENEX AEUPB AEUYN AEXZC AFKRA AFPKN AFRAH AGNAY AHDLI AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 ANHSF AOIJS AQVQM AS~ ATCPS AXR AZQEC B0M BAWUL BCNDV BENPR BES BEZIV BGLVJ BHPHI BKEYQ BKNYI BMSDO BNQBC BPHCQ BVXVI C1A CCPQU CITATION CS3 DCCCD DIK DU5 DWQXO E3Z EAD EAP EAS EBC EBD EBS EBX ECF ECGQY ECT EDH EHB EHC EHE EHN EIHBH EJD EMB EMK EMOBN EPL EPT ESX EX3 F5P F8P FRNLG FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HGD HMCUK HQ3 HTVGU HYE I-F IAG IAO IEA IEP IER IHR IHW INH INR IOF IOV IPO IPSME ISR ITC JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K60 K6~ K9- KQ8 L6V M0C M0R M1P M2O M48 M7S NAPCQ NEJ O5R O5S OK1 OVT P2P PATMY PCD PGMZT PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC PSQYO PTHSS PV9 PYCSY Q2X QF4 QM9 QN7 QO4 Q~Q REH RGD RNS RPM RWL RZL S0X SA0 SJN SV3 TAE TAN TR2 TUS U5U UDP UGJ UKHRP WH7 WOQ WOW WQ9 XSB YR5 ZAC ZE2 ZGI ~02 ~8M ~KM 3V. ADZLD CGR CUY CVF DOOOF ECM EIF EQZMY JSODD M~E NPM PKN 7X8 PPXIY PQGLB 5PM PJZUB |
ID | FETCH-LOGICAL-c370t-fd1ccc222bd9b0b4ea9f886ae129943738948d783571aafcbee1144375a64b133 |
IEDL.DBID | M48 |
ISSN | 0091-6765 |
IngestDate | Thu Aug 21 17:56:56 EDT 2025 Fri Jul 11 07:57:00 EDT 2025 Wed Feb 19 02:43:27 EST 2025 Tue Jul 01 01:24:34 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-fd1ccc222bd9b0b4ea9f886ae129943738948d783571aafcbee1144375a64b133 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 T.H.H. is employed by AstraZeneca Global Safety, Health and Environment, a pharmaceutical company. The remaining authors declare they have no competing financial interests. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1289/ehp.8062 |
PMID | 16818255 |
PQID | 68609455 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1874181 proquest_miscellaneous_68609455 pubmed_primary_16818255 crossref_primary_10_1289_ehp_8062 crossref_citationtrail_10_1289_ehp_8062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-04-01 |
PublicationDateYYYYMMDD | 2006-04-01 |
PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Environmental health perspectives |
PublicationTitleAlternate | Environ Health Perspect |
PublicationYear | 2006 |
Publisher | National Institute of Environmental Health Sciences |
Publisher_xml | – name: National Institute of Environmental Health Sciences |
References | e_1_3_2_28_1 e_1_3_2_20_1 e_1_3_2_66_1 e_1_3_2_43_1 e_1_3_2_85_1 e_1_3_2_24_1 e_1_3_2_47_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_127_1 e_1_3_2_62_1 e_1_3_2_104_1 e_1_3_2_81_1 e_1_3_2_123_1 e_1_3_2_108_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_96_1 e_1_3_2_3_1 e_1_3_2_116_1 e_1_3_2_50_1 e_1_3_2_73_1 e_1_3_2_112_1 e_1_3_2_29_1 Hutchinson TH (e_1_3_2_55_1) 2002; 9 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_63_1 e_1_3_2_86_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 e_1_3_2_126_1 e_1_3_2_40_1 e_1_3_2_82_1 e_1_3_2_103_1 e_1_3_2_122_1 e_1_3_2_107_1 e_1_3_2_17_1 Peakall DW (e_1_3_2_88_1) 1994; 1 e_1_3_2_2_1 e_1_3_2_32_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_59_1 e_1_3_2_97_1 e_1_3_2_36_1 e_1_3_2_78_1 e_1_3_2_93_1 e_1_3_2_115_1 e_1_3_2_51_1 e_1_3_2_111_1 e_1_3_2_70_1 Ankley GT (e_1_3_2_5_1) 2004; 45 e_1_3_2_119_1 e_1_3_2_49_1 e_1_3_2_41_1 e_1_3_2_87_1 e_1_3_2_22_1 e_1_3_2_64_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_68_1 e_1_3_2_125_1 e_1_3_2_83_1 e_1_3_2_121_1 e_1_3_2_60_1 e_1_3_2_102_1 e_1_3_2_106_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_75_1 Rose J (e_1_3_2_92_1) 2002; 131 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_79_1 e_1_3_2_98_1 e_1_3_2_114_1 e_1_3_2_94_1 e_1_3_2_110_1 e_1_3_2_71_1 e_1_3_2_90_1 e_1_3_2_118_1 e_1_3_2_27_1 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_80_1 e_1_3_2_101_1 e_1_3_2_124_1 e_1_3_2_61_1 e_1_3_2_84_1 e_1_3_2_105_1 e_1_3_2_120_1 e_1_3_2_128_1 e_1_3_2_109_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_57_1 e_1_3_2_99_1 e_1_3_2_113_1 e_1_3_2_95_1 e_1_3_2_72_1 e_1_3_2_91_1 e_1_3_2_117_1 12651187 - Ecotoxicol Environ Saf. 2003 Mar;54(3):315-22 10421771 - Environ Health Perspect. 1999 Aug;107 Suppl 4:613-8 2188068 - Mutagenesis. 1990 Mar;5(2):159-64 8593867 - Environ Health Perspect. 1995 Oct;103 Suppl 7:173-8 15175171 - Environ Health Perspect. 2004 Jun;112(8):847-53 10905350 - Mol Gen Genet. 2000 Jun;263(5):828-37 12782402 - Mol Cell Endocrinol. 2003 May 30;203(1-2):41-50 12075783 - Environ Sci Technol. 2002 Jun 1;36(11):2311-21 12359393 - Aquat Toxicol. 2002 Dec 3;61(3-4):233-41 14990380 - J Theor Biol. 2004 Mar 21;227(2):159-65 15111029 - Mar Pollut Bull. 2004 May;48(9-10):817-34 11892727 - Toxicol Pathol. 2002 Jan-Feb;30(1):59-65 9027336 - Mol Cell Endocrinol. 1996 Nov 29;124(1-2):173-83 16110986 - Environ Toxicol Chem. 2005 May;24(5):1088-98 16644026 - Aquat Toxicol. 2006 Jun 15;78(2):202-6 14551668 - Anal Bioanal Chem. 2004 Feb;378(3):621-33 12521139 - Ecotoxicology. 2002 Dec;11(6):423-34 14680324 - Ecotoxicology. 2003 Dec;12(6):457-62 2790243 - Bull Environ Contam Toxicol. 1989 Sep;43(3):370-7 11833800 - Environ Toxicol Chem. 2002 Feb;21(2):319-26 11461838 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jul;129(3):217-32 12946619 - Aquat Toxicol. 2003 Oct 29;65(2):205-20 21782649 - Environ Toxicol Pharmacol. 2003 Feb;13(2):57-149 9711432 - Crit Rev Toxicol. 1998 Jul;28(4):319-61 12387389 - Environ Sci Technol. 2002 Oct 15;36(20):4201-17 12223204 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Aug;132(4):483-92 12505378 - Aquat Toxicol. 2003 Jan 24;62(2):85-103 2378932 - Biol Reprod. 1990 Aug;43(2):202-9 15454686 - ILAR J. 2004;45(4):469-83 14636695 - Toxicology. 2003 Dec 15;194(1-2):43-50 12062157 - Aquat Toxicol. 2002 Jul;58(1-2):99-112 11399458 - Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):261-8 11951950 - Environ Toxicol Chem. 2002 Apr;21(4):767-75 12643983 - Comp Biochem Physiol C Toxicol Pharmacol. 2003 Mar;134(3):365-74 12581878 - Mol Cell Endocrinol. 2003 Jan 31;199(1-2):37-47 15036873 - Aquat Toxicol. 2004 Feb 10;66(2):183-95 11392137 - Environ Toxicol Chem. 2001 Jun;20(6):1276-90 11452138 - Toxicol Sci. 2001 Aug;62(2):257-67 14713042 - Environ Toxicol Chem. 2003 Dec;22(12):3001-8 12519950 - Nucleic Acids Res. 2003 Jan 1;31(1):72-4 778893 - Q Rev Biol. 1976 Mar;51(1):3-47 16818244 - Environ Health Perspect. 2006 Apr;114 Suppl 1:32-9 8930552 - Environ Health Perspect. 1996 Oct;104(10):1096-101 11392131 - Environ Toxicol Chem. 2001 Jun;20(6):1216-27 14723879 - Gen Comp Endocrinol. 2004 Feb;135(3):276-85 9189707 - Environ Health Perspect. 1997 Apr;105(4):418-22 12206436 - Environ Toxicol Chem. 2002 Sep;21(9):1946-54 15261716 - Ecotoxicol Environ Saf. 2004 Sep;59(1):1-9 10967398 - Aquat Toxicol. 2000 Oct 1;50(4):363-373 11699782 - Environ Toxicol Chem. 2001 Nov;20(11):2552-60 15597887 - Environ Sci Technol. 2004 Dec 1;38(23):6314-21 11521838 - Environ Toxicol Chem. 2001 Sep;20(9):2081-7 11890477 - Toxicol Pathol. 2002 Jan-Feb;30(1):66-74 15930325 - Biol Reprod. 2005 Oct;73(4):648-62 12739879 - Ecotoxicology. 2003 Feb-Aug;12(1-4):331-43 9771470 - J Endocrinol. 1998 Aug;158(2):259-66 11976068 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Apr;131(4):531-9 14687976 - Aquat Toxicol. 2004 Jan 7;66(1):15-23 14568354 - Aquat Toxicol. 2003 Dec 10;65(4):397-411 10210690 - Environ Health Perspect. 1999 May;107(5):349-57 12152771 - Environ Toxicol Chem. 2002 Aug;21(8):1692-8 15884355 - Environ Sci Technol. 2005 Apr 15;39(8):2599-607 14529741 - Comp Biochem Physiol B Biochem Mol Biol. 2003 Oct;136(2):149-61 10854672 - Aquat Toxicol. 2000 Jul 1;49(4):289-304 14668108 - J Toxicol Environ Health A. 2004 Jan 9;67(1):1-22 12731844 - Environ Sci Technol. 2003 Apr 15;37(8):1609-16 11444013 - Mar Environ Res. 2000 Feb;49(1):37-53 11166681 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jan;128(1):127-41 15041256 - Ecotoxicol Environ Saf. 2004 Mar;57(3):330-45 11598783 - Arch Environ Contam Toxicol. 2001 Nov;41(4):458-67 12685728 - Environ Toxicol Chem. 2003 Apr;22(4):908-13 11988359 - Toxicol Lett. 2002 May 10;131(1-2):65-74 11988358 - Toxicol Lett. 2002 May 10;131(1-2):51-63 12200092 - Aquat Toxicol. 2002 Oct 30;60(3-4):285-99 10814808 - Aquat Toxicol. 2000 May 1;49(1-2):77-88 10680769 - Crit Rev Toxicol. 2000 Jan;30(1):71-133 12785594 - Environ Toxicol Chem. 2003 Jun;22(6):1350-60 15003697 - Aquat Toxicol. 2004 Apr 14;67(2):105-26 11102288 - Environ Health Perspect. 2000 Nov;108(11):1007-14 11944962 - Gen Comp Endocrinol. 2002 Mar;126(1):14-22 15579420 - Environ Health Perspect. 2004 Dec;112(17):1725-33 14579387 - Dev Dyn. 2003 Nov;228(3):490-6 11961225 - Toxicol Sci. 2002 May;67(1):121-30 12061825 - Ecotoxicol Environ Saf. 2002 Jun;52(2):97-112 |
References_xml | – ident: e_1_3_2_80_1 doi: 10.1007/s00216-003-2241-2 – ident: e_1_3_2_62_1 doi: 10.1016/S0166-445X(03)00134-6 – ident: e_1_3_2_52_1 doi: 10.1023/A:1008992932155 – ident: e_1_3_2_13_1 – ident: e_1_3_2_19_1 doi: 10.1677/joe.0.1580259 – ident: e_1_3_2_71_1 doi: 10.1016/S0166-445X(02)00060-7 – ident: e_1_3_2_2_1 doi: 10.1016/S1532-0456(03)00006-1 – ident: e_1_3_2_99_1 doi: 10.1086/409052 – ident: e_1_3_2_114_1 doi: 10.1016/j.aquatox.2003.09.004 – ident: e_1_3_2_116_1 doi: 10.1002/etc.5620210412 – ident: e_1_3_2_8_1 doi: 10.1016/S0166-445X(99)00084-3 – ident: e_1_3_2_9_1 doi: 10.1289/ehp.6862 – ident: e_1_3_2_105_1 doi: 10.1006/gcen.2001.7743 – ident: e_1_3_2_39_1 doi: 10.1021/es020086r – ident: e_1_3_2_48_1 doi: 10.1016/S1873-0140(05)80019-0 – ident: e_1_3_2_45_1 doi: 10.1016/S0166-445X(01)00238-7 – ident: e_1_3_2_87_1 doi: 10.1016/j.ecoenv.2003.07.019 – ident: e_1_3_2_115_1 doi: 10.1007/s002440010272 – ident: e_1_3_2_12_1 – ident: e_1_3_2_27_1 doi: 10.1289/ehp.99107349 – ident: e_1_3_2_120_1 doi: 10.1016/S1532-0456(02)00111-4 – ident: e_1_3_2_97_1 doi: 10.1002/etc.5620210822 – ident: e_1_3_2_76_1 doi: 10.1016/j.ecoenv.2004.05.005 – ident: e_1_3_2_42_1 doi: 10.1021/es991292a – ident: e_1_3_2_117_1 doi: 10.1016/S1382-6689(02)00126-6 – ident: e_1_3_2_26_1 – ident: e_1_3_2_51_1 doi: 10.2307/1444443 – volume: 9 start-page: 439 year: 2002 ident: e_1_3_2_55_1 article-title: Impacts of endocrine disrupters on fish development: opportunities for adapting OECD Test Guideline 210 publication-title: Environ Sci – ident: e_1_3_2_56_1 – ident: e_1_3_2_30_1 doi: 10.1016/j.aquatox.2003.10.008 – ident: e_1_3_2_36_1 doi: 10.1080/01926230252824716 – ident: e_1_3_2_126_1 doi: 10.1002/etc.5620201122 – ident: e_1_3_2_69_1 doi: 10.1016/S1096-4959(03)00228-8 – ident: e_1_3_2_41_1 doi: 10.1023/A:1022527432252 – ident: e_1_3_2_17_1 doi: 10.1007/BF01701871 – ident: e_1_3_2_25_1 – ident: e_1_3_2_43_1 doi: 10.1016/S0141-1136(99)00047-1 – ident: e_1_3_2_103_1 – ident: e_1_3_2_10_1 – ident: e_1_3_2_77_1 doi: 10.1023/B:ECTX.0000003030.67752.04 – ident: e_1_3_2_15_1 doi: 10.1289/ehp.99107s4613 – ident: e_1_3_2_108_1 doi: 10.1021/es0488939 – ident: e_1_3_2_119_1 doi: 10.1002/etc.5620220431 – ident: e_1_3_2_82_1 – ident: e_1_3_2_118_1 – ident: e_1_3_2_112_1 – ident: e_1_3_2_57_1 doi: 10.1289/ehp.001081007 – ident: e_1_3_2_124_1 doi: 10.1021/es049771j – ident: e_1_3_2_101_1 doi: 10.1248/jhs.50.301 – ident: e_1_3_2_113_1 doi: 10.1023/A:1021053217513 – ident: e_1_3_2_24_1 doi: 10.1021/es015848h – ident: e_1_3_2_40_1 doi: 10.1016/S0166-445X(02)00011-5 – ident: e_1_3_2_58_1 doi: 10.1016/S0300-483X(03)00340-8 – ident: e_1_3_2_7_1 doi: 10.1289/ehp.97105418 – ident: e_1_3_2_109_1 doi: 10.1095/biolreprod43.2.202 – ident: e_1_3_2_73_1 doi: 10.1046/j.1095-8649.2003.00074.x – ident: e_1_3_2_11_1 doi: 10.1016/j.marpolbul.2004.02.032 – ident: e_1_3_2_64_1 doi: 10.1289/ehp.8050 – ident: e_1_3_2_66_1 doi: 10.1351/pac200375112335 – ident: e_1_3_2_29_1 doi: 10.1016/S1532-0456(01)00194-6 – ident: e_1_3_2_128_1 doi: 10.1016/S0378-4274(02)00070-X – ident: e_1_3_2_125_1 doi: 10.1139/f92-242 – ident: e_1_3_2_6_1 doi: 10.1093/toxsci/67.1.121 – ident: e_1_3_2_67_1 doi: 10.1016/S1096-4959(01)00319-0 – ident: e_1_3_2_50_1 doi: 10.1016/j.aquatox.2003.06.004 – ident: e_1_3_2_98_1 – ident: e_1_3_2_74_1 doi: 10.1002/etc.5620200930 – ident: e_1_3_2_22_1 – ident: e_1_3_2_107_1 doi: 10.1080/10408449891344236 – ident: e_1_3_2_106_1 doi: 10.1007/s004380000247 – ident: e_1_3_2_49_1 doi: 10.2331/fishsci.68.sup1_694 – ident: e_1_3_2_95_1 doi: 10.1016/S0147-6513(02)00040-4 – ident: e_1_3_2_3_1 doi: 10.1002/etc.5620200616 – ident: e_1_3_2_33_1 doi: 10.1016/S0303-7207(96)03960-3 – ident: e_1_3_2_28_1 doi: 10.1023/A:1008972330318 – ident: e_1_3_2_32_1 doi: 10.1095/biolreprod.105.039701 – ident: e_1_3_2_83_1 doi: 10.1016/S0166-445X(03)00177-2 – ident: e_1_3_2_86_1 doi: 10.1093/toxsci/62.2.257 – ident: e_1_3_2_70_1 doi: 10.1016/S0166-445X(98)00112-X – ident: e_1_3_2_44_1 doi: 10.1021/es010186h – ident: e_1_3_2_47_1 doi: 10.1016/0044-8486(88)90156-1 – ident: e_1_3_2_84_1 doi: 10.1002/etc.5620210213 – ident: e_1_3_2_21_1 – ident: e_1_3_2_91_1 doi: 10.1002/dvdy.10366 – ident: e_1_3_2_85_1 – ident: e_1_3_2_54_1 doi: 10.1016/j.jtbi.2003.10.010 – volume: 131 start-page: 531 year: 2002 ident: e_1_3_2_92_1 article-title: Vitellogenin induction by 17b-estradiol and 17a-ethinylestradiol in male zebrafish (Danio rerio) publication-title: Comp Biochem Physiol – ident: e_1_3_2_93_1 doi: 10.1016/S0378-4274(02)00043-7 – ident: e_1_3_2_59_1 doi: 10.1016/S0166-445X(02)00049-8 – ident: e_1_3_2_68_1 doi: 10.1002/etc.5620200610 – ident: e_1_3_2_23_1 – ident: e_1_3_2_122_1 doi: 10.1080/10408440091159176 – ident: e_1_3_2_61_1 doi: 10.1016/S1532-0456(00)00185-X – ident: e_1_3_2_78_1 doi: 10.1093/mutage/5.2.159 – volume: 1 start-page: 55 year: 1994 ident: e_1_3_2_88_1 article-title: Biomarkers: the way forward in environmental assessment publication-title: Toxicol Ecotoxicol News – ident: e_1_3_2_14_1 doi: 10.1016/j.ygcen.2003.10.004 – ident: e_1_3_2_127_1 – ident: e_1_3_2_65_1 doi: 10.1002/etc.5620210924 – ident: e_1_3_2_18_1 doi: 10.1080/713609966 – ident: e_1_3_2_34_1 doi: 10.1289/ehp.961041096 – ident: e_1_3_2_72_1 doi: 10.1080/01926230252824725 – ident: e_1_3_2_20_1 doi: 10.1080/15287390490253633 – ident: e_1_3_2_63_1 doi: 10.1021/es9710870 – ident: e_1_3_2_53_1 – volume: 45 start-page: 467 year: 2004 ident: e_1_3_2_5_1 article-title: Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals publication-title: Inter Lab Anim Res J – ident: e_1_3_2_121_1 doi: 10.1016/S0303-7207(02)00305-2 – ident: e_1_3_2_4_1 doi: 10.1002/etc.5620220623 – ident: e_1_3_2_35_1 doi: 10.1016/S0166-445X(99)00076-4 – ident: e_1_3_2_37_1 doi: 10.1080/20018091094835 – ident: e_1_3_2_38_1 doi: 10.1002/etc.5620170113 – ident: e_1_3_2_89_1 doi: 10.1016/0043-1354(88)90026-7 – ident: e_1_3_2_81_1 – ident: e_1_3_2_100_1 doi: 10.1289/ehp.95103s7173 – ident: e_1_3_2_111_1 – ident: e_1_3_2_94_1 doi: 10.1016/S0166-445X(00)00090-4 – ident: e_1_3_2_96_1 doi: 10.1006/eesa.2002.2172 – ident: e_1_3_2_102_1 doi: 10.1897/03-31 – ident: e_1_3_2_60_1 doi: 10.1016/0166-445X(88)90015-X – ident: e_1_3_2_46_1 doi: 10.1093/nar/gkg017 – ident: e_1_3_2_31_1 doi: 10.1897/04-096R1.1 – ident: e_1_3_2_110_1 doi: 10.1016/S0303-7207(03)00118-7 – ident: e_1_3_2_90_1 – ident: e_1_3_2_79_1 doi: 10.1289/ehp.7209 – ident: e_1_3_2_104_1 doi: 10.1002/etc.5620191128 – ident: e_1_3_2_16_1 doi: 10.2307/1312253 – ident: e_1_3_2_75_1 doi: 10.1023/A:1007754123787 – ident: e_1_3_2_123_1 – reference: 15454686 - ILAR J. 2004;45(4):469-83 – reference: 10210690 - Environ Health Perspect. 1999 May;107(5):349-57 – reference: 11444013 - Mar Environ Res. 2000 Feb;49(1):37-53 – reference: 11102288 - Environ Health Perspect. 2000 Nov;108(11):1007-14 – reference: 14990380 - J Theor Biol. 2004 Mar 21;227(2):159-65 – reference: 8930552 - Environ Health Perspect. 1996 Oct;104(10):1096-101 – reference: 14680324 - Ecotoxicology. 2003 Dec;12(6):457-62 – reference: 12062157 - Aquat Toxicol. 2002 Jul;58(1-2):99-112 – reference: 9711432 - Crit Rev Toxicol. 1998 Jul;28(4):319-61 – reference: 12946619 - Aquat Toxicol. 2003 Oct 29;65(2):205-20 – reference: 12739879 - Ecotoxicology. 2003 Feb-Aug;12(1-4):331-43 – reference: 12782402 - Mol Cell Endocrinol. 2003 May 30;203(1-2):41-50 – reference: 8593867 - Environ Health Perspect. 1995 Oct;103 Suppl 7:173-8 – reference: 11976068 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Apr;131(4):531-9 – reference: 16818244 - Environ Health Perspect. 2006 Apr;114 Suppl 1:32-9 – reference: 778893 - Q Rev Biol. 1976 Mar;51(1):3-47 – reference: 11988359 - Toxicol Lett. 2002 May 10;131(1-2):65-74 – reference: 12505378 - Aquat Toxicol. 2003 Jan 24;62(2):85-103 – reference: 10967398 - Aquat Toxicol. 2000 Oct 1;50(4):363-373 – reference: 15884355 - Environ Sci Technol. 2005 Apr 15;39(8):2599-607 – reference: 9189707 - Environ Health Perspect. 1997 Apr;105(4):418-22 – reference: 12651187 - Ecotoxicol Environ Saf. 2003 Mar;54(3):315-22 – reference: 11833800 - Environ Toxicol Chem. 2002 Feb;21(2):319-26 – reference: 15597887 - Environ Sci Technol. 2004 Dec 1;38(23):6314-21 – reference: 12061825 - Ecotoxicol Environ Saf. 2002 Jun;52(2):97-112 – reference: 16110986 - Environ Toxicol Chem. 2005 May;24(5):1088-98 – reference: 11392131 - Environ Toxicol Chem. 2001 Jun;20(6):1216-27 – reference: 10680769 - Crit Rev Toxicol. 2000 Jan;30(1):71-133 – reference: 12200092 - Aquat Toxicol. 2002 Oct 30;60(3-4):285-99 – reference: 11961225 - Toxicol Sci. 2002 May;67(1):121-30 – reference: 10421771 - Environ Health Perspect. 1999 Aug;107 Suppl 4:613-8 – reference: 21782649 - Environ Toxicol Pharmacol. 2003 Feb;13(2):57-149 – reference: 2790243 - Bull Environ Contam Toxicol. 1989 Sep;43(3):370-7 – reference: 11988358 - Toxicol Lett. 2002 May 10;131(1-2):51-63 – reference: 12152771 - Environ Toxicol Chem. 2002 Aug;21(8):1692-8 – reference: 2188068 - Mutagenesis. 1990 Mar;5(2):159-64 – reference: 11892727 - Toxicol Pathol. 2002 Jan-Feb;30(1):59-65 – reference: 12223204 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Aug;132(4):483-92 – reference: 11166681 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jan;128(1):127-41 – reference: 14529741 - Comp Biochem Physiol B Biochem Mol Biol. 2003 Oct;136(2):149-61 – reference: 11951950 - Environ Toxicol Chem. 2002 Apr;21(4):767-75 – reference: 12519950 - Nucleic Acids Res. 2003 Jan 1;31(1):72-4 – reference: 16644026 - Aquat Toxicol. 2006 Jun 15;78(2):202-6 – reference: 15041256 - Ecotoxicol Environ Saf. 2004 Mar;57(3):330-45 – reference: 11392137 - Environ Toxicol Chem. 2001 Jun;20(6):1276-90 – reference: 10905350 - Mol Gen Genet. 2000 Jun;263(5):828-37 – reference: 14687976 - Aquat Toxicol. 2004 Jan 7;66(1):15-23 – reference: 9771470 - J Endocrinol. 1998 Aug;158(2):259-66 – reference: 15175171 - Environ Health Perspect. 2004 Jun;112(8):847-53 – reference: 14551668 - Anal Bioanal Chem. 2004 Feb;378(3):621-33 – reference: 12521139 - Ecotoxicology. 2002 Dec;11(6):423-34 – reference: 10854672 - Aquat Toxicol. 2000 Jul 1;49(4):289-304 – reference: 11699782 - Environ Toxicol Chem. 2001 Nov;20(11):2552-60 – reference: 12359393 - Aquat Toxicol. 2002 Dec 3;61(3-4):233-41 – reference: 12731844 - Environ Sci Technol. 2003 Apr 15;37(8):1609-16 – reference: 14636695 - Toxicology. 2003 Dec 15;194(1-2):43-50 – reference: 15003697 - Aquat Toxicol. 2004 Apr 14;67(2):105-26 – reference: 15036873 - Aquat Toxicol. 2004 Feb 10;66(2):183-95 – reference: 14723879 - Gen Comp Endocrinol. 2004 Feb;135(3):276-85 – reference: 9027336 - Mol Cell Endocrinol. 1996 Nov 29;124(1-2):173-83 – reference: 12643983 - Comp Biochem Physiol C Toxicol Pharmacol. 2003 Mar;134(3):365-74 – reference: 12785594 - Environ Toxicol Chem. 2003 Jun;22(6):1350-60 – reference: 2378932 - Biol Reprod. 1990 Aug;43(2):202-9 – reference: 12206436 - Environ Toxicol Chem. 2002 Sep;21(9):1946-54 – reference: 11452138 - Toxicol Sci. 2001 Aug;62(2):257-67 – reference: 14713042 - Environ Toxicol Chem. 2003 Dec;22(12):3001-8 – reference: 11399458 - Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):261-8 – reference: 14668108 - J Toxicol Environ Health A. 2004 Jan 9;67(1):1-22 – reference: 15579420 - Environ Health Perspect. 2004 Dec;112(17):1725-33 – reference: 10814808 - Aquat Toxicol. 2000 May 1;49(1-2):77-88 – reference: 11890477 - Toxicol Pathol. 2002 Jan-Feb;30(1):66-74 – reference: 11944962 - Gen Comp Endocrinol. 2002 Mar;126(1):14-22 – reference: 12387389 - Environ Sci Technol. 2002 Oct 15;36(20):4201-17 – reference: 12075783 - Environ Sci Technol. 2002 Jun 1;36(11):2311-21 – reference: 11461838 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jul;129(3):217-32 – reference: 15111029 - Mar Pollut Bull. 2004 May;48(9-10):817-34 – reference: 11521838 - Environ Toxicol Chem. 2001 Sep;20(9):2081-7 – reference: 14579387 - Dev Dyn. 2003 Nov;228(3):490-6 – reference: 12581878 - Mol Cell Endocrinol. 2003 Jan 31;199(1-2):37-47 – reference: 15930325 - Biol Reprod. 2005 Oct;73(4):648-62 – reference: 11598783 - Arch Environ Contam Toxicol. 2001 Nov;41(4):458-67 – reference: 14568354 - Aquat Toxicol. 2003 Dec 10;65(4):397-411 – reference: 12685728 - Environ Toxicol Chem. 2003 Apr;22(4):908-13 – reference: 15261716 - Ecotoxicol Environ Saf. 2004 Sep;59(1):1-9 |
SSID | ssj0001866 |
Score | 2.3518074 |
SecondaryResourceType | review_article |
Snippet | Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting... Biomarkers are currently best used as mechanistic “signposts” rather than as “traffic lights” in the environmental risk assessment of endocrine-disrupting... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 106 |
SubjectTerms | Algorithms Animals Biomarkers - analysis Endocrine Disruptors - toxicity Environmental Exposure Fishes - physiology Research Design - standards Risk Assessment - methods Species Specificity |
Title | Screening and Testing for Endocrine Disruption in Fish—Biomarkers As “Signposts,” Not “Traffic Lights,” in Risk Assessment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16818255 https://www.proquest.com/docview/68609455 https://pubmed.ncbi.nlm.nih.gov/PMC1874181 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Za9tAEB7S5KVQQu86adytKfSlSqVY2uMhlDbEDS0JvQx-E3sJG8zKsWRo--s7I8mJ06Yvi9DOLsuOdufQzDcAr3RhYyVUFgkt0ij1xkQqLnjEhfZHeFWaOKHc4fMLfjZOP02yyRasq212G1jdatpRPanxcn748_LXOzzwxw02glRv_XRxKGO6iHdQHgk6nufpNWY4Qbq1WJQJLoFnHQTt5kiCDuUouo4o429TPv2jdP4dO7khjEb3YbfTItn7lu0PYMuHh3CvdcGxNrPoEfz-bimoBmUT08GxmvA08Bm1VOaDKy3l_TE3q5ar5tpgs8CKWTWNKCOfgnaWFdMVG1CEx6Ks6urNgIWyZgNcEOFOsDnZ9fQWB1KEOlKvUT4fw3h0-uPkLOpKLUR2KOI6KlxirUVdwThlYpN6rQopufaoDqgG_Uil0pGXSCQa-Wu8R0MKOzLNU4N27hPYDmXwz4ChBea5tUPjpEPbRhkxdFJlmfaFIgWhB6_XG5zbDoecymHMc7JHcECOXMmJKz14eUW5aLE3bqF5seZRjgeD_nbo4MtVlXPJ0XTNsh48bTl2PUfH6h6IG7y8IiDI7Zs9YTZtoLepgiHqRHv_nXMf7rZOGorteQ7b9XLlD1BtqU0f7oiJwFaeJNSOPvZh58PpxZdv_cYRgO3nr7LffLt_APcD86o |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+and+testing+for+endocrine+disruption+in+fish-biomarkers+as+%22signposts%2C%22+not+%22traffic+lights%2C%22+in+risk+assessment&rft.jtitle=Environmental+health+perspectives&rft.au=Hutchinson%2C+Thomas+H&rft.au=Ankley%2C+Gerald+T&rft.au=Segner%2C+Helmut&rft.au=Tyler%2C+Charles+R&rft.date=2006-04-01&rft.issn=0091-6765&rft.volume=114+Suppl+1&rft.spage=106&rft_id=info:doi/10.1289%2Fehp.8062&rft_id=info%3Apmid%2F16818255&rft.externalDocID=16818255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6765&client=summon |