Screening and Testing for Endocrine Disruption in Fish—Biomarkers As “Signposts,” Not “Traffic Lights,” in Risk Assessment

Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful too...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental health perspectives Vol. 114; no. Suppl 1; pp. 106 - 114
Main Authors Hutchinson, Thomas H., Ankley, Gerald T., Segner, Helmut, Tyler, Charles R.
Format Journal Article
LanguageEnglish
Published United States National Institute of Environmental Health Sciences 01.04.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.
AbstractList Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.
Biomarkers are currently best used as mechanistic “signposts” rather than as “traffic lights” in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverse NOEC (no observed effect oncentration) or adverse EC 10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarker NOEC or biomarker EC 10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38–55% (comparable to published CVs of 19–58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the “biomarkers as signposts” approach is a pragmatic way forward in the current risk assessment of EDCs.
Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.
Author Segner, Helmut
Tyler, Charles R.
Hutchinson, Thomas H.
Ankley, Gerald T.
AuthorAffiliation 1 AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, United Kingdom
4 School of Biological Sciences, University of Exeter, United Kingdom
2 National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota, USA
3 Centre for Fish and Wildlife Health, University of Bern, Switzerland
AuthorAffiliation_xml – name: 4 School of Biological Sciences, University of Exeter, United Kingdom
– name: 3 Centre for Fish and Wildlife Health, University of Bern, Switzerland
– name: 1 AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, United Kingdom
– name: 2 National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota, USA
Author_xml – sequence: 1
  givenname: Thomas H.
  surname: Hutchinson
  fullname: Hutchinson, Thomas H.
  organization: AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, United Kingdom
– sequence: 2
  givenname: Gerald T.
  surname: Ankley
  fullname: Ankley, Gerald T.
  organization: National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota, USA
– sequence: 3
  givenname: Helmut
  surname: Segner
  fullname: Segner, Helmut
  organization: Centre for Fish and Wildlife Health, University of Bern, Switzerland
– sequence: 4
  givenname: Charles R.
  surname: Tyler
  fullname: Tyler, Charles R.
  organization: School of Biological Sciences, University of Exeter, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16818255$$D View this record in MEDLINE/PubMed
BookMark eNplkc1u1DAUhS1URKcFiSdAXiEWZLCd2LE3SKW0gDQCiQ5ry3GcGdOMnfpmkNjNgkdgCS83T4KjDv8rW77fPef6nhN0FGJwCD2kZE6ZVM_cephLItgdNKOcs0IpVh2hGSGKFqIW_BidAHwkhFApxD10TIWkknE-Q1-ubHIu-LDCJrR46WCc7l1M-CK00SYfHH7pIW2H0ceAfcCXHtb73dcXPm5MunYJ8Bng_e7blV-FIcIIT_e77_htHKfHZTJd5y1e-NX6UMkS7z1c5y5wABsXxvvobmd6cA8O5yn6cHmxPH9dLN69enN-tihsWZOx6FpqrWWMNa1qSFM5ozophXGUKVWVdSlVJdtalrymxnS2cY7SKhe4EVVDy_IUPb_VHbbNxrU2WyfT6yH5_JPPOhqv_64Ev9ar-ElTWVdU0izw-CCQ4s0270pvPFjX9ya4uAUtpCCq4jyDj_50-mXxc_EZeHIL2BQBkut-I0RPmeqcqZ4yzej8H9T60Uxp5Bl9_3_DD882qtY
CitedBy_id crossref_primary_10_1016_j_aquatox_2018_01_019
crossref_primary_10_1016_j_scitotenv_2021_146087
crossref_primary_10_1016_j_envres_2024_119844
crossref_primary_10_1016_j_aquatox_2019_03_021
crossref_primary_10_1002_etc_2006
crossref_primary_10_1177_009286150704100213
crossref_primary_10_1002_etc_3336
crossref_primary_10_1007_s11356_021_14136_6
crossref_primary_10_1016_j_scitotenv_2023_165958
crossref_primary_10_1002_etc_3456
crossref_primary_10_1016_j_aquaculture_2018_10_066
crossref_primary_10_1016_j_aquatox_2008_07_018
crossref_primary_10_1016_j_chemosphere_2014_04_073
crossref_primary_10_1016_j_aquatox_2008_11_009
crossref_primary_10_1016_j_scitotenv_2018_07_252
crossref_primary_10_1016_j_aquatox_2014_01_009
crossref_primary_10_1002_etc_1966
crossref_primary_10_1002_jat_4437
crossref_primary_10_3390_agriculture5030697
crossref_primary_10_1897_06_318R_1
crossref_primary_10_1016_j_envpol_2017_09_057
crossref_primary_10_5402_2012_942804
crossref_primary_10_1002_etc_4555
crossref_primary_10_3390_ani14091296
crossref_primary_10_1007_s11356_023_30721_3
crossref_primary_10_1016_j_jsbmb_2019_105448
crossref_primary_10_1186_gb_2008_9_2_r40
crossref_primary_10_1016_j_chemosphere_2010_11_011
crossref_primary_10_1016_j_chemosphere_2018_04_068
crossref_primary_10_2139_ssrn_4156481
crossref_primary_10_3390_su14095597
crossref_primary_10_1002_etc_5640
crossref_primary_10_1007_s11356_021_16778_y
crossref_primary_10_1016_j_aaf_2020_07_013
crossref_primary_10_1016_j_etap_2016_09_018
crossref_primary_10_1016_j_marpolbul_2011_10_005
crossref_primary_10_1371_journal_pone_0075553
crossref_primary_10_1016_j_taap_2009_04_004
crossref_primary_10_3390_app10051737
crossref_primary_10_1002_etc_1976
crossref_primary_10_1002_etc_2708
crossref_primary_10_1016_j_envpol_2007_07_018
crossref_primary_10_1111_j_1749_6632_2009_04453_x
crossref_primary_10_1093_toxsci_kfn030
crossref_primary_10_1002_etc_3475
crossref_primary_10_1002_etc_3239
crossref_primary_10_1016_j_aquatox_2007_10_011
crossref_primary_10_1016_j_ygcen_2009_02_013
crossref_primary_10_1007_s11356_015_5565_5
crossref_primary_10_3109_10408444_2012_692114
crossref_primary_10_1016_j_ecoenv_2011_07_036
crossref_primary_10_1111_raq_12369
crossref_primary_10_1016_j_cbpc_2022_109531
crossref_primary_10_1016_j_ecoenv_2021_113102
crossref_primary_10_3390_su9101734
crossref_primary_10_1111_brv_12589
crossref_primary_10_1139_S08_011
crossref_primary_10_1007_s40264_013_0049_3
crossref_primary_10_1002_aheh_200400550
crossref_primary_10_1016_j_ecoenv_2016_08_002
crossref_primary_10_1016_j_marenvres_2017_04_006
crossref_primary_10_1002_bdrb_21096
crossref_primary_10_1007_s00441_007_0543_y
crossref_primary_10_2108_zsj_26_870
crossref_primary_10_1016_j_ecoenv_2012_08_010
crossref_primary_10_1016_j_toxlet_2011_01_016
crossref_primary_10_1111_j_1863_2378_2009_01309_x
crossref_primary_10_1007_s00128_016_1731_9
crossref_primary_10_1021_acs_est_5b03849
crossref_primary_10_1021_acsestwater_1c00252
crossref_primary_10_1897_08_082_1
crossref_primary_10_1016_j_envres_2020_110125
crossref_primary_10_1016_j_fsi_2017_07_001
crossref_primary_10_1897_07_482_1
crossref_primary_10_3389_fendo_2020_619361
crossref_primary_10_1007_s10646_014_1244_4
crossref_primary_10_1897_IEAM_2009_044_1
crossref_primary_10_1002_ieam_43
crossref_primary_10_1016_j_aquatox_2011_06_016
crossref_primary_10_1016_j_scitotenv_2016_11_021
crossref_primary_10_1289_ehp_8046
crossref_primary_10_3390_md12084474
crossref_primary_10_1016_j_aquatox_2011_02_019
crossref_primary_10_1093_toxsci_kfu200
crossref_primary_10_1016_j_aquatox_2014_04_026
crossref_primary_10_1111_j_1095_8649_2010_02605_x
crossref_primary_10_1016_j_anbehav_2013_10_032
crossref_primary_10_1016_j_ygcen_2015_01_013
crossref_primary_10_1016_j_chemosphere_2019_124943
crossref_primary_10_1016_j_ecoenv_2013_11_005
crossref_primary_10_1007_s10661_011_2266_5
crossref_primary_10_1016_j_etap_2009_03_011
crossref_primary_10_1016_j_cbpc_2009_10_003
crossref_primary_10_1016_j_scitotenv_2015_09_061
crossref_primary_10_1016_j_ecoenv_2016_09_022
crossref_primary_10_1016_j_watres_2016_05_079
crossref_primary_10_1016_j_ecoenv_2006_02_011
crossref_primary_10_1021_acs_est_8b00569
crossref_primary_10_1016_j_ygcen_2008_10_025
crossref_primary_10_1016_j_aquatox_2019_105290
crossref_primary_10_1016_j_marpolbul_2020_111931
crossref_primary_10_1016_j_aquatox_2015_05_002
crossref_primary_10_1007_s00343_018_7100_2
crossref_primary_10_1897_IEAM_2008_092_1
crossref_primary_10_1139_er_2013_0047
crossref_primary_10_1016_j_aquatox_2023_106677
crossref_primary_10_1038_s41598_017_01935_6
crossref_primary_10_1016_j_aquatox_2010_12_008
crossref_primary_10_1016_j_marpolbul_2019_06_044
crossref_primary_10_1021_acs_estlett_8b00486
crossref_primary_10_1080_10937404_2011_578558
crossref_primary_10_1016_j_jes_2021_11_012
crossref_primary_10_1021_tx100167x
crossref_primary_10_1016_j_yrtph_2012_06_013
crossref_primary_10_1002_etc_3799
crossref_primary_10_1002_etc_5732
crossref_primary_10_1016_j_cbpc_2016_02_002
crossref_primary_10_1016_j_envpol_2019_02_056
crossref_primary_10_1016_j_ygcen_2013_08_014
crossref_primary_10_1016_j_ygcen_2012_06_004
crossref_primary_10_1016_j_ecoenv_2021_112698
crossref_primary_10_1007_s11430_012_4426_z
crossref_primary_10_1021_es800633q
crossref_primary_10_1186_2190_4715_25_10
crossref_primary_10_1007_s00216_007_1808_8
crossref_primary_10_3109_10408444_2015_1018409
crossref_primary_10_1002_etc_1825
crossref_primary_10_1007_s11356_013_1817_4
crossref_primary_10_3390_app11041837
crossref_primary_10_1016_j_chemosphere_2019_124970
crossref_primary_10_1016_j_aquatox_2024_107000
crossref_primary_10_1016_j_aquatox_2015_05_019
crossref_primary_10_1021_envhealth_4c00235
crossref_primary_10_1016_j_envpol_2019_07_082
crossref_primary_10_1016_j_yrtph_2014_05_021
crossref_primary_10_1016_j_aquatox_2024_107008
crossref_primary_10_1007_s11270_016_2748_8
crossref_primary_10_1002_dvdy_24579
crossref_primary_10_1016_j_aquatox_2016_03_022
crossref_primary_10_1016_j_aquatox_2015_01_018
crossref_primary_10_1002_etc_4024
crossref_primary_10_1139_F09_125
crossref_primary_10_1016_j_chemosphere_2011_07_048
crossref_primary_10_1039_C0EM00102C
crossref_primary_10_2134_jeq2017_01_0012
crossref_primary_10_1016_j_aquatox_2014_11_022
crossref_primary_10_1016_j_etap_2022_104042
crossref_primary_10_1016_j_envpol_2011_11_036
crossref_primary_10_1002_ieam_92
crossref_primary_10_1016_j_steroids_2015_06_011
crossref_primary_10_1093_biolre_ioac001
crossref_primary_10_1155_2020_1309183
crossref_primary_10_1002_ieam_1268
crossref_primary_10_1016_j_cej_2023_144447
crossref_primary_10_1021_acs_est_7b00498
crossref_primary_10_1016_j_chemosphere_2015_09_106
crossref_primary_10_1016_j_chemosphere_2020_127221
crossref_primary_10_1016_j_aquatox_2023_106511
crossref_primary_10_1016_j_tice_2019_101327
crossref_primary_10_1021_es9039049
crossref_primary_10_1016_j_aquatox_2016_06_010
crossref_primary_10_1007_s10646_010_0533_9
crossref_primary_10_1021_es404027n
crossref_primary_10_1016_j_scitotenv_2015_11_102
crossref_primary_10_1021_es304345s
crossref_primary_10_1016_j_aquatox_2008_08_002
crossref_primary_10_1111_brv_13154
crossref_primary_10_1093_toxsci_kfu064
crossref_primary_10_1007_s10661_016_5292_5
crossref_primary_10_1016_j_cbpc_2007_09_005
crossref_primary_10_1111_raq_12402
crossref_primary_10_1016_j_mrgentox_2007_01_010
crossref_primary_10_1016_j_jhazmat_2023_131493
crossref_primary_10_1016_j_envint_2020_105836
crossref_primary_10_1038_srep20884
crossref_primary_10_1016_j_jhazmat_2024_135379
crossref_primary_10_1002_ieam_4561
crossref_primary_10_1080_10934529_2023_2273690
crossref_primary_10_1016_j_mce_2008_06_008
crossref_primary_10_1897_05_646R1_1
crossref_primary_10_1002_etc_3526
crossref_primary_10_1016_j_scitotenv_2024_174789
crossref_primary_10_1016_j_envint_2022_107536
crossref_primary_10_1016_j_chemosphere_2019_124414
crossref_primary_10_1016_j_chemosphere_2010_01_055
crossref_primary_10_1080_10408444_2017_1367756
crossref_primary_10_1016_j_aquatox_2013_05_017
crossref_primary_10_1016_j_chemosphere_2018_12_100
crossref_primary_10_1016_j_cbpc_2008_10_099
crossref_primary_10_1021_es5051343
crossref_primary_10_1289_ehp_0901107
crossref_primary_10_1016_j_cbpc_2015_10_013
crossref_primary_10_1016_j_chemosphere_2013_01_102
crossref_primary_10_1016_j_aquatox_2008_04_009
crossref_primary_10_1016_j_jhazmat_2020_124135
crossref_primary_10_1111_brv_12360
crossref_primary_10_1002_etc_3259
crossref_primary_10_1098_rstb_2013_0569
crossref_primary_10_1016_j_envres_2020_109310
crossref_primary_10_1016_j_ecoenv_2022_113446
crossref_primary_10_1039_c1em10298b
crossref_primary_10_1007_s12302_009_0072_2
crossref_primary_10_1016_j_chemosphere_2019_03_007
crossref_primary_10_1093_toxsci_kft067
crossref_primary_10_1016_j_yrtph_2019_104424
crossref_primary_10_1897_08_126_1
crossref_primary_10_1007_s11356_013_1667_0
crossref_primary_10_1016_j_aquatox_2010_07_003
crossref_primary_10_1016_j_etap_2012_02_007
crossref_primary_10_3390_fishes7040189
crossref_primary_10_1016_j_jhazmat_2023_130832
crossref_primary_10_1007_s11356_017_8993_6
crossref_primary_10_1016_j_sjbs_2017_10_004
crossref_primary_10_1007_s10641_012_0064_8
crossref_primary_10_1016_j_chemosphere_2017_05_063
crossref_primary_10_1002_etc_2503
crossref_primary_10_1002_jat_3014
crossref_primary_10_1002_tox_22371
crossref_primary_10_1080_03067319_2015_1048434
crossref_primary_10_1007_s11356_015_5101_7
crossref_primary_10_1016_j_aquatox_2006_01_018
crossref_primary_10_1039_C8EN00174J
crossref_primary_10_1002_etc_4921
crossref_primary_10_1021_es204590d
crossref_primary_10_1016_j_ecoenv_2020_111566
crossref_primary_10_1021_es403781z
crossref_primary_10_3389_fenvs_2022_1027062
crossref_primary_10_1016_j_scitotenv_2021_150959
crossref_primary_10_1080_10807039_2010_512254
crossref_primary_10_3390_w13101347
crossref_primary_10_1016_j_jhazmat_2022_130525
crossref_primary_10_1016_j_yrtph_2018_09_002
crossref_primary_10_1007_s10646_006_0107_z
crossref_primary_10_1016_j_cbpc_2017_06_002
crossref_primary_10_1016_j_envpol_2014_03_006
crossref_primary_10_1016_j_etap_2016_04_014
crossref_primary_10_1002_etc_660
crossref_primary_10_1016_j_cbpc_2008_05_017
crossref_primary_10_1371_journal_pone_0196425
crossref_primary_10_1016_j_tiv_2014_05_002
Cites_doi 10.1007/s00216-003-2241-2
10.1016/S0166-445X(03)00134-6
10.1023/A:1008992932155
10.1677/joe.0.1580259
10.1016/S0166-445X(02)00060-7
10.1016/S1532-0456(03)00006-1
10.1086/409052
10.1016/j.aquatox.2003.09.004
10.1002/etc.5620210412
10.1016/S0166-445X(99)00084-3
10.1289/ehp.6862
10.1006/gcen.2001.7743
10.1021/es020086r
10.1016/S1873-0140(05)80019-0
10.1016/S0166-445X(01)00238-7
10.1016/j.ecoenv.2003.07.019
10.1007/s002440010272
10.1289/ehp.99107349
10.1016/S1532-0456(02)00111-4
10.1002/etc.5620210822
10.1016/j.ecoenv.2004.05.005
10.1021/es991292a
10.1016/S1382-6689(02)00126-6
10.2307/1444443
10.1016/j.aquatox.2003.10.008
10.1080/01926230252824716
10.1002/etc.5620201122
10.1016/S1096-4959(03)00228-8
10.1023/A:1022527432252
10.1007/BF01701871
10.1016/S0141-1136(99)00047-1
10.1023/B:ECTX.0000003030.67752.04
10.1289/ehp.99107s4613
10.1021/es0488939
10.1002/etc.5620220431
10.1289/ehp.001081007
10.1021/es049771j
10.1248/jhs.50.301
10.1023/A:1021053217513
10.1021/es015848h
10.1016/S0166-445X(02)00011-5
10.1016/S0300-483X(03)00340-8
10.1289/ehp.97105418
10.1095/biolreprod43.2.202
10.1046/j.1095-8649.2003.00074.x
10.1016/j.marpolbul.2004.02.032
10.1289/ehp.8050
10.1351/pac200375112335
10.1016/S1532-0456(01)00194-6
10.1016/S0378-4274(02)00070-X
10.1139/f92-242
10.1093/toxsci/67.1.121
10.1016/S1096-4959(01)00319-0
10.1016/j.aquatox.2003.06.004
10.1002/etc.5620200930
10.1080/10408449891344236
10.1007/s004380000247
10.2331/fishsci.68.sup1_694
10.1016/S0147-6513(02)00040-4
10.1002/etc.5620200616
10.1016/S0303-7207(96)03960-3
10.1023/A:1008972330318
10.1095/biolreprod.105.039701
10.1016/S0166-445X(03)00177-2
10.1093/toxsci/62.2.257
10.1016/S0166-445X(98)00112-X
10.1021/es010186h
10.1016/0044-8486(88)90156-1
10.1002/etc.5620210213
10.1002/dvdy.10366
10.1016/j.jtbi.2003.10.010
10.1016/S0378-4274(02)00043-7
10.1016/S0166-445X(02)00049-8
10.1002/etc.5620200610
10.1080/10408440091159176
10.1016/S1532-0456(00)00185-X
10.1093/mutage/5.2.159
10.1016/j.ygcen.2003.10.004
10.1002/etc.5620210924
10.1080/713609966
10.1289/ehp.961041096
10.1080/01926230252824725
10.1080/15287390490253633
10.1021/es9710870
10.1016/S0303-7207(02)00305-2
10.1002/etc.5620220623
10.1016/S0166-445X(99)00076-4
10.1080/20018091094835
10.1002/etc.5620170113
10.1016/0043-1354(88)90026-7
10.1289/ehp.95103s7173
10.1016/S0166-445X(00)00090-4
10.1006/eesa.2002.2172
10.1897/03-31
10.1016/0166-445X(88)90015-X
10.1093/nar/gkg017
10.1897/04-096R1.1
10.1016/S0303-7207(03)00118-7
10.1289/ehp.7209
10.1002/etc.5620191128
10.2307/1312253
10.1023/A:1007754123787
ContentType Journal Article
Copyright This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI 2006
Copyright_xml – notice: This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1289/ehp.8062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1552-9924
EndPage 114
ExternalDocumentID PMC1874181
16818255
10_1289_ehp_8062
Genre Journal Article
Comparative Study
Review
GroupedDBID ---
-~X
.GJ
04C
29G
2WC
2XV
36B
3O-
42X
4P2
53G
5GY
5RE
5VS
6PF
7RV
7WY
7X7
7XC
85S
88E
8AO
8C1
8FE
8FG
8FH
8FI
8FJ
8FL
8G5
8R4
8R5
9K5
AACGO
AAFWJ
AANCE
AAWTL
AAYXX
ABBHK
ABDBF
ABJCF
ABOCM
ABPLY
ABPPZ
ABTLG
ABUWG
ABXSQ
ACGFO
ACHIC
ACIHN
ACIWK
ACNCT
ACPRK
ACUHS
ADBBV
ADOJX
ADQXQ
ADRAZ
ADULT
AEAQA
AENEX
AEUPB
AEUYN
AEXZC
AFKRA
AFPKN
AFRAH
AGNAY
AHDLI
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
ANHSF
AOIJS
AQVQM
AS~
ATCPS
AXR
AZQEC
B0M
BAWUL
BCNDV
BENPR
BES
BEZIV
BGLVJ
BHPHI
BKEYQ
BKNYI
BMSDO
BNQBC
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
DCCCD
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EBX
ECF
ECGQY
ECT
EDH
EHB
EHC
EHE
EHN
EIHBH
EJD
EMB
EMK
EMOBN
EPL
EPT
ESX
EX3
F5P
F8P
FRNLG
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HYE
I-F
IAG
IAO
IEA
IEP
IER
IHR
IHW
INH
INR
IOF
IOV
IPO
IPSME
ISR
ITC
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K60
K6~
K9-
KQ8
L6V
M0C
M0R
M1P
M2O
M48
M7S
NAPCQ
NEJ
O5R
O5S
OK1
OVT
P2P
PATMY
PCD
PGMZT
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
Q2X
QF4
QM9
QN7
QO4
Q~Q
REH
RGD
RNS
RPM
RWL
RZL
S0X
SA0
SJN
SV3
TAE
TAN
TR2
TUS
U5U
UDP
UGJ
UKHRP
WH7
WOQ
WOW
WQ9
XSB
YR5
ZAC
ZE2
ZGI
~02
~8M
~KM
3V.
ADZLD
CGR
CUY
CVF
DOOOF
ECM
EIF
EQZMY
JSODD
M~E
NPM
PKN
7X8
PPXIY
PQGLB
5PM
PJZUB
ID FETCH-LOGICAL-c370t-fd1ccc222bd9b0b4ea9f886ae129943738948d783571aafcbee1144375a64b133
IEDL.DBID M48
ISSN 0091-6765
IngestDate Thu Aug 21 17:56:56 EDT 2025
Fri Jul 11 07:57:00 EDT 2025
Wed Feb 19 02:43:27 EST 2025
Tue Jul 01 01:24:34 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-fd1ccc222bd9b0b4ea9f886ae129943738948d783571aafcbee1144375a64b133
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
T.H.H. is employed by AstraZeneca Global Safety, Health and Environment, a pharmaceutical company. The remaining authors declare they have no competing financial interests.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1289/ehp.8062
PMID 16818255
PQID 68609455
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1874181
proquest_miscellaneous_68609455
pubmed_primary_16818255
crossref_primary_10_1289_ehp_8062
crossref_citationtrail_10_1289_ehp_8062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04-01
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental health perspectives
PublicationTitleAlternate Environ Health Perspect
PublicationYear 2006
Publisher National Institute of Environmental Health Sciences
Publisher_xml – name: National Institute of Environmental Health Sciences
References e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_66_1
e_1_3_2_43_1
e_1_3_2_85_1
e_1_3_2_24_1
e_1_3_2_47_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_127_1
e_1_3_2_62_1
e_1_3_2_104_1
e_1_3_2_81_1
e_1_3_2_123_1
e_1_3_2_108_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_96_1
e_1_3_2_3_1
e_1_3_2_116_1
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_112_1
e_1_3_2_29_1
Hutchinson TH (e_1_3_2_55_1) 2002; 9
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_86_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
e_1_3_2_126_1
e_1_3_2_40_1
e_1_3_2_82_1
e_1_3_2_103_1
e_1_3_2_122_1
e_1_3_2_107_1
e_1_3_2_17_1
Peakall DW (e_1_3_2_88_1) 1994; 1
e_1_3_2_2_1
e_1_3_2_32_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_59_1
e_1_3_2_97_1
e_1_3_2_36_1
e_1_3_2_78_1
e_1_3_2_93_1
e_1_3_2_115_1
e_1_3_2_51_1
e_1_3_2_111_1
e_1_3_2_70_1
Ankley GT (e_1_3_2_5_1) 2004; 45
e_1_3_2_119_1
e_1_3_2_49_1
e_1_3_2_41_1
e_1_3_2_87_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_68_1
e_1_3_2_125_1
e_1_3_2_83_1
e_1_3_2_121_1
e_1_3_2_60_1
e_1_3_2_102_1
e_1_3_2_106_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_75_1
Rose J (e_1_3_2_92_1) 2002; 131
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_98_1
e_1_3_2_114_1
e_1_3_2_94_1
e_1_3_2_110_1
e_1_3_2_71_1
e_1_3_2_90_1
e_1_3_2_118_1
e_1_3_2_27_1
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_124_1
e_1_3_2_61_1
e_1_3_2_84_1
e_1_3_2_105_1
e_1_3_2_120_1
e_1_3_2_128_1
e_1_3_2_109_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_57_1
e_1_3_2_99_1
e_1_3_2_113_1
e_1_3_2_95_1
e_1_3_2_72_1
e_1_3_2_91_1
e_1_3_2_117_1
12651187 - Ecotoxicol Environ Saf. 2003 Mar;54(3):315-22
10421771 - Environ Health Perspect. 1999 Aug;107 Suppl 4:613-8
2188068 - Mutagenesis. 1990 Mar;5(2):159-64
8593867 - Environ Health Perspect. 1995 Oct;103 Suppl 7:173-8
15175171 - Environ Health Perspect. 2004 Jun;112(8):847-53
10905350 - Mol Gen Genet. 2000 Jun;263(5):828-37
12782402 - Mol Cell Endocrinol. 2003 May 30;203(1-2):41-50
12075783 - Environ Sci Technol. 2002 Jun 1;36(11):2311-21
12359393 - Aquat Toxicol. 2002 Dec 3;61(3-4):233-41
14990380 - J Theor Biol. 2004 Mar 21;227(2):159-65
15111029 - Mar Pollut Bull. 2004 May;48(9-10):817-34
11892727 - Toxicol Pathol. 2002 Jan-Feb;30(1):59-65
9027336 - Mol Cell Endocrinol. 1996 Nov 29;124(1-2):173-83
16110986 - Environ Toxicol Chem. 2005 May;24(5):1088-98
16644026 - Aquat Toxicol. 2006 Jun 15;78(2):202-6
14551668 - Anal Bioanal Chem. 2004 Feb;378(3):621-33
12521139 - Ecotoxicology. 2002 Dec;11(6):423-34
14680324 - Ecotoxicology. 2003 Dec;12(6):457-62
2790243 - Bull Environ Contam Toxicol. 1989 Sep;43(3):370-7
11833800 - Environ Toxicol Chem. 2002 Feb;21(2):319-26
11461838 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jul;129(3):217-32
12946619 - Aquat Toxicol. 2003 Oct 29;65(2):205-20
21782649 - Environ Toxicol Pharmacol. 2003 Feb;13(2):57-149
9711432 - Crit Rev Toxicol. 1998 Jul;28(4):319-61
12387389 - Environ Sci Technol. 2002 Oct 15;36(20):4201-17
12223204 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Aug;132(4):483-92
12505378 - Aquat Toxicol. 2003 Jan 24;62(2):85-103
2378932 - Biol Reprod. 1990 Aug;43(2):202-9
15454686 - ILAR J. 2004;45(4):469-83
14636695 - Toxicology. 2003 Dec 15;194(1-2):43-50
12062157 - Aquat Toxicol. 2002 Jul;58(1-2):99-112
11399458 - Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):261-8
11951950 - Environ Toxicol Chem. 2002 Apr;21(4):767-75
12643983 - Comp Biochem Physiol C Toxicol Pharmacol. 2003 Mar;134(3):365-74
12581878 - Mol Cell Endocrinol. 2003 Jan 31;199(1-2):37-47
15036873 - Aquat Toxicol. 2004 Feb 10;66(2):183-95
11392137 - Environ Toxicol Chem. 2001 Jun;20(6):1276-90
11452138 - Toxicol Sci. 2001 Aug;62(2):257-67
14713042 - Environ Toxicol Chem. 2003 Dec;22(12):3001-8
12519950 - Nucleic Acids Res. 2003 Jan 1;31(1):72-4
778893 - Q Rev Biol. 1976 Mar;51(1):3-47
16818244 - Environ Health Perspect. 2006 Apr;114 Suppl 1:32-9
8930552 - Environ Health Perspect. 1996 Oct;104(10):1096-101
11392131 - Environ Toxicol Chem. 2001 Jun;20(6):1216-27
14723879 - Gen Comp Endocrinol. 2004 Feb;135(3):276-85
9189707 - Environ Health Perspect. 1997 Apr;105(4):418-22
12206436 - Environ Toxicol Chem. 2002 Sep;21(9):1946-54
15261716 - Ecotoxicol Environ Saf. 2004 Sep;59(1):1-9
10967398 - Aquat Toxicol. 2000 Oct 1;50(4):363-373
11699782 - Environ Toxicol Chem. 2001 Nov;20(11):2552-60
15597887 - Environ Sci Technol. 2004 Dec 1;38(23):6314-21
11521838 - Environ Toxicol Chem. 2001 Sep;20(9):2081-7
11890477 - Toxicol Pathol. 2002 Jan-Feb;30(1):66-74
15930325 - Biol Reprod. 2005 Oct;73(4):648-62
12739879 - Ecotoxicology. 2003 Feb-Aug;12(1-4):331-43
9771470 - J Endocrinol. 1998 Aug;158(2):259-66
11976068 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Apr;131(4):531-9
14687976 - Aquat Toxicol. 2004 Jan 7;66(1):15-23
14568354 - Aquat Toxicol. 2003 Dec 10;65(4):397-411
10210690 - Environ Health Perspect. 1999 May;107(5):349-57
12152771 - Environ Toxicol Chem. 2002 Aug;21(8):1692-8
15884355 - Environ Sci Technol. 2005 Apr 15;39(8):2599-607
14529741 - Comp Biochem Physiol B Biochem Mol Biol. 2003 Oct;136(2):149-61
10854672 - Aquat Toxicol. 2000 Jul 1;49(4):289-304
14668108 - J Toxicol Environ Health A. 2004 Jan 9;67(1):1-22
12731844 - Environ Sci Technol. 2003 Apr 15;37(8):1609-16
11444013 - Mar Environ Res. 2000 Feb;49(1):37-53
11166681 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jan;128(1):127-41
15041256 - Ecotoxicol Environ Saf. 2004 Mar;57(3):330-45
11598783 - Arch Environ Contam Toxicol. 2001 Nov;41(4):458-67
12685728 - Environ Toxicol Chem. 2003 Apr;22(4):908-13
11988359 - Toxicol Lett. 2002 May 10;131(1-2):65-74
11988358 - Toxicol Lett. 2002 May 10;131(1-2):51-63
12200092 - Aquat Toxicol. 2002 Oct 30;60(3-4):285-99
10814808 - Aquat Toxicol. 2000 May 1;49(1-2):77-88
10680769 - Crit Rev Toxicol. 2000 Jan;30(1):71-133
12785594 - Environ Toxicol Chem. 2003 Jun;22(6):1350-60
15003697 - Aquat Toxicol. 2004 Apr 14;67(2):105-26
11102288 - Environ Health Perspect. 2000 Nov;108(11):1007-14
11944962 - Gen Comp Endocrinol. 2002 Mar;126(1):14-22
15579420 - Environ Health Perspect. 2004 Dec;112(17):1725-33
14579387 - Dev Dyn. 2003 Nov;228(3):490-6
11961225 - Toxicol Sci. 2002 May;67(1):121-30
12061825 - Ecotoxicol Environ Saf. 2002 Jun;52(2):97-112
References_xml – ident: e_1_3_2_80_1
  doi: 10.1007/s00216-003-2241-2
– ident: e_1_3_2_62_1
  doi: 10.1016/S0166-445X(03)00134-6
– ident: e_1_3_2_52_1
  doi: 10.1023/A:1008992932155
– ident: e_1_3_2_13_1
– ident: e_1_3_2_19_1
  doi: 10.1677/joe.0.1580259
– ident: e_1_3_2_71_1
  doi: 10.1016/S0166-445X(02)00060-7
– ident: e_1_3_2_2_1
  doi: 10.1016/S1532-0456(03)00006-1
– ident: e_1_3_2_99_1
  doi: 10.1086/409052
– ident: e_1_3_2_114_1
  doi: 10.1016/j.aquatox.2003.09.004
– ident: e_1_3_2_116_1
  doi: 10.1002/etc.5620210412
– ident: e_1_3_2_8_1
  doi: 10.1016/S0166-445X(99)00084-3
– ident: e_1_3_2_9_1
  doi: 10.1289/ehp.6862
– ident: e_1_3_2_105_1
  doi: 10.1006/gcen.2001.7743
– ident: e_1_3_2_39_1
  doi: 10.1021/es020086r
– ident: e_1_3_2_48_1
  doi: 10.1016/S1873-0140(05)80019-0
– ident: e_1_3_2_45_1
  doi: 10.1016/S0166-445X(01)00238-7
– ident: e_1_3_2_87_1
  doi: 10.1016/j.ecoenv.2003.07.019
– ident: e_1_3_2_115_1
  doi: 10.1007/s002440010272
– ident: e_1_3_2_12_1
– ident: e_1_3_2_27_1
  doi: 10.1289/ehp.99107349
– ident: e_1_3_2_120_1
  doi: 10.1016/S1532-0456(02)00111-4
– ident: e_1_3_2_97_1
  doi: 10.1002/etc.5620210822
– ident: e_1_3_2_76_1
  doi: 10.1016/j.ecoenv.2004.05.005
– ident: e_1_3_2_42_1
  doi: 10.1021/es991292a
– ident: e_1_3_2_117_1
  doi: 10.1016/S1382-6689(02)00126-6
– ident: e_1_3_2_26_1
– ident: e_1_3_2_51_1
  doi: 10.2307/1444443
– volume: 9
  start-page: 439
  year: 2002
  ident: e_1_3_2_55_1
  article-title: Impacts of endocrine disrupters on fish development: opportunities for adapting OECD Test Guideline 210
  publication-title: Environ Sci
– ident: e_1_3_2_56_1
– ident: e_1_3_2_30_1
  doi: 10.1016/j.aquatox.2003.10.008
– ident: e_1_3_2_36_1
  doi: 10.1080/01926230252824716
– ident: e_1_3_2_126_1
  doi: 10.1002/etc.5620201122
– ident: e_1_3_2_69_1
  doi: 10.1016/S1096-4959(03)00228-8
– ident: e_1_3_2_41_1
  doi: 10.1023/A:1022527432252
– ident: e_1_3_2_17_1
  doi: 10.1007/BF01701871
– ident: e_1_3_2_25_1
– ident: e_1_3_2_43_1
  doi: 10.1016/S0141-1136(99)00047-1
– ident: e_1_3_2_103_1
– ident: e_1_3_2_10_1
– ident: e_1_3_2_77_1
  doi: 10.1023/B:ECTX.0000003030.67752.04
– ident: e_1_3_2_15_1
  doi: 10.1289/ehp.99107s4613
– ident: e_1_3_2_108_1
  doi: 10.1021/es0488939
– ident: e_1_3_2_119_1
  doi: 10.1002/etc.5620220431
– ident: e_1_3_2_82_1
– ident: e_1_3_2_118_1
– ident: e_1_3_2_112_1
– ident: e_1_3_2_57_1
  doi: 10.1289/ehp.001081007
– ident: e_1_3_2_124_1
  doi: 10.1021/es049771j
– ident: e_1_3_2_101_1
  doi: 10.1248/jhs.50.301
– ident: e_1_3_2_113_1
  doi: 10.1023/A:1021053217513
– ident: e_1_3_2_24_1
  doi: 10.1021/es015848h
– ident: e_1_3_2_40_1
  doi: 10.1016/S0166-445X(02)00011-5
– ident: e_1_3_2_58_1
  doi: 10.1016/S0300-483X(03)00340-8
– ident: e_1_3_2_7_1
  doi: 10.1289/ehp.97105418
– ident: e_1_3_2_109_1
  doi: 10.1095/biolreprod43.2.202
– ident: e_1_3_2_73_1
  doi: 10.1046/j.1095-8649.2003.00074.x
– ident: e_1_3_2_11_1
  doi: 10.1016/j.marpolbul.2004.02.032
– ident: e_1_3_2_64_1
  doi: 10.1289/ehp.8050
– ident: e_1_3_2_66_1
  doi: 10.1351/pac200375112335
– ident: e_1_3_2_29_1
  doi: 10.1016/S1532-0456(01)00194-6
– ident: e_1_3_2_128_1
  doi: 10.1016/S0378-4274(02)00070-X
– ident: e_1_3_2_125_1
  doi: 10.1139/f92-242
– ident: e_1_3_2_6_1
  doi: 10.1093/toxsci/67.1.121
– ident: e_1_3_2_67_1
  doi: 10.1016/S1096-4959(01)00319-0
– ident: e_1_3_2_50_1
  doi: 10.1016/j.aquatox.2003.06.004
– ident: e_1_3_2_98_1
– ident: e_1_3_2_74_1
  doi: 10.1002/etc.5620200930
– ident: e_1_3_2_22_1
– ident: e_1_3_2_107_1
  doi: 10.1080/10408449891344236
– ident: e_1_3_2_106_1
  doi: 10.1007/s004380000247
– ident: e_1_3_2_49_1
  doi: 10.2331/fishsci.68.sup1_694
– ident: e_1_3_2_95_1
  doi: 10.1016/S0147-6513(02)00040-4
– ident: e_1_3_2_3_1
  doi: 10.1002/etc.5620200616
– ident: e_1_3_2_33_1
  doi: 10.1016/S0303-7207(96)03960-3
– ident: e_1_3_2_28_1
  doi: 10.1023/A:1008972330318
– ident: e_1_3_2_32_1
  doi: 10.1095/biolreprod.105.039701
– ident: e_1_3_2_83_1
  doi: 10.1016/S0166-445X(03)00177-2
– ident: e_1_3_2_86_1
  doi: 10.1093/toxsci/62.2.257
– ident: e_1_3_2_70_1
  doi: 10.1016/S0166-445X(98)00112-X
– ident: e_1_3_2_44_1
  doi: 10.1021/es010186h
– ident: e_1_3_2_47_1
  doi: 10.1016/0044-8486(88)90156-1
– ident: e_1_3_2_84_1
  doi: 10.1002/etc.5620210213
– ident: e_1_3_2_21_1
– ident: e_1_3_2_91_1
  doi: 10.1002/dvdy.10366
– ident: e_1_3_2_85_1
– ident: e_1_3_2_54_1
  doi: 10.1016/j.jtbi.2003.10.010
– volume: 131
  start-page: 531
  year: 2002
  ident: e_1_3_2_92_1
  article-title: Vitellogenin induction by 17b-estradiol and 17a-ethinylestradiol in male zebrafish (Danio rerio)
  publication-title: Comp Biochem Physiol
– ident: e_1_3_2_93_1
  doi: 10.1016/S0378-4274(02)00043-7
– ident: e_1_3_2_59_1
  doi: 10.1016/S0166-445X(02)00049-8
– ident: e_1_3_2_68_1
  doi: 10.1002/etc.5620200610
– ident: e_1_3_2_23_1
– ident: e_1_3_2_122_1
  doi: 10.1080/10408440091159176
– ident: e_1_3_2_61_1
  doi: 10.1016/S1532-0456(00)00185-X
– ident: e_1_3_2_78_1
  doi: 10.1093/mutage/5.2.159
– volume: 1
  start-page: 55
  year: 1994
  ident: e_1_3_2_88_1
  article-title: Biomarkers: the way forward in environmental assessment
  publication-title: Toxicol Ecotoxicol News
– ident: e_1_3_2_14_1
  doi: 10.1016/j.ygcen.2003.10.004
– ident: e_1_3_2_127_1
– ident: e_1_3_2_65_1
  doi: 10.1002/etc.5620210924
– ident: e_1_3_2_18_1
  doi: 10.1080/713609966
– ident: e_1_3_2_34_1
  doi: 10.1289/ehp.961041096
– ident: e_1_3_2_72_1
  doi: 10.1080/01926230252824725
– ident: e_1_3_2_20_1
  doi: 10.1080/15287390490253633
– ident: e_1_3_2_63_1
  doi: 10.1021/es9710870
– ident: e_1_3_2_53_1
– volume: 45
  start-page: 467
  year: 2004
  ident: e_1_3_2_5_1
  article-title: Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals
  publication-title: Inter Lab Anim Res J
– ident: e_1_3_2_121_1
  doi: 10.1016/S0303-7207(02)00305-2
– ident: e_1_3_2_4_1
  doi: 10.1002/etc.5620220623
– ident: e_1_3_2_35_1
  doi: 10.1016/S0166-445X(99)00076-4
– ident: e_1_3_2_37_1
  doi: 10.1080/20018091094835
– ident: e_1_3_2_38_1
  doi: 10.1002/etc.5620170113
– ident: e_1_3_2_89_1
  doi: 10.1016/0043-1354(88)90026-7
– ident: e_1_3_2_81_1
– ident: e_1_3_2_100_1
  doi: 10.1289/ehp.95103s7173
– ident: e_1_3_2_111_1
– ident: e_1_3_2_94_1
  doi: 10.1016/S0166-445X(00)00090-4
– ident: e_1_3_2_96_1
  doi: 10.1006/eesa.2002.2172
– ident: e_1_3_2_102_1
  doi: 10.1897/03-31
– ident: e_1_3_2_60_1
  doi: 10.1016/0166-445X(88)90015-X
– ident: e_1_3_2_46_1
  doi: 10.1093/nar/gkg017
– ident: e_1_3_2_31_1
  doi: 10.1897/04-096R1.1
– ident: e_1_3_2_110_1
  doi: 10.1016/S0303-7207(03)00118-7
– ident: e_1_3_2_90_1
– ident: e_1_3_2_79_1
  doi: 10.1289/ehp.7209
– ident: e_1_3_2_104_1
  doi: 10.1002/etc.5620191128
– ident: e_1_3_2_16_1
  doi: 10.2307/1312253
– ident: e_1_3_2_75_1
  doi: 10.1023/A:1007754123787
– ident: e_1_3_2_123_1
– reference: 15454686 - ILAR J. 2004;45(4):469-83
– reference: 10210690 - Environ Health Perspect. 1999 May;107(5):349-57
– reference: 11444013 - Mar Environ Res. 2000 Feb;49(1):37-53
– reference: 11102288 - Environ Health Perspect. 2000 Nov;108(11):1007-14
– reference: 14990380 - J Theor Biol. 2004 Mar 21;227(2):159-65
– reference: 8930552 - Environ Health Perspect. 1996 Oct;104(10):1096-101
– reference: 14680324 - Ecotoxicology. 2003 Dec;12(6):457-62
– reference: 12062157 - Aquat Toxicol. 2002 Jul;58(1-2):99-112
– reference: 9711432 - Crit Rev Toxicol. 1998 Jul;28(4):319-61
– reference: 12946619 - Aquat Toxicol. 2003 Oct 29;65(2):205-20
– reference: 12739879 - Ecotoxicology. 2003 Feb-Aug;12(1-4):331-43
– reference: 12782402 - Mol Cell Endocrinol. 2003 May 30;203(1-2):41-50
– reference: 8593867 - Environ Health Perspect. 1995 Oct;103 Suppl 7:173-8
– reference: 11976068 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Apr;131(4):531-9
– reference: 16818244 - Environ Health Perspect. 2006 Apr;114 Suppl 1:32-9
– reference: 778893 - Q Rev Biol. 1976 Mar;51(1):3-47
– reference: 11988359 - Toxicol Lett. 2002 May 10;131(1-2):65-74
– reference: 12505378 - Aquat Toxicol. 2003 Jan 24;62(2):85-103
– reference: 10967398 - Aquat Toxicol. 2000 Oct 1;50(4):363-373
– reference: 15884355 - Environ Sci Technol. 2005 Apr 15;39(8):2599-607
– reference: 9189707 - Environ Health Perspect. 1997 Apr;105(4):418-22
– reference: 12651187 - Ecotoxicol Environ Saf. 2003 Mar;54(3):315-22
– reference: 11833800 - Environ Toxicol Chem. 2002 Feb;21(2):319-26
– reference: 15597887 - Environ Sci Technol. 2004 Dec 1;38(23):6314-21
– reference: 12061825 - Ecotoxicol Environ Saf. 2002 Jun;52(2):97-112
– reference: 16110986 - Environ Toxicol Chem. 2005 May;24(5):1088-98
– reference: 11392131 - Environ Toxicol Chem. 2001 Jun;20(6):1216-27
– reference: 10680769 - Crit Rev Toxicol. 2000 Jan;30(1):71-133
– reference: 12200092 - Aquat Toxicol. 2002 Oct 30;60(3-4):285-99
– reference: 11961225 - Toxicol Sci. 2002 May;67(1):121-30
– reference: 10421771 - Environ Health Perspect. 1999 Aug;107 Suppl 4:613-8
– reference: 21782649 - Environ Toxicol Pharmacol. 2003 Feb;13(2):57-149
– reference: 2790243 - Bull Environ Contam Toxicol. 1989 Sep;43(3):370-7
– reference: 11988358 - Toxicol Lett. 2002 May 10;131(1-2):51-63
– reference: 12152771 - Environ Toxicol Chem. 2002 Aug;21(8):1692-8
– reference: 2188068 - Mutagenesis. 1990 Mar;5(2):159-64
– reference: 11892727 - Toxicol Pathol. 2002 Jan-Feb;30(1):59-65
– reference: 12223204 - Comp Biochem Physiol C Toxicol Pharmacol. 2002 Aug;132(4):483-92
– reference: 11166681 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jan;128(1):127-41
– reference: 14529741 - Comp Biochem Physiol B Biochem Mol Biol. 2003 Oct;136(2):149-61
– reference: 11951950 - Environ Toxicol Chem. 2002 Apr;21(4):767-75
– reference: 12519950 - Nucleic Acids Res. 2003 Jan 1;31(1):72-4
– reference: 16644026 - Aquat Toxicol. 2006 Jun 15;78(2):202-6
– reference: 15041256 - Ecotoxicol Environ Saf. 2004 Mar;57(3):330-45
– reference: 11392137 - Environ Toxicol Chem. 2001 Jun;20(6):1276-90
– reference: 10905350 - Mol Gen Genet. 2000 Jun;263(5):828-37
– reference: 14687976 - Aquat Toxicol. 2004 Jan 7;66(1):15-23
– reference: 9771470 - J Endocrinol. 1998 Aug;158(2):259-66
– reference: 15175171 - Environ Health Perspect. 2004 Jun;112(8):847-53
– reference: 14551668 - Anal Bioanal Chem. 2004 Feb;378(3):621-33
– reference: 12521139 - Ecotoxicology. 2002 Dec;11(6):423-34
– reference: 10854672 - Aquat Toxicol. 2000 Jul 1;49(4):289-304
– reference: 11699782 - Environ Toxicol Chem. 2001 Nov;20(11):2552-60
– reference: 12359393 - Aquat Toxicol. 2002 Dec 3;61(3-4):233-41
– reference: 12731844 - Environ Sci Technol. 2003 Apr 15;37(8):1609-16
– reference: 14636695 - Toxicology. 2003 Dec 15;194(1-2):43-50
– reference: 15003697 - Aquat Toxicol. 2004 Apr 14;67(2):105-26
– reference: 15036873 - Aquat Toxicol. 2004 Feb 10;66(2):183-95
– reference: 14723879 - Gen Comp Endocrinol. 2004 Feb;135(3):276-85
– reference: 9027336 - Mol Cell Endocrinol. 1996 Nov 29;124(1-2):173-83
– reference: 12643983 - Comp Biochem Physiol C Toxicol Pharmacol. 2003 Mar;134(3):365-74
– reference: 12785594 - Environ Toxicol Chem. 2003 Jun;22(6):1350-60
– reference: 2378932 - Biol Reprod. 1990 Aug;43(2):202-9
– reference: 12206436 - Environ Toxicol Chem. 2002 Sep;21(9):1946-54
– reference: 11452138 - Toxicol Sci. 2001 Aug;62(2):257-67
– reference: 14713042 - Environ Toxicol Chem. 2003 Dec;22(12):3001-8
– reference: 11399458 - Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):261-8
– reference: 14668108 - J Toxicol Environ Health A. 2004 Jan 9;67(1):1-22
– reference: 15579420 - Environ Health Perspect. 2004 Dec;112(17):1725-33
– reference: 10814808 - Aquat Toxicol. 2000 May 1;49(1-2):77-88
– reference: 11890477 - Toxicol Pathol. 2002 Jan-Feb;30(1):66-74
– reference: 11944962 - Gen Comp Endocrinol. 2002 Mar;126(1):14-22
– reference: 12387389 - Environ Sci Technol. 2002 Oct 15;36(20):4201-17
– reference: 12075783 - Environ Sci Technol. 2002 Jun 1;36(11):2311-21
– reference: 11461838 - Comp Biochem Physiol C Toxicol Pharmacol. 2001 Jul;129(3):217-32
– reference: 15111029 - Mar Pollut Bull. 2004 May;48(9-10):817-34
– reference: 11521838 - Environ Toxicol Chem. 2001 Sep;20(9):2081-7
– reference: 14579387 - Dev Dyn. 2003 Nov;228(3):490-6
– reference: 12581878 - Mol Cell Endocrinol. 2003 Jan 31;199(1-2):37-47
– reference: 15930325 - Biol Reprod. 2005 Oct;73(4):648-62
– reference: 11598783 - Arch Environ Contam Toxicol. 2001 Nov;41(4):458-67
– reference: 14568354 - Aquat Toxicol. 2003 Dec 10;65(4):397-411
– reference: 12685728 - Environ Toxicol Chem. 2003 Apr;22(4):908-13
– reference: 15261716 - Ecotoxicol Environ Saf. 2004 Sep;59(1):1-9
SSID ssj0001866
Score 2.3518074
SecondaryResourceType review_article
Snippet Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting...
Biomarkers are currently best used as mechanistic “signposts” rather than as “traffic lights” in the environmental risk assessment of endocrine-disrupting...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 106
SubjectTerms Algorithms
Animals
Biomarkers - analysis
Endocrine Disruptors - toxicity
Environmental Exposure
Fishes - physiology
Research Design - standards
Risk Assessment - methods
Species Specificity
Title Screening and Testing for Endocrine Disruption in Fish—Biomarkers As “Signposts,” Not “Traffic Lights,” in Risk Assessment
URI https://www.ncbi.nlm.nih.gov/pubmed/16818255
https://www.proquest.com/docview/68609455
https://pubmed.ncbi.nlm.nih.gov/PMC1874181
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Za9tAEB7S5KVQQu86adytKfSlSqVY2uMhlDbEDS0JvQx-E3sJG8zKsWRo--s7I8mJ06Yvi9DOLsuOdufQzDcAr3RhYyVUFgkt0ij1xkQqLnjEhfZHeFWaOKHc4fMLfjZOP02yyRasq212G1jdatpRPanxcn748_LXOzzwxw02glRv_XRxKGO6iHdQHgk6nufpNWY4Qbq1WJQJLoFnHQTt5kiCDuUouo4o429TPv2jdP4dO7khjEb3YbfTItn7lu0PYMuHh3CvdcGxNrPoEfz-bimoBmUT08GxmvA08Bm1VOaDKy3l_TE3q5ar5tpgs8CKWTWNKCOfgnaWFdMVG1CEx6Ks6urNgIWyZgNcEOFOsDnZ9fQWB1KEOlKvUT4fw3h0-uPkLOpKLUR2KOI6KlxirUVdwThlYpN6rQopufaoDqgG_Uil0pGXSCQa-Wu8R0MKOzLNU4N27hPYDmXwz4ChBea5tUPjpEPbRhkxdFJlmfaFIgWhB6_XG5zbDoecymHMc7JHcECOXMmJKz14eUW5aLE3bqF5seZRjgeD_nbo4MtVlXPJ0XTNsh48bTl2PUfH6h6IG7y8IiDI7Zs9YTZtoLepgiHqRHv_nXMf7rZOGorteQ7b9XLlD1BtqU0f7oiJwFaeJNSOPvZh58PpxZdv_cYRgO3nr7LffLt_APcD86o
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+and+testing+for+endocrine+disruption+in+fish-biomarkers+as+%22signposts%2C%22+not+%22traffic+lights%2C%22+in+risk+assessment&rft.jtitle=Environmental+health+perspectives&rft.au=Hutchinson%2C+Thomas+H&rft.au=Ankley%2C+Gerald+T&rft.au=Segner%2C+Helmut&rft.au=Tyler%2C+Charles+R&rft.date=2006-04-01&rft.issn=0091-6765&rft.volume=114+Suppl+1&rft.spage=106&rft_id=info:doi/10.1289%2Fehp.8062&rft_id=info%3Apmid%2F16818255&rft.externalDocID=16818255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6765&client=summon