Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries

Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-per...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 46; no. 23; pp. 7176 - 719
Main Authors Long, Wenyu, Fang, Baizeng, Ignaszak, Anna, Wu, Zhuangzhi, Wang, Yan-Jie, Wilkinson, David
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 27.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials ( e.g. , silicon, tin, metal oxides, etc. ), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field. This review focuses on the derivation of nanostructured carbons and their composite materials from biomass materials for lithium ion battery anodes.
AbstractList Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (e.g., silicon, tin, metal oxides, etc.), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field.
Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials ( e.g. , silicon, tin, metal oxides, etc. ), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field.
Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (e.g., silicon, tin, metal oxides, etc.), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field.Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (e.g., silicon, tin, metal oxides, etc.), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field.
Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials ( e.g. , silicon, tin, metal oxides, etc. ), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field. This review focuses on the derivation of nanostructured carbons and their composite materials from biomass materials for lithium ion battery anodes.
Author Long, Wenyu
Wilkinson, David
Fang, Baizeng
Wu, Zhuangzhi
Wang, Yan-Jie
Ignaszak, Anna
AuthorAffiliation Department of Chemical & Biological Engineering
Department of Chemistry
Central South University
School of Materials Science and Engineering
College of Chemistry
Chemical Engineering and Environmental Engineering
Dongguan University of Technology
University of British Columbia
University of New Brunswick
School of Environment and Civil Engineering
Liaoning Shihua University
AuthorAffiliation_xml – sequence: 0
  name: University of New Brunswick
– sequence: 0
  name: Chemical Engineering and Environmental Engineering
– sequence: 0
  name: Dongguan University of Technology
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: University of British Columbia
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Department of Chemical & Biological Engineering
– sequence: 0
  name: Central South University
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Liaoning Shihua University
– sequence: 0
  name: School of Environment and Civil Engineering
Author_xml – sequence: 1
  givenname: Wenyu
  surname: Long
  fullname: Long, Wenyu
– sequence: 2
  givenname: Baizeng
  surname: Fang
  fullname: Fang, Baizeng
– sequence: 3
  givenname: Anna
  surname: Ignaszak
  fullname: Ignaszak, Anna
– sequence: 4
  givenname: Zhuangzhi
  surname: Wu
  fullname: Wu, Zhuangzhi
– sequence: 5
  givenname: Yan-Jie
  surname: Wang
  fullname: Wang, Yan-Jie
– sequence: 6
  givenname: David
  surname: Wilkinson
  fullname: Wilkinson, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29075713$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFTEQx4NU7Gv14l0JeBFhdZJsspujfVgtFDyo55Bfy0vZTZ5JVuh_b56vVShCT8l885lvMjM5QycxRY_QSwLvCTD5wQpbAAST0xO0Ib2Arh_6_gRtgIHoAAg9RWel3LQdGQR9hk6phIEPhG3Q7iKkRZfSOZ_DL-9w1DGVmldb19xCq7NJsWAdHa47HzK2admnEqpv4kFPzuNF15au54KnlPEc6i6sCw4pYqPr4ciX5-jp1AD_4m49Rz8uP33ffumuv36-2n687iwboHaTGb1hfByo8VRKKQSlnHBoL25lak5gGk0LwY_GOTpx1zvZBNsbzqQe2Tl6e_Td5_Rz9aWqJRTr51lHn9aiKB2FpM0AHkWJ5EM_cCKGhr55gN6kNcdWiKJAYBSE88Pdr--o1SzeqX0Oi8636r7dDYAjYHMqJftJ2VB1bY2qWYdZEVCHiaqt2H77M9HLlvLuQcq963_hV0c4F_uX-_c92G8M56nh
CitedBy_id crossref_primary_10_1002_smll_201804884
crossref_primary_10_1021_acssuschemeng_0c04670
crossref_primary_10_1039_D4NJ02813A
crossref_primary_10_1016_j_talanta_2024_125657
crossref_primary_10_1039_C8SC02868K
crossref_primary_10_1021_acssuschemeng_9b01261
crossref_primary_10_1016_j_electacta_2022_141583
crossref_primary_10_1021_acs_energyfuels_1c03565
crossref_primary_10_1039_C8RA02122H
crossref_primary_10_1021_acsomega_2c02336
crossref_primary_10_3389_fchem_2019_00432
crossref_primary_10_1002_batt_202400302
crossref_primary_10_1016_j_jallcom_2021_162261
crossref_primary_10_1002_cssc_201903577
crossref_primary_10_1039_D4SE01393J
crossref_primary_10_14356_kona_2023016
crossref_primary_10_3390_cryst13020280
crossref_primary_10_1002_eem2_12059
crossref_primary_10_1016_j_ceramint_2019_09_210
crossref_primary_10_1039_D1TA10832H
crossref_primary_10_1016_j_apcatb_2023_123473
crossref_primary_10_1016_j_ijhydene_2022_01_146
crossref_primary_10_1021_acsaem_9b00002
crossref_primary_10_3390_batteries9090473
crossref_primary_10_1016_j_cej_2023_143077
crossref_primary_10_1016_j_apsusc_2022_152580
crossref_primary_10_1002_er_7508
crossref_primary_10_1016_j_jallcom_2022_167689
crossref_primary_10_1016_j_jpba_2022_115102
crossref_primary_10_3390_ma11081428
crossref_primary_10_1016_j_jallcom_2020_153718
crossref_primary_10_1002_slct_202203748
crossref_primary_10_1002_adfm_201910599
crossref_primary_10_3390_polym11040576
crossref_primary_10_1002_adsu_202200294
crossref_primary_10_1002_batt_201900091
crossref_primary_10_1002_admi_202001847
crossref_primary_10_1002_slct_202202413
crossref_primary_10_1016_j_seppur_2023_124756
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1016_j_jechem_2020_06_033
crossref_primary_10_1002_cssc_202000394
crossref_primary_10_1016_j_cej_2023_144958
crossref_primary_10_1039_D1TA01919H
crossref_primary_10_1016_j_cocis_2024_101822
crossref_primary_10_1016_j_jclepro_2024_142169
crossref_primary_10_1016_j_jallcom_2023_172608
crossref_primary_10_1039_C9TA04062E
crossref_primary_10_1016_j_ceramint_2020_11_028
crossref_primary_10_1016_j_nexus_2022_100118
crossref_primary_10_3390_catal12080894
crossref_primary_10_1021_acsaem_1c01540
crossref_primary_10_1038_s41467_020_20380_0
crossref_primary_10_1021_acs_jpcc_0c00524
crossref_primary_10_1021_acsaem_8b01109
crossref_primary_10_34133_2020_8685436
crossref_primary_10_3390_batteries8090123
crossref_primary_10_1080_10667857_2018_1500131
crossref_primary_10_1039_D3EE01493B
crossref_primary_10_1039_C9RA10729K
crossref_primary_10_1016_j_jelechem_2021_115179
crossref_primary_10_1021_acssuschemeng_8b04906
crossref_primary_10_1016_j_rser_2020_110308
crossref_primary_10_1002_cnma_202200056
crossref_primary_10_1002_eom2_12401
crossref_primary_10_3390_ma15134576
crossref_primary_10_1039_D2NR01727J
crossref_primary_10_1016_j_jcis_2022_10_097
crossref_primary_10_1016_j_cej_2021_133178
crossref_primary_10_1016_j_ijbiomac_2024_136931
crossref_primary_10_1039_C8TA07096B
crossref_primary_10_1021_acs_iecr_0c05931
crossref_primary_10_1016_j_enconman_2020_113392
crossref_primary_10_1039_C8TA08537D
crossref_primary_10_1088_1361_6552_ad92d6
crossref_primary_10_1016_j_cej_2025_160097
crossref_primary_10_1016_j_jallcom_2018_02_293
crossref_primary_10_1021_acsenergylett_2c01853
crossref_primary_10_1016_j_jelechem_2025_119090
crossref_primary_10_1016_j_carbon_2020_04_003
crossref_primary_10_1016_j_cej_2021_129017
crossref_primary_10_1016_j_jallcom_2021_161776
crossref_primary_10_1016_j_electacta_2022_140573
crossref_primary_10_1016_j_rser_2022_112585
crossref_primary_10_1016_j_cej_2018_06_001
crossref_primary_10_1016_j_scitotenv_2021_146844
crossref_primary_10_1016_j_apsusc_2018_12_232
crossref_primary_10_1016_j_ijbiomac_2024_131595
crossref_primary_10_1016_j_nanoms_2019_09_011
crossref_primary_10_1002_celc_202400086
crossref_primary_10_1007_s11664_022_09662_z
crossref_primary_10_1016_j_ijoes_2024_100488
crossref_primary_10_1039_D1NJ00179E
crossref_primary_10_1002_aenm_201801243
crossref_primary_10_1016_j_jclepro_2023_137628
crossref_primary_10_1016_j_gee_2022_05_007
crossref_primary_10_1039_C8CS00324F
crossref_primary_10_1002_chem_201902899
crossref_primary_10_1021_acsami_3c00912
crossref_primary_10_1039_C9TA01246J
crossref_primary_10_1039_D3RA05785B
crossref_primary_10_1002_ange_201805924
crossref_primary_10_1016_j_ensm_2020_06_017
crossref_primary_10_1016_j_jpcs_2022_110573
crossref_primary_10_1016_j_diamond_2024_111622
crossref_primary_10_3390_biology11030458
crossref_primary_10_1002_adma_202002038
crossref_primary_10_3390_batteries9030147
crossref_primary_10_1002_adma_202414620
crossref_primary_10_1016_j_carbon_2019_03_037
crossref_primary_10_1021_acssuschemeng_8b04408
crossref_primary_10_1016_j_cej_2020_125969
crossref_primary_10_1021_acssuschemeng_8b04648
crossref_primary_10_1016_j_apsusc_2024_162126
crossref_primary_10_1002_adfm_202300460
crossref_primary_10_1016_j_carbon_2021_11_036
crossref_primary_10_1002_bbb_2083
crossref_primary_10_1016_j_flatc_2022_100467
crossref_primary_10_1039_D0RA10194J
crossref_primary_10_1039_D1TA03262C
crossref_primary_10_1007_s00253_019_10283_6
crossref_primary_10_1016_j_apsusc_2019_05_144
crossref_primary_10_1149_2_0991908jes
crossref_primary_10_1016_j_jallcom_2024_176742
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1039_C8RA00858B
crossref_primary_10_1016_j_jallcom_2019_152421
crossref_primary_10_1016_j_electacta_2019_03_137
crossref_primary_10_1039_D4TA02708F
crossref_primary_10_1016_j_cclet_2022_107929
crossref_primary_10_1002_anie_201805924
crossref_primary_10_1016_j_ceramint_2021_08_091
crossref_primary_10_1016_j_jpowsour_2019_04_060
crossref_primary_10_1039_C9RA03345A
crossref_primary_10_1002_cssc_201800831
crossref_primary_10_1016_j_est_2025_115411
crossref_primary_10_1016_j_jcis_2022_04_064
crossref_primary_10_1016_j_jenvman_2021_113128
crossref_primary_10_1016_j_seppur_2024_129099
crossref_primary_10_1016_j_est_2023_108670
crossref_primary_10_1016_j_pmatsci_2022_101048
crossref_primary_10_1002_cssc_202001838
crossref_primary_10_1002_smtd_201900596
crossref_primary_10_1002_adfm_201909265
crossref_primary_10_1002_eem2_12030
crossref_primary_10_1021_acssuschemeng_8b01716
crossref_primary_10_1016_j_apsusc_2018_04_061
crossref_primary_10_1007_s13399_021_02089_2
crossref_primary_10_1016_j_electacta_2019_04_170
crossref_primary_10_1016_j_jaap_2024_106691
crossref_primary_10_1039_D2NJ02150A
crossref_primary_10_1039_D3DT02548A
crossref_primary_10_1021_acsestengg_1c00425
crossref_primary_10_1039_D0DT04073H
crossref_primary_10_1007_s42452_020_2666_7
crossref_primary_10_3389_fchem_2019_00786
crossref_primary_10_1016_j_rser_2020_110464
crossref_primary_10_3390_coatings13020421
crossref_primary_10_1002_adfm_202204714
crossref_primary_10_1016_j_electacta_2018_06_140
crossref_primary_10_1021_acs_energyfuels_1c00315
crossref_primary_10_1016_j_recm_2023_12_002
crossref_primary_10_1021_acsnano_8b04379
crossref_primary_10_1016_j_electacta_2019_135568
crossref_primary_10_1021_acsnano_8b01549
crossref_primary_10_1002_cnma_201800302
crossref_primary_10_1007_s11426_023_1866_y
crossref_primary_10_1016_j_est_2023_107334
crossref_primary_10_1002_smll_202008079
crossref_primary_10_1016_j_indcrop_2024_119303
crossref_primary_10_1002_celc_202100946
crossref_primary_10_1051_e3sconf_202346501022
crossref_primary_10_1016_j_diamond_2025_112000
crossref_primary_10_1039_D2RA01757A
crossref_primary_10_1016_j_pecs_2021_100929
crossref_primary_10_1002_adfm_202101637
crossref_primary_10_1016_j_molstruc_2020_128794
crossref_primary_10_20964_2021_08_05
crossref_primary_10_1016_j_electacta_2023_142431
crossref_primary_10_1016_j_jpowsour_2024_235230
crossref_primary_10_1016_j_apsusc_2020_145657
crossref_primary_10_12677_MS_2021_116088
crossref_primary_10_3390_en14040979
crossref_primary_10_1016_j_apsusc_2018_07_082
crossref_primary_10_1016_j_seppur_2024_127330
crossref_primary_10_1007_s42823_019_00012_4
crossref_primary_10_1016_j_electacta_2021_139377
crossref_primary_10_2139_ssrn_3983863
crossref_primary_10_1007_s40843_019_9464_0
crossref_primary_10_1039_D4NJ01316F
crossref_primary_10_3390_polym11091527
crossref_primary_10_1016_j_apt_2021_04_012
crossref_primary_10_1002_ente_201900502
crossref_primary_10_1016_j_carbon_2024_119250
crossref_primary_10_1039_D2CC06162G
crossref_primary_10_1007_s10853_023_08413_7
crossref_primary_10_1016_j_carbon_2020_01_088
crossref_primary_10_1039_C7TA09905C
crossref_primary_10_1016_j_fuel_2024_132664
crossref_primary_10_1039_D1SE00265A
crossref_primary_10_1039_D3GC00323J
crossref_primary_10_1016_j_colsurfa_2020_124925
crossref_primary_10_1002_cben_202000029
crossref_primary_10_1016_j_cclet_2020_11_007
crossref_primary_10_1115_1_4051984
crossref_primary_10_2174_2213346106666191127120259
crossref_primary_10_1002_admi_202201230
crossref_primary_10_1016_j_enchem_2024_100117
crossref_primary_10_3390_molecules28062792
crossref_primary_10_1016_j_chemosphere_2021_130003
crossref_primary_10_1016_j_ijhydene_2023_12_248
crossref_primary_10_1016_j_electacta_2021_137863
crossref_primary_10_1039_D0NR04922K
crossref_primary_10_1016_j_jpcs_2022_111080
crossref_primary_10_1039_D1GC02872C
crossref_primary_10_1039_D0RA01997F
crossref_primary_10_3390_app9051016
crossref_primary_10_1016_j_jallcom_2019_03_283
crossref_primary_10_1016_j_electacta_2021_139711
crossref_primary_10_1021_acssuschemeng_9b00477
crossref_primary_10_1116_1_5095413
crossref_primary_10_1016_j_jclepro_2018_06_262
crossref_primary_10_1021_acssuschemeng_9b01448
crossref_primary_10_1016_j_cej_2025_161337
crossref_primary_10_1002_est2_136
crossref_primary_10_1039_D0SE00517G
crossref_primary_10_1021_acs_est_2c07145
crossref_primary_10_1016_j_jiec_2023_11_025
crossref_primary_10_1039_C8TA01672K
crossref_primary_10_1002_smll_201804158
crossref_primary_10_1016_S1872_2067_21_64031_7
crossref_primary_10_1039_D4DT03061C
crossref_primary_10_1002_batt_201800067
crossref_primary_10_3390_nano15060455
crossref_primary_10_3390_polym16101414
crossref_primary_10_1007_s10854_021_06705_9
crossref_primary_10_1016_j_electacta_2021_139026
crossref_primary_10_1002_er_6595
crossref_primary_10_1016_j_ensm_2022_04_039
crossref_primary_10_1039_D0CE01847C
crossref_primary_10_1039_D4GC01771D
crossref_primary_10_1002_er_8096
crossref_primary_10_1021_acsaem_1c00746
crossref_primary_10_1021_acs_iecr_8b02036
crossref_primary_10_1039_D4DT02623C
crossref_primary_10_1016_j_fuproc_2021_107119
crossref_primary_10_1016_j_susmat_2025_e01359
crossref_primary_10_1088_1361_6463_ac6633
crossref_primary_10_59761_RCR5122
crossref_primary_10_1039_C8RA04074E
crossref_primary_10_1016_j_jelechem_2019_04_033
crossref_primary_10_1016_j_jclepro_2018_10_024
crossref_primary_10_1016_j_mcat_2023_112978
crossref_primary_10_1016_j_matlet_2021_130557
crossref_primary_10_1016_j_susmat_2020_e00240
crossref_primary_10_1039_D3MA00039G
crossref_primary_10_1016_j_jcis_2021_07_135
crossref_primary_10_1039_C8MH00133B
crossref_primary_10_1007_s10934_019_00781_3
crossref_primary_10_1039_D3NJ02187D
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1016_j_jcis_2019_09_124
crossref_primary_10_1016_j_jechem_2022_07_024
crossref_primary_10_1002_adfm_202208349
crossref_primary_10_1002_admi_201900200
crossref_primary_10_1002_admi_201901651
crossref_primary_10_1007_s10853_018_2472_4
crossref_primary_10_1016_j_carbon_2023_118105
crossref_primary_10_1016_j_jallcom_2022_164258
crossref_primary_10_1016_j_fuproc_2021_107146
crossref_primary_10_1021_acssuschemeng_2c04767
crossref_primary_10_1002_batt_202400450
crossref_primary_10_1016_j_electacta_2018_05_173
crossref_primary_10_1002_aenm_202101650
crossref_primary_10_1039_C8SE00353J
crossref_primary_10_1002_celc_201901176
crossref_primary_10_1016_j_pmatsci_2020_100770
crossref_primary_10_1002_aenm_201901774
crossref_primary_10_1016_j_jpowsour_2018_08_013
crossref_primary_10_1021_acsami_3c15459
crossref_primary_10_3390_nano13111744
crossref_primary_10_1016_j_jmrt_2023_12_042
crossref_primary_10_1002_adfm_202418799
crossref_primary_10_1016_j_electacta_2018_10_006
crossref_primary_10_1002_aenm_202204376
crossref_primary_10_1002_cey2_600
crossref_primary_10_1002_adfm_201905095
crossref_primary_10_1021_acs_energyfuels_2c03678
crossref_primary_10_1016_j_jallcom_2021_160947
crossref_primary_10_1002_smll_202300256
crossref_primary_10_1016_j_est_2022_106009
crossref_primary_10_1021_acs_energyfuels_1c01904
crossref_primary_10_1002_tcr_202200075
crossref_primary_10_1016_j_jcis_2024_02_207
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1016_j_jelechem_2023_117606
crossref_primary_10_1016_j_carbon_2020_12_029
crossref_primary_10_1038_s41598_019_50330_w
crossref_primary_10_1016_j_esci_2024_100249
crossref_primary_10_1021_acsami_8b21976
crossref_primary_10_1016_j_nantod_2018_12_004
crossref_primary_10_1016_j_materresbull_2024_112713
crossref_primary_10_1002_smll_202302788
crossref_primary_10_1016_j_ensm_2020_10_015
crossref_primary_10_1002_aenm_202100201
crossref_primary_10_1039_C9EE00206E
crossref_primary_10_1002_adem_202300585
crossref_primary_10_1016_j_cej_2020_124377
crossref_primary_10_1039_D1TA09654K
crossref_primary_10_1007_s10853_021_06106_7
crossref_primary_10_1007_s11426_024_2233_7
crossref_primary_10_1016_j_envc_2024_100966
crossref_primary_10_1016_j_molliq_2024_125921
crossref_primary_10_1007_s11664_021_09173_3
crossref_primary_10_1016_j_jallcom_2020_156814
crossref_primary_10_1038_s41598_024_51350_x
crossref_primary_10_1016_j_jelechem_2025_118990
crossref_primary_10_1016_j_coelec_2019_04_029
crossref_primary_10_1021_acsnano_8b06039
crossref_primary_10_1039_C9QM00348G
crossref_primary_10_1002_adsu_202000169
crossref_primary_10_1002_aenm_202003990
crossref_primary_10_1021_acs_chemrev_2c00673
crossref_primary_10_1016_j_biortech_2023_130225
Cites_doi 10.1021/ar300094m
10.1039/C4TA02199A
10.1002/cjoc.201600095
10.1039/C6GC01172A
10.1039/C5RA19961A
10.1016/j.matlet.2015.01.155
10.1002/asia.201403295
10.1039/C5TA09917J
10.1039/C5RA22435G
10.1016/j.matlet.2015.12.147
10.1021/ie50359a005
10.1002/anie.200704287
10.1039/C4RA06420H
10.1016/j.jpowsour.2016.01.026
10.1039/C5TA06393K
10.1021/sc500189p
10.1039/C4RA09627D
10.4028/www.scientific.net/AMR.724-725.834
10.1039/C4GC02185A
10.1016/j.jallcom.2016.07.148
10.1002/cssc.201000398
10.1016/j.electacta.2016.08.043
10.1021/acssuschemeng.5b00904
10.1016/j.ijhydene.2013.01.048
10.1016/j.progpolymsci.2014.09.003
10.1002/cssc.201000035
10.1016/j.cattod.2015.06.012
10.1016/j.cej.2015.11.105
10.1016/j.electacta.2015.11.108
10.1016/S0926-6690(99)00045-X
10.1016/j.apsusc.2016.03.204
10.3390/metabo6010007
10.1039/C5GC02122G
10.1039/C6TA01821A
10.1016/j.jallcom.2015.10.063
10.1039/c3ta10650k
10.1039/c2ee23599d
10.1016/j.envint.2008.07.004
10.1039/C4TA00501E
10.1039/c4ra03231d
10.1039/C5RA20933A
10.1039/c3gc40480c
10.1016/j.electacta.2015.06.098
10.1016/j.msea.2006.05.131
10.1039/C5GC02397A
10.1016/0926-6690(95)00025-8
10.1021/nn506394r
10.1016/j.nanoen.2016.04.043
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c6cs00639f
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 719
ExternalDocumentID 29075713
10_1039_C6CS00639F
c6cs00639f
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
0UZ
186
1TJ
3EH
6TJ
71~
8WZ
9M8
A6W
AAUTI
AAYXX
ABDPE
ACHDF
ACKIV
ACPVT
ACRPL
ADNMO
ADXHL
AETEA
AFFDN
AFFNX
AFRZK
AGQPQ
AHGXI
AI.
AIDUJ
AKMSF
ALSGL
ALUYA
ANLMG
AQHUZ
ASPBG
AVWKF
BBWZM
CAG
CITATION
EEHRC
FA8
FEDTE
HF~
HVGLF
H~9
IDY
J3G
J3H
L-8
MVM
NDZJH
R56
RCLXC
RIG
ROL
RRXOS
SC5
UQL
VH1
WHG
XJT
XOL
ZCG
ZKB
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-fb8eb35872be299966225150290c6ca510f8b5020e8bdd2f5d4d9b50c4b539a83
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 18:18:28 EDT 2025
Thu Jul 10 23:34:59 EDT 2025
Sun Jun 29 15:34:25 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 04:18:40 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
Tue Dec 17 20:59:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-fb8eb35872be299966225150290c6ca510f8b5020e8bdd2f5d4d9b50c4b539a83
Notes Prof. David Wilkinson received his BASc. in Chemical Engineering from the University of British Columbia (UBC) in 1978, and his PhD in Chemistry from the University of Ottawa in 1987 under the supervision of Professor Brian Conway. He then worked for over 20 years as an industrial leader in the areas of fuel cells and advanced lithium batteries. He is a Canada Research Chair at UBC. His main research interests are in electrochemical and photochemical devices, and processes to create clean and sustainable energy and water. He has over 77 U.S. patents and over 165 peer-reviewed publications covering innovative research in these fields.
Dr Baizeng Fang earned his PhD in Materials Science in 1997. He worked as a postdoctoral fellow in the Netherlands, JSPS research fellow in Japan, Lise Meitner Scientist in Austria and research professor at Korea University. He is a senior scientist at the University of British Columbia, Canada. Dr Fang has published over 100 peer-reviewed papers in high-profile journals such as Journal of the American Chemical Society, Accounts of Chemical Research and Chemical Reviews. His research interests include novel nanostructured materials for electrochemical energy storage and conversion, and artificial photosynthesis. He also serves as an associate editor for RSC Advances.
Dr Wenyu Long received his BS in Chemical Engineering & Technology from Liaoning Shihua University in 2002. He obtained his MS in Chemical Engineering from China University of Petroleum - Beijing in 2007 and completed his PhD studies in Chemical Engineering & Technology from the same University in 2014. After that, he worked at the Liaoning Shihua University, researching non-hydrogenation refining, multiphase flow, and reaction engineering of petroleum products. Since 2015, he has started the research of biomass engineering for energy storage and conversion such as batteries and fuel cells. Dr Long has published over 10 papers in peer-reviewed journals.
Dr Yan-Jie Wang obtained his PhD in Materials Science & Engineering from Zhejiang University, China, in 2005. Subsequently, he conducted two postdoctoral research studies at Sungkyunkwan University of Korea and Pennsylvania State University of U.S., respectively. In 2009, he was co-hired by the University of British Columbia (UBC), Canada, and the National Research Council of Canada. From 2012, he worked as a senior research scientist for UBC and the Vancouver International Clean-Tech Research Institute Inc. (VICTRII). Currently, he is appointed as a professor at Dongguan University of Technology. His research interests include energy storage and conversion, biomass and medical areas.
Dr Zhuangzhi Wu received his PhD in Materials Science and Engineering from Central South University (CSU), China in 2012, and then worked as an Assistant Professor at CSU. In 2015, he was promoted to a tenured Associate Professor. Dr Wu has published around 40 research papers in peer-reviewed journals including ACS Catalysis, Journal of Materials Chemistry A, Applied Catalysis B: Environmental, Chemical Communications. His research interests include the development of novel nanostructured materials for energy conversion and storage, and photo/electrocatalysis.
Dr Anna Ignaszak is an assistant professor at the University of New Brunswick and an adjunct assistant professor at the Friedrich-Schiller University (Germany), after completing her appointment as a research associate at the Clean Energy Research Center, The University of British Columbia (Canada), and as a research associate at the National Research Council of Canada. She has a diverse background in materials (carbons, composites, metal clusters) for electrochemical energy storage and conversion, electrochemical sensors, and heterogeneous catalysis. The research conducted in her labs in Canada and Germany aims to synthesize morphology-controlled catalysts, understanding the structure-reactivity interplay for optimum redox activity.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2365-9196
0000-0001-7005-730X
0000-0001-5855-7766
PMID 29075713
PQID 2010861558
PQPubID 2047503
PageCount 15
ParticipantIDs proquest_journals_2010861558
crossref_citationtrail_10_1039_C6CS00639F
proquest_miscellaneous_1957475167
crossref_primary_10_1039_C6CS00639F
rsc_primary_c6cs00639f
pubmed_primary_29075713
proquest_miscellaneous_2286920200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171127
PublicationDateYYYYMMDD 2017-11-27
PublicationDate_xml – month: 11
  year: 2017
  text: 20171127
  day: 27
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhu (C6CS00639F-(cit12)/*[position()=1]) 2016; 18
Razmjooei (C6CS00639F-(cit8)/*[position()=1]) 2016; 260
Han (C6CS00639F-(cit26)/*[position()=1]) 2016; 6
Caballero (C6CS00639F-(cit17)/*[position()=1]) 2011; 4
Ogura (C6CS00639F-(cit18)/*[position()=1]) 2016; 6
Klass (C6CS00639F-(cit14)/*[position()=1]) 1998
Xu (C6CS00639F-(cit46)/*[position()=1]) 2016; 6
Kong (C6CS00639F-(cit27)/*[position()=1]) 2015; 146
Zhang (C6CS00639F-(cit49)/*[position()=1]) 2015; 174
Ming (C6CS00639F-(cit25)/*[position()=1]) 2013; 15
Wen (C6CS00639F-(cit40)/*[position()=1]) 2015; 10
Zhang (C6CS00639F-(cit1)/*[position()=1]) 2015; 43
Wang (C6CS00639F-(cit13)/*[position()=1]) 2013; 1
Li (C6CS00639F-(cit23)/*[position()=1]) 2013; 6
Ou (C6CS00639F-(cit7)/*[position()=1]) 2016; 34
Kalyani (C6CS00639F-(cit5)/*[position()=1]) 2013; 38
Xu (C6CS00639F-(cit32)/*[position()=1]) 2015; 17
Vaughan (C6CS00639F-(cit6)/*[position()=1]) 2013; 111
Zhou (C6CS00639F-(cit3)/*[position()=1]) 2016; 18
Yu (C6CS00639F-(cit19)/*[position()=1]) 2016; 4
Howe (C6CS00639F-(cit15)/*[position()=1]) 1939; 31
Lu (C6CS00639F-(cit48)/*[position()=1]) 2016; 4
Xu (C6CS00639F-(cit44)/*[position()=1]) 2016; 214
Chatterjee (C6CS00639F-(cit28)/*[position()=1]) 2014; 2
Sun (C6CS00639F-(cit9)/*[position()=1]) 2013; 724-725
Stephan (C6CS00639F-(cit24)/*[position()=1]) 2006; 430
Zhao (C6CS00639F-(cit22)/*[position()=1]) 2016; 167
Lisowska-Oleksiak (C6CS00639F-(cit43)/*[position()=1]) 2014; 4
Li (C6CS00639F-(cit34)/*[position()=1]) 2016; 688
Wang (C6CS00639F-(cit42)/*[position()=1]) 2014; 4
Besnardiere (C6CS00639F-(cit41)/*[position()=1]) 2014; 4
Xin (C6CS00639F-(cit2)/*[position()=1]) 2012; 45
Jiang (C6CS00639F-(cit30)/*[position()=1]) 2016; 379
Sun (C6CS00639F-(cit11)/*[position()=1]) 1995; 4
Wu (C6CS00639F-(cit20)/*[position()=1]) 2010; 3
Wang (C6CS00639F-(cit16)/*[position()=1]) 2015; 5
Diamantidis (C6CS00639F-(cit10)/*[position()=1]) 2000; 11
Gao (C6CS00639F-(cit45)/*[position()=1]) 2016; 4
Wang (C6CS00639F-(cit47)/*[position()=1]) 2016; 288
Kim (C6CS00639F-(cit33)/*[position()=1]) 2014; 2
Domingo (C6CS00639F-(cit21)/*[position()=1]) 2009; 35
Wu (C6CS00639F-(cit39)/*[position()=1]) 2016; 656
Hu (C6CS00639F-(cit36)/*[position()=1]) 2008; 47
Zhang (C6CS00639F-(cit35)/*[position()=1]) 2016; 25
Lv (C6CS00639F-(cit50)/*[position()=1]) 2015; 3
Deng (C6CS00639F-(cit4)/*[position()=1]) 2016; 18
Huang (C6CS00639F-(cit38)/*[position()=1]) 2016; 307
Chen (C6CS00639F-(cit29)/*[position()=1]) 2014; 2
Hou (C6CS00639F-(cit31)/*[position()=1]) 2015; 9
Wu (C6CS00639F-(cit37)/*[position()=1]) 2016; 187
References_xml – issn: 1998
  publication-title: Biomass for renewable energy, fuels, and chemicals
  doi: Klass
– volume: 45
  start-page: 1759
  year: 2012
  ident: C6CS00639F-(cit2)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300094m
– volume: 2
  start-page: 14557
  year: 2014
  ident: C6CS00639F-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02199A
– volume: 34
  start-page: 727
  year: 2016
  ident: C6CS00639F-(cit7)/*[position()=1]
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201600095
– volume: 18
  start-page: 4824
  year: 2016
  ident: C6CS00639F-(cit4)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC01172A
– volume: 6
  start-page: 1930
  year: 2016
  ident: C6CS00639F-(cit46)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19961A
– volume: 146
  start-page: 12
  year: 2015
  ident: C6CS00639F-(cit27)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.01.155
– volume: 10
  start-page: 595
  year: 2015
  ident: C6CS00639F-(cit40)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201403295
– volume: 4
  start-page: 2738
  year: 2016
  ident: C6CS00639F-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09917J
– volume: 6
  start-page: 7591
  year: 2016
  ident: C6CS00639F-(cit26)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22435G
– volume: 167
  start-page: 93
  year: 2016
  ident: C6CS00639F-(cit22)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.12.147
– volume: 31
  start-page: 1323
  year: 1939
  ident: C6CS00639F-(cit15)/*[position()=1]
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50359a005
– volume: 47
  start-page: 1645
  year: 2008
  ident: C6CS00639F-(cit36)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200704287
– volume: 4
  start-page: 40439
  year: 2014
  ident: C6CS00639F-(cit43)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06420H
– volume: 307
  start-page: 649
  year: 2016
  ident: C6CS00639F-(cit38)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.026
– volume: 3
  start-page: 22708
  year: 2015
  ident: C6CS00639F-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06393K
– volume: 2
  start-page: 2002
  year: 2014
  ident: C6CS00639F-(cit28)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500189p
– volume: 4
  start-page: 64744
  year: 2014
  ident: C6CS00639F-(cit42)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09627D
– volume: 724-725
  start-page: 834
  year: 2013
  ident: C6CS00639F-(cit9)/*[position()=1]
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.724-725.834
– volume: 17
  start-page: 1668
  year: 2015
  ident: C6CS00639F-(cit32)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C4GC02185A
– volume: 688
  start-page: 1072
  year: 2016
  ident: C6CS00639F-(cit34)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.148
– volume: 4
  start-page: 658
  year: 2011
  ident: C6CS00639F-(cit17)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000398
– volume: 214
  start-page: 119
  year: 2016
  ident: C6CS00639F-(cit44)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.043
– volume: 4
  start-page: 844
  year: 2016
  ident: C6CS00639F-(cit45)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00904
– volume: 38
  start-page: 4034
  year: 2013
  ident: C6CS00639F-(cit5)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.048
– volume: 43
  start-page: 136
  year: 2015
  ident: C6CS00639F-(cit1)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2014.09.003
– volume-title: Biomass for renewable energy, fuels, and chemicals
  year: 1998
  ident: C6CS00639F-(cit14)/*[position()=1]
– volume: 3
  start-page: 703
  year: 2010
  ident: C6CS00639F-(cit20)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000035
– volume: 260
  start-page: 148
  year: 2016
  ident: C6CS00639F-(cit8)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.06.012
– volume: 288
  start-page: 179
  year: 2016
  ident: C6CS00639F-(cit47)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.11.105
– volume: 187
  start-page: 508
  year: 2016
  ident: C6CS00639F-(cit37)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.11.108
– volume: 11
  start-page: 97
  year: 2000
  ident: C6CS00639F-(cit10)/*[position()=1]
  publication-title: Ind. Crops. Prod.
  doi: 10.1016/S0926-6690(99)00045-X
– volume: 379
  start-page: 73
  year: 2016
  ident: C6CS00639F-(cit30)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.204
– volume: 6
  start-page: 7
  year: 2016
  ident: C6CS00639F-(cit18)/*[position()=1]
  publication-title: Metabolites
  doi: 10.3390/metabo6010007
– volume: 18
  start-page: 2078
  year: 2016
  ident: C6CS00639F-(cit3)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC02122G
– volume: 4
  start-page: 5973
  year: 2016
  ident: C6CS00639F-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01821A
– volume: 656
  start-page: 745
  year: 2016
  ident: C6CS00639F-(cit39)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.10.063
– volume: 1
  start-page: 5269
  year: 2013
  ident: C6CS00639F-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10650k
– volume: 6
  start-page: 871
  year: 2013
  ident: C6CS00639F-(cit23)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23599d
– volume: 111
  start-page: 26
  year: 2013
  ident: C6CS00639F-(cit6)/*[position()=1]
  publication-title: J. For.
– volume: 35
  start-page: 382
  year: 2009
  ident: C6CS00639F-(cit21)/*[position()=1]
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.07.004
– volume: 2
  start-page: 9684
  year: 2014
  ident: C6CS00639F-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00501E
– volume: 4
  start-page: 21208
  year: 2014
  ident: C6CS00639F-(cit41)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c4ra03231d
– volume: 5
  start-page: 97427
  year: 2015
  ident: C6CS00639F-(cit16)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA20933A
– volume: 15
  start-page: 2722
  year: 2013
  ident: C6CS00639F-(cit25)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/c3gc40480c
– volume: 174
  start-page: 1175
  year: 2015
  ident: C6CS00639F-(cit49)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.06.098
– volume: 430
  start-page: 132
  year: 2006
  ident: C6CS00639F-(cit24)/*[position()=1]
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2006.05.131
– volume: 18
  start-page: 2106
  year: 2016
  ident: C6CS00639F-(cit12)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC02397A
– volume: 4
  start-page: 127
  year: 1995
  ident: C6CS00639F-(cit11)/*[position()=1]
  publication-title: Ind. Crops Prod.
  doi: 10.1016/0926-6690(95)00025-8
– volume: 9
  start-page: 2556
  year: 2015
  ident: C6CS00639F-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506394r
– volume: 25
  start-page: 120
  year: 2016
  ident: C6CS00639F-(cit35)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.043
SSID ssj0011762
Score 2.6529162
SecondaryResourceType review_article
Snippet Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7176
SubjectTerms Anodes
Biomass
Biomass energy production
Composite materials
durability
electrochemistry
Electrode materials
energy
Energy storage
Lithium
lithium batteries
Lithium-ion batteries
oxides
Product design
Rechargeable batteries
renewable energy sources
Renewable resources
silicon
tin
Title Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/29075713
https://www.proquest.com/docview/2010861558
https://www.proquest.com/docview/1957475167
https://www.proquest.com/docview/2286920200
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TUoDGQEF1RlJHYSO8etajVQGQda0VtkJ85aAenUNAf61_P8lWxsSINL1Dqum_j9_Pye_fN7CL2rkkzySvKgVGkaxAWMdCEZCQoK5jjnghcm2cTns_R0Hn9aJIueq2pOl2zlUbG78VzJ_0gVykCu-pTsP0i2axQK4DPIF64gYbjeSsYnK83uaaAHNqC0ymEt6rUNCNtqWnkhNlIzYRxJcrUxBHLN0lKNzi8DtQ1_dWuf1TAOwSpfrtqfQ40KaWJvepahD2fgIwx4vqeLZ9oxexzH95uqf7UdOtyq9IlY7ZSbKzUez2vR7MR3y6ys-xmiNXsmyxZ-tluuLq9MwGwXRYE96O-UaZyGQcxsfEevbd2Co0UVocOLI3Ao04BFNmuo06O67NKc7O9e0_ch1eFSi7RojK1V9bOa38k_-5JP5tNpPhsvZnfRPgFvAtTh_vF49nHabTfBvxF7DM0-sI9jS7MPfdtXLZdr7ggYJxufNMYYJ7OH6IHzKvCxhcgjdEfVj9G9kU_m9wQt_4AKvgoV7KCCASrYQAX3UMFClwNUcAcVDFDBDioYoII7qDxF88l4NjoNXJINGI4s3AYwTpWkCWdEKmK8X9Dw4CWQLIRXF6CyKy7ha6i4LEtSJWVcZlBQxDKhmeD0AO3V61o9R1iHgqtYnEUVFXFImSBEgWXES-g-KgQboPe-A_PCRaDXiVB-5IYJQbN8lI6-ms6eDNDbru6FjbtyY61DL4fcjcsm1_wOrrfb-QC96W5Df-utMFGrddvkUZaAH51EKft7HUJ4mhF483CAnlkZd48CvcMSFtEBOgChd8U9WF7cotmX6H4_bA7RHghdvQITdytfO4D-BhvIqcY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass-derived+nanostructured+carbons+and+their+composites+as+anode+materials+for+lithium+ion+batteries&rft.jtitle=Chemical+Society+reviews&rft.au=Long%2C+Wenyu&rft.au=Fang%2C+Baizeng&rft.au=Ignaszak%2C+Anna&rft.au=Wu%2C+Zhuangzhi&rft.date=2017-11-27&rft.issn=1460-4744&rft.volume=46&rft.issue=23+p.7176-7190&rft.spage=7176&rft.epage=7190&rft_id=info:doi/10.1039%2Fc6cs00639f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon