Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries
Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-per...
Saved in:
Published in | Chemical Society reviews Vol. 46; no. 23; pp. 7176 - 719 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
27.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (
e.g.
, silicon, tin, metal oxides,
etc.
), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field.
This review focuses on the derivation of nanostructured carbons and their composite materials from biomass materials for lithium ion battery anodes. |
---|---|
AbstractList | Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (e.g., silicon, tin, metal oxides, etc.), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field. Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials ( e.g. , silicon, tin, metal oxides, etc. ), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field. Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (e.g., silicon, tin, metal oxides, etc.), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field.Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials (e.g., silicon, tin, metal oxides, etc.), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field. Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy source has played an intriguing and promising role in developing sustainable biomass-derived carbons and their composite materials for high-performance LIB anodes. Different from other materials ( e.g. , silicon, tin, metal oxides, etc. ), biomass-derived carbons and their composite materials have been applied more and more to LIBs due to their advantages such as low cost, green and eco-friendly synthesis, easy accessibility, sustainable strategy, and improved battery performance, including capacity, cycling property, and stability/durability. This tutorial review focusing on biomass-derived carbons and their composites in the application of LIB anodes will act as a strategic guide to build a close connection between renewable materials and electrochemical energy storage devices. Also, this review provides a critical analysis and comparison of biomass-derived carbons and their composites for LIB anodes, coupled with an important insight into the remaining challenges and future directions in the field. This review focuses on the derivation of nanostructured carbons and their composite materials from biomass materials for lithium ion battery anodes. |
Author | Long, Wenyu Wilkinson, David Fang, Baizeng Wu, Zhuangzhi Wang, Yan-Jie Ignaszak, Anna |
AuthorAffiliation | Department of Chemical & Biological Engineering Department of Chemistry Central South University School of Materials Science and Engineering College of Chemistry Chemical Engineering and Environmental Engineering Dongguan University of Technology University of British Columbia University of New Brunswick School of Environment and Civil Engineering Liaoning Shihua University |
AuthorAffiliation_xml | – sequence: 0 name: University of New Brunswick – sequence: 0 name: Chemical Engineering and Environmental Engineering – sequence: 0 name: Dongguan University of Technology – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: University of British Columbia – sequence: 0 name: Department of Chemistry – sequence: 0 name: Department of Chemical & Biological Engineering – sequence: 0 name: Central South University – sequence: 0 name: College of Chemistry – sequence: 0 name: Liaoning Shihua University – sequence: 0 name: School of Environment and Civil Engineering |
Author_xml | – sequence: 1 givenname: Wenyu surname: Long fullname: Long, Wenyu – sequence: 2 givenname: Baizeng surname: Fang fullname: Fang, Baizeng – sequence: 3 givenname: Anna surname: Ignaszak fullname: Ignaszak, Anna – sequence: 4 givenname: Zhuangzhi surname: Wu fullname: Wu, Zhuangzhi – sequence: 5 givenname: Yan-Jie surname: Wang fullname: Wang, Yan-Jie – sequence: 6 givenname: David surname: Wilkinson fullname: Wilkinson, David |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29075713$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9rFTEQx4NU7Gv14l0JeBFhdZJsspujfVgtFDyo55Bfy0vZTZ5JVuh_b56vVShCT8l885lvMjM5QycxRY_QSwLvCTD5wQpbAAST0xO0Ib2Arh_6_gRtgIHoAAg9RWel3LQdGQR9hk6phIEPhG3Q7iKkRZfSOZ_DL-9w1DGVmldb19xCq7NJsWAdHa47HzK2admnEqpv4kFPzuNF15au54KnlPEc6i6sCw4pYqPr4ciX5-jp1AD_4m49Rz8uP33ffumuv36-2n687iwboHaTGb1hfByo8VRKKQSlnHBoL25lak5gGk0LwY_GOTpx1zvZBNsbzqQe2Tl6e_Td5_Rz9aWqJRTr51lHn9aiKB2FpM0AHkWJ5EM_cCKGhr55gN6kNcdWiKJAYBSE88Pdr--o1SzeqX0Oi8636r7dDYAjYHMqJftJ2VB1bY2qWYdZEVCHiaqt2H77M9HLlvLuQcq963_hV0c4F_uX-_c92G8M56nh |
CitedBy_id | crossref_primary_10_1002_smll_201804884 crossref_primary_10_1021_acssuschemeng_0c04670 crossref_primary_10_1039_D4NJ02813A crossref_primary_10_1016_j_talanta_2024_125657 crossref_primary_10_1039_C8SC02868K crossref_primary_10_1021_acssuschemeng_9b01261 crossref_primary_10_1016_j_electacta_2022_141583 crossref_primary_10_1021_acs_energyfuels_1c03565 crossref_primary_10_1039_C8RA02122H crossref_primary_10_1021_acsomega_2c02336 crossref_primary_10_3389_fchem_2019_00432 crossref_primary_10_1002_batt_202400302 crossref_primary_10_1016_j_jallcom_2021_162261 crossref_primary_10_1002_cssc_201903577 crossref_primary_10_1039_D4SE01393J crossref_primary_10_14356_kona_2023016 crossref_primary_10_3390_cryst13020280 crossref_primary_10_1002_eem2_12059 crossref_primary_10_1016_j_ceramint_2019_09_210 crossref_primary_10_1039_D1TA10832H crossref_primary_10_1016_j_apcatb_2023_123473 crossref_primary_10_1016_j_ijhydene_2022_01_146 crossref_primary_10_1021_acsaem_9b00002 crossref_primary_10_3390_batteries9090473 crossref_primary_10_1016_j_cej_2023_143077 crossref_primary_10_1016_j_apsusc_2022_152580 crossref_primary_10_1002_er_7508 crossref_primary_10_1016_j_jallcom_2022_167689 crossref_primary_10_1016_j_jpba_2022_115102 crossref_primary_10_3390_ma11081428 crossref_primary_10_1016_j_jallcom_2020_153718 crossref_primary_10_1002_slct_202203748 crossref_primary_10_1002_adfm_201910599 crossref_primary_10_3390_polym11040576 crossref_primary_10_1002_adsu_202200294 crossref_primary_10_1002_batt_201900091 crossref_primary_10_1002_admi_202001847 crossref_primary_10_1002_slct_202202413 crossref_primary_10_1016_j_seppur_2023_124756 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1016_j_jechem_2020_06_033 crossref_primary_10_1002_cssc_202000394 crossref_primary_10_1016_j_cej_2023_144958 crossref_primary_10_1039_D1TA01919H crossref_primary_10_1016_j_cocis_2024_101822 crossref_primary_10_1016_j_jclepro_2024_142169 crossref_primary_10_1016_j_jallcom_2023_172608 crossref_primary_10_1039_C9TA04062E crossref_primary_10_1016_j_ceramint_2020_11_028 crossref_primary_10_1016_j_nexus_2022_100118 crossref_primary_10_3390_catal12080894 crossref_primary_10_1021_acsaem_1c01540 crossref_primary_10_1038_s41467_020_20380_0 crossref_primary_10_1021_acs_jpcc_0c00524 crossref_primary_10_1021_acsaem_8b01109 crossref_primary_10_34133_2020_8685436 crossref_primary_10_3390_batteries8090123 crossref_primary_10_1080_10667857_2018_1500131 crossref_primary_10_1039_D3EE01493B crossref_primary_10_1039_C9RA10729K crossref_primary_10_1016_j_jelechem_2021_115179 crossref_primary_10_1021_acssuschemeng_8b04906 crossref_primary_10_1016_j_rser_2020_110308 crossref_primary_10_1002_cnma_202200056 crossref_primary_10_1002_eom2_12401 crossref_primary_10_3390_ma15134576 crossref_primary_10_1039_D2NR01727J crossref_primary_10_1016_j_jcis_2022_10_097 crossref_primary_10_1016_j_cej_2021_133178 crossref_primary_10_1016_j_ijbiomac_2024_136931 crossref_primary_10_1039_C8TA07096B crossref_primary_10_1021_acs_iecr_0c05931 crossref_primary_10_1016_j_enconman_2020_113392 crossref_primary_10_1039_C8TA08537D crossref_primary_10_1088_1361_6552_ad92d6 crossref_primary_10_1016_j_cej_2025_160097 crossref_primary_10_1016_j_jallcom_2018_02_293 crossref_primary_10_1021_acsenergylett_2c01853 crossref_primary_10_1016_j_jelechem_2025_119090 crossref_primary_10_1016_j_carbon_2020_04_003 crossref_primary_10_1016_j_cej_2021_129017 crossref_primary_10_1016_j_jallcom_2021_161776 crossref_primary_10_1016_j_electacta_2022_140573 crossref_primary_10_1016_j_rser_2022_112585 crossref_primary_10_1016_j_cej_2018_06_001 crossref_primary_10_1016_j_scitotenv_2021_146844 crossref_primary_10_1016_j_apsusc_2018_12_232 crossref_primary_10_1016_j_ijbiomac_2024_131595 crossref_primary_10_1016_j_nanoms_2019_09_011 crossref_primary_10_1002_celc_202400086 crossref_primary_10_1007_s11664_022_09662_z crossref_primary_10_1016_j_ijoes_2024_100488 crossref_primary_10_1039_D1NJ00179E crossref_primary_10_1002_aenm_201801243 crossref_primary_10_1016_j_jclepro_2023_137628 crossref_primary_10_1016_j_gee_2022_05_007 crossref_primary_10_1039_C8CS00324F crossref_primary_10_1002_chem_201902899 crossref_primary_10_1021_acsami_3c00912 crossref_primary_10_1039_C9TA01246J crossref_primary_10_1039_D3RA05785B crossref_primary_10_1002_ange_201805924 crossref_primary_10_1016_j_ensm_2020_06_017 crossref_primary_10_1016_j_jpcs_2022_110573 crossref_primary_10_1016_j_diamond_2024_111622 crossref_primary_10_3390_biology11030458 crossref_primary_10_1002_adma_202002038 crossref_primary_10_3390_batteries9030147 crossref_primary_10_1002_adma_202414620 crossref_primary_10_1016_j_carbon_2019_03_037 crossref_primary_10_1021_acssuschemeng_8b04408 crossref_primary_10_1016_j_cej_2020_125969 crossref_primary_10_1021_acssuschemeng_8b04648 crossref_primary_10_1016_j_apsusc_2024_162126 crossref_primary_10_1002_adfm_202300460 crossref_primary_10_1016_j_carbon_2021_11_036 crossref_primary_10_1002_bbb_2083 crossref_primary_10_1016_j_flatc_2022_100467 crossref_primary_10_1039_D0RA10194J crossref_primary_10_1039_D1TA03262C crossref_primary_10_1007_s00253_019_10283_6 crossref_primary_10_1016_j_apsusc_2019_05_144 crossref_primary_10_1149_2_0991908jes crossref_primary_10_1016_j_jallcom_2024_176742 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1039_C8RA00858B crossref_primary_10_1016_j_jallcom_2019_152421 crossref_primary_10_1016_j_electacta_2019_03_137 crossref_primary_10_1039_D4TA02708F crossref_primary_10_1016_j_cclet_2022_107929 crossref_primary_10_1002_anie_201805924 crossref_primary_10_1016_j_ceramint_2021_08_091 crossref_primary_10_1016_j_jpowsour_2019_04_060 crossref_primary_10_1039_C9RA03345A crossref_primary_10_1002_cssc_201800831 crossref_primary_10_1016_j_est_2025_115411 crossref_primary_10_1016_j_jcis_2022_04_064 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_1016_j_seppur_2024_129099 crossref_primary_10_1016_j_est_2023_108670 crossref_primary_10_1016_j_pmatsci_2022_101048 crossref_primary_10_1002_cssc_202001838 crossref_primary_10_1002_smtd_201900596 crossref_primary_10_1002_adfm_201909265 crossref_primary_10_1002_eem2_12030 crossref_primary_10_1021_acssuschemeng_8b01716 crossref_primary_10_1016_j_apsusc_2018_04_061 crossref_primary_10_1007_s13399_021_02089_2 crossref_primary_10_1016_j_electacta_2019_04_170 crossref_primary_10_1016_j_jaap_2024_106691 crossref_primary_10_1039_D2NJ02150A crossref_primary_10_1039_D3DT02548A crossref_primary_10_1021_acsestengg_1c00425 crossref_primary_10_1039_D0DT04073H crossref_primary_10_1007_s42452_020_2666_7 crossref_primary_10_3389_fchem_2019_00786 crossref_primary_10_1016_j_rser_2020_110464 crossref_primary_10_3390_coatings13020421 crossref_primary_10_1002_adfm_202204714 crossref_primary_10_1016_j_electacta_2018_06_140 crossref_primary_10_1021_acs_energyfuels_1c00315 crossref_primary_10_1016_j_recm_2023_12_002 crossref_primary_10_1021_acsnano_8b04379 crossref_primary_10_1016_j_electacta_2019_135568 crossref_primary_10_1021_acsnano_8b01549 crossref_primary_10_1002_cnma_201800302 crossref_primary_10_1007_s11426_023_1866_y crossref_primary_10_1016_j_est_2023_107334 crossref_primary_10_1002_smll_202008079 crossref_primary_10_1016_j_indcrop_2024_119303 crossref_primary_10_1002_celc_202100946 crossref_primary_10_1051_e3sconf_202346501022 crossref_primary_10_1016_j_diamond_2025_112000 crossref_primary_10_1039_D2RA01757A crossref_primary_10_1016_j_pecs_2021_100929 crossref_primary_10_1002_adfm_202101637 crossref_primary_10_1016_j_molstruc_2020_128794 crossref_primary_10_20964_2021_08_05 crossref_primary_10_1016_j_electacta_2023_142431 crossref_primary_10_1016_j_jpowsour_2024_235230 crossref_primary_10_1016_j_apsusc_2020_145657 crossref_primary_10_12677_MS_2021_116088 crossref_primary_10_3390_en14040979 crossref_primary_10_1016_j_apsusc_2018_07_082 crossref_primary_10_1016_j_seppur_2024_127330 crossref_primary_10_1007_s42823_019_00012_4 crossref_primary_10_1016_j_electacta_2021_139377 crossref_primary_10_2139_ssrn_3983863 crossref_primary_10_1007_s40843_019_9464_0 crossref_primary_10_1039_D4NJ01316F crossref_primary_10_3390_polym11091527 crossref_primary_10_1016_j_apt_2021_04_012 crossref_primary_10_1002_ente_201900502 crossref_primary_10_1016_j_carbon_2024_119250 crossref_primary_10_1039_D2CC06162G crossref_primary_10_1007_s10853_023_08413_7 crossref_primary_10_1016_j_carbon_2020_01_088 crossref_primary_10_1039_C7TA09905C crossref_primary_10_1016_j_fuel_2024_132664 crossref_primary_10_1039_D1SE00265A crossref_primary_10_1039_D3GC00323J crossref_primary_10_1016_j_colsurfa_2020_124925 crossref_primary_10_1002_cben_202000029 crossref_primary_10_1016_j_cclet_2020_11_007 crossref_primary_10_1115_1_4051984 crossref_primary_10_2174_2213346106666191127120259 crossref_primary_10_1002_admi_202201230 crossref_primary_10_1016_j_enchem_2024_100117 crossref_primary_10_3390_molecules28062792 crossref_primary_10_1016_j_chemosphere_2021_130003 crossref_primary_10_1016_j_ijhydene_2023_12_248 crossref_primary_10_1016_j_electacta_2021_137863 crossref_primary_10_1039_D0NR04922K crossref_primary_10_1016_j_jpcs_2022_111080 crossref_primary_10_1039_D1GC02872C crossref_primary_10_1039_D0RA01997F crossref_primary_10_3390_app9051016 crossref_primary_10_1016_j_jallcom_2019_03_283 crossref_primary_10_1016_j_electacta_2021_139711 crossref_primary_10_1021_acssuschemeng_9b00477 crossref_primary_10_1116_1_5095413 crossref_primary_10_1016_j_jclepro_2018_06_262 crossref_primary_10_1021_acssuschemeng_9b01448 crossref_primary_10_1016_j_cej_2025_161337 crossref_primary_10_1002_est2_136 crossref_primary_10_1039_D0SE00517G crossref_primary_10_1021_acs_est_2c07145 crossref_primary_10_1016_j_jiec_2023_11_025 crossref_primary_10_1039_C8TA01672K crossref_primary_10_1002_smll_201804158 crossref_primary_10_1016_S1872_2067_21_64031_7 crossref_primary_10_1039_D4DT03061C crossref_primary_10_1002_batt_201800067 crossref_primary_10_3390_nano15060455 crossref_primary_10_3390_polym16101414 crossref_primary_10_1007_s10854_021_06705_9 crossref_primary_10_1016_j_electacta_2021_139026 crossref_primary_10_1002_er_6595 crossref_primary_10_1016_j_ensm_2022_04_039 crossref_primary_10_1039_D0CE01847C crossref_primary_10_1039_D4GC01771D crossref_primary_10_1002_er_8096 crossref_primary_10_1021_acsaem_1c00746 crossref_primary_10_1021_acs_iecr_8b02036 crossref_primary_10_1039_D4DT02623C crossref_primary_10_1016_j_fuproc_2021_107119 crossref_primary_10_1016_j_susmat_2025_e01359 crossref_primary_10_1088_1361_6463_ac6633 crossref_primary_10_59761_RCR5122 crossref_primary_10_1039_C8RA04074E crossref_primary_10_1016_j_jelechem_2019_04_033 crossref_primary_10_1016_j_jclepro_2018_10_024 crossref_primary_10_1016_j_mcat_2023_112978 crossref_primary_10_1016_j_matlet_2021_130557 crossref_primary_10_1016_j_susmat_2020_e00240 crossref_primary_10_1039_D3MA00039G crossref_primary_10_1016_j_jcis_2021_07_135 crossref_primary_10_1039_C8MH00133B crossref_primary_10_1007_s10934_019_00781_3 crossref_primary_10_1039_D3NJ02187D crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1016_j_jcis_2019_09_124 crossref_primary_10_1016_j_jechem_2022_07_024 crossref_primary_10_1002_adfm_202208349 crossref_primary_10_1002_admi_201900200 crossref_primary_10_1002_admi_201901651 crossref_primary_10_1007_s10853_018_2472_4 crossref_primary_10_1016_j_carbon_2023_118105 crossref_primary_10_1016_j_jallcom_2022_164258 crossref_primary_10_1016_j_fuproc_2021_107146 crossref_primary_10_1021_acssuschemeng_2c04767 crossref_primary_10_1002_batt_202400450 crossref_primary_10_1016_j_electacta_2018_05_173 crossref_primary_10_1002_aenm_202101650 crossref_primary_10_1039_C8SE00353J crossref_primary_10_1002_celc_201901176 crossref_primary_10_1016_j_pmatsci_2020_100770 crossref_primary_10_1002_aenm_201901774 crossref_primary_10_1016_j_jpowsour_2018_08_013 crossref_primary_10_1021_acsami_3c15459 crossref_primary_10_3390_nano13111744 crossref_primary_10_1016_j_jmrt_2023_12_042 crossref_primary_10_1002_adfm_202418799 crossref_primary_10_1016_j_electacta_2018_10_006 crossref_primary_10_1002_aenm_202204376 crossref_primary_10_1002_cey2_600 crossref_primary_10_1002_adfm_201905095 crossref_primary_10_1021_acs_energyfuels_2c03678 crossref_primary_10_1016_j_jallcom_2021_160947 crossref_primary_10_1002_smll_202300256 crossref_primary_10_1016_j_est_2022_106009 crossref_primary_10_1021_acs_energyfuels_1c01904 crossref_primary_10_1002_tcr_202200075 crossref_primary_10_1016_j_jcis_2024_02_207 crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1016_j_jelechem_2023_117606 crossref_primary_10_1016_j_carbon_2020_12_029 crossref_primary_10_1038_s41598_019_50330_w crossref_primary_10_1016_j_esci_2024_100249 crossref_primary_10_1021_acsami_8b21976 crossref_primary_10_1016_j_nantod_2018_12_004 crossref_primary_10_1016_j_materresbull_2024_112713 crossref_primary_10_1002_smll_202302788 crossref_primary_10_1016_j_ensm_2020_10_015 crossref_primary_10_1002_aenm_202100201 crossref_primary_10_1039_C9EE00206E crossref_primary_10_1002_adem_202300585 crossref_primary_10_1016_j_cej_2020_124377 crossref_primary_10_1039_D1TA09654K crossref_primary_10_1007_s10853_021_06106_7 crossref_primary_10_1007_s11426_024_2233_7 crossref_primary_10_1016_j_envc_2024_100966 crossref_primary_10_1016_j_molliq_2024_125921 crossref_primary_10_1007_s11664_021_09173_3 crossref_primary_10_1016_j_jallcom_2020_156814 crossref_primary_10_1038_s41598_024_51350_x crossref_primary_10_1016_j_jelechem_2025_118990 crossref_primary_10_1016_j_coelec_2019_04_029 crossref_primary_10_1021_acsnano_8b06039 crossref_primary_10_1039_C9QM00348G crossref_primary_10_1002_adsu_202000169 crossref_primary_10_1002_aenm_202003990 crossref_primary_10_1021_acs_chemrev_2c00673 crossref_primary_10_1016_j_biortech_2023_130225 |
Cites_doi | 10.1021/ar300094m 10.1039/C4TA02199A 10.1002/cjoc.201600095 10.1039/C6GC01172A 10.1039/C5RA19961A 10.1016/j.matlet.2015.01.155 10.1002/asia.201403295 10.1039/C5TA09917J 10.1039/C5RA22435G 10.1016/j.matlet.2015.12.147 10.1021/ie50359a005 10.1002/anie.200704287 10.1039/C4RA06420H 10.1016/j.jpowsour.2016.01.026 10.1039/C5TA06393K 10.1021/sc500189p 10.1039/C4RA09627D 10.4028/www.scientific.net/AMR.724-725.834 10.1039/C4GC02185A 10.1016/j.jallcom.2016.07.148 10.1002/cssc.201000398 10.1016/j.electacta.2016.08.043 10.1021/acssuschemeng.5b00904 10.1016/j.ijhydene.2013.01.048 10.1016/j.progpolymsci.2014.09.003 10.1002/cssc.201000035 10.1016/j.cattod.2015.06.012 10.1016/j.cej.2015.11.105 10.1016/j.electacta.2015.11.108 10.1016/S0926-6690(99)00045-X 10.1016/j.apsusc.2016.03.204 10.3390/metabo6010007 10.1039/C5GC02122G 10.1039/C6TA01821A 10.1016/j.jallcom.2015.10.063 10.1039/c3ta10650k 10.1039/c2ee23599d 10.1016/j.envint.2008.07.004 10.1039/C4TA00501E 10.1039/c4ra03231d 10.1039/C5RA20933A 10.1039/c3gc40480c 10.1016/j.electacta.2015.06.098 10.1016/j.msea.2006.05.131 10.1039/C5GC02397A 10.1016/0926-6690(95)00025-8 10.1021/nn506394r 10.1016/j.nanoen.2016.04.043 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2017 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2017 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c6cs00639f |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 719 |
ExternalDocumentID | 29075713 10_1039_C6CS00639F c6cs00639f |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 0UZ 186 1TJ 3EH 6TJ 71~ 8WZ 9M8 A6W AAUTI AAYXX ABDPE ACHDF ACKIV ACPVT ACRPL ADNMO ADXHL AETEA AFFDN AFFNX AFRZK AGQPQ AHGXI AI. AIDUJ AKMSF ALSGL ALUYA ANLMG AQHUZ ASPBG AVWKF BBWZM CAG CITATION EEHRC FA8 FEDTE HF~ HVGLF H~9 IDY J3G J3H L-8 MVM NDZJH R56 RCLXC RIG ROL RRXOS SC5 UQL VH1 WHG XJT XOL ZCG ZKB NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-fb8eb35872be299966225150290c6ca510f8b5020e8bdd2f5d4d9b50c4b539a83 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 18:18:28 EDT 2025 Thu Jul 10 23:34:59 EDT 2025 Sun Jun 29 15:34:25 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Jul 01 04:18:40 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Tue Dec 17 20:59:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-fb8eb35872be299966225150290c6ca510f8b5020e8bdd2f5d4d9b50c4b539a83 |
Notes | Prof. David Wilkinson received his BASc. in Chemical Engineering from the University of British Columbia (UBC) in 1978, and his PhD in Chemistry from the University of Ottawa in 1987 under the supervision of Professor Brian Conway. He then worked for over 20 years as an industrial leader in the areas of fuel cells and advanced lithium batteries. He is a Canada Research Chair at UBC. His main research interests are in electrochemical and photochemical devices, and processes to create clean and sustainable energy and water. He has over 77 U.S. patents and over 165 peer-reviewed publications covering innovative research in these fields. Dr Baizeng Fang earned his PhD in Materials Science in 1997. He worked as a postdoctoral fellow in the Netherlands, JSPS research fellow in Japan, Lise Meitner Scientist in Austria and research professor at Korea University. He is a senior scientist at the University of British Columbia, Canada. Dr Fang has published over 100 peer-reviewed papers in high-profile journals such as Journal of the American Chemical Society, Accounts of Chemical Research and Chemical Reviews. His research interests include novel nanostructured materials for electrochemical energy storage and conversion, and artificial photosynthesis. He also serves as an associate editor for RSC Advances. Dr Wenyu Long received his BS in Chemical Engineering & Technology from Liaoning Shihua University in 2002. He obtained his MS in Chemical Engineering from China University of Petroleum - Beijing in 2007 and completed his PhD studies in Chemical Engineering & Technology from the same University in 2014. After that, he worked at the Liaoning Shihua University, researching non-hydrogenation refining, multiphase flow, and reaction engineering of petroleum products. Since 2015, he has started the research of biomass engineering for energy storage and conversion such as batteries and fuel cells. Dr Long has published over 10 papers in peer-reviewed journals. Dr Yan-Jie Wang obtained his PhD in Materials Science & Engineering from Zhejiang University, China, in 2005. Subsequently, he conducted two postdoctoral research studies at Sungkyunkwan University of Korea and Pennsylvania State University of U.S., respectively. In 2009, he was co-hired by the University of British Columbia (UBC), Canada, and the National Research Council of Canada. From 2012, he worked as a senior research scientist for UBC and the Vancouver International Clean-Tech Research Institute Inc. (VICTRII). Currently, he is appointed as a professor at Dongguan University of Technology. His research interests include energy storage and conversion, biomass and medical areas. Dr Zhuangzhi Wu received his PhD in Materials Science and Engineering from Central South University (CSU), China in 2012, and then worked as an Assistant Professor at CSU. In 2015, he was promoted to a tenured Associate Professor. Dr Wu has published around 40 research papers in peer-reviewed journals including ACS Catalysis, Journal of Materials Chemistry A, Applied Catalysis B: Environmental, Chemical Communications. His research interests include the development of novel nanostructured materials for energy conversion and storage, and photo/electrocatalysis. Dr Anna Ignaszak is an assistant professor at the University of New Brunswick and an adjunct assistant professor at the Friedrich-Schiller University (Germany), after completing her appointment as a research associate at the Clean Energy Research Center, The University of British Columbia (Canada), and as a research associate at the National Research Council of Canada. She has a diverse background in materials (carbons, composites, metal clusters) for electrochemical energy storage and conversion, electrochemical sensors, and heterogeneous catalysis. The research conducted in her labs in Canada and Germany aims to synthesize morphology-controlled catalysts, understanding the structure-reactivity interplay for optimum redox activity. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2365-9196 0000-0001-7005-730X 0000-0001-5855-7766 |
PMID | 29075713 |
PQID | 2010861558 |
PQPubID | 2047503 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2010861558 crossref_citationtrail_10_1039_C6CS00639F proquest_miscellaneous_1957475167 crossref_primary_10_1039_C6CS00639F rsc_primary_c6cs00639f pubmed_primary_29075713 proquest_miscellaneous_2286920200 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171127 |
PublicationDateYYYYMMDD | 2017-11-27 |
PublicationDate_xml | – month: 11 year: 2017 text: 20171127 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2017 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhu (C6CS00639F-(cit12)/*[position()=1]) 2016; 18 Razmjooei (C6CS00639F-(cit8)/*[position()=1]) 2016; 260 Han (C6CS00639F-(cit26)/*[position()=1]) 2016; 6 Caballero (C6CS00639F-(cit17)/*[position()=1]) 2011; 4 Ogura (C6CS00639F-(cit18)/*[position()=1]) 2016; 6 Klass (C6CS00639F-(cit14)/*[position()=1]) 1998 Xu (C6CS00639F-(cit46)/*[position()=1]) 2016; 6 Kong (C6CS00639F-(cit27)/*[position()=1]) 2015; 146 Zhang (C6CS00639F-(cit49)/*[position()=1]) 2015; 174 Ming (C6CS00639F-(cit25)/*[position()=1]) 2013; 15 Wen (C6CS00639F-(cit40)/*[position()=1]) 2015; 10 Zhang (C6CS00639F-(cit1)/*[position()=1]) 2015; 43 Wang (C6CS00639F-(cit13)/*[position()=1]) 2013; 1 Li (C6CS00639F-(cit23)/*[position()=1]) 2013; 6 Ou (C6CS00639F-(cit7)/*[position()=1]) 2016; 34 Kalyani (C6CS00639F-(cit5)/*[position()=1]) 2013; 38 Xu (C6CS00639F-(cit32)/*[position()=1]) 2015; 17 Vaughan (C6CS00639F-(cit6)/*[position()=1]) 2013; 111 Zhou (C6CS00639F-(cit3)/*[position()=1]) 2016; 18 Yu (C6CS00639F-(cit19)/*[position()=1]) 2016; 4 Howe (C6CS00639F-(cit15)/*[position()=1]) 1939; 31 Lu (C6CS00639F-(cit48)/*[position()=1]) 2016; 4 Xu (C6CS00639F-(cit44)/*[position()=1]) 2016; 214 Chatterjee (C6CS00639F-(cit28)/*[position()=1]) 2014; 2 Sun (C6CS00639F-(cit9)/*[position()=1]) 2013; 724-725 Stephan (C6CS00639F-(cit24)/*[position()=1]) 2006; 430 Zhao (C6CS00639F-(cit22)/*[position()=1]) 2016; 167 Lisowska-Oleksiak (C6CS00639F-(cit43)/*[position()=1]) 2014; 4 Li (C6CS00639F-(cit34)/*[position()=1]) 2016; 688 Wang (C6CS00639F-(cit42)/*[position()=1]) 2014; 4 Besnardiere (C6CS00639F-(cit41)/*[position()=1]) 2014; 4 Xin (C6CS00639F-(cit2)/*[position()=1]) 2012; 45 Jiang (C6CS00639F-(cit30)/*[position()=1]) 2016; 379 Sun (C6CS00639F-(cit11)/*[position()=1]) 1995; 4 Wu (C6CS00639F-(cit20)/*[position()=1]) 2010; 3 Wang (C6CS00639F-(cit16)/*[position()=1]) 2015; 5 Diamantidis (C6CS00639F-(cit10)/*[position()=1]) 2000; 11 Gao (C6CS00639F-(cit45)/*[position()=1]) 2016; 4 Wang (C6CS00639F-(cit47)/*[position()=1]) 2016; 288 Kim (C6CS00639F-(cit33)/*[position()=1]) 2014; 2 Domingo (C6CS00639F-(cit21)/*[position()=1]) 2009; 35 Wu (C6CS00639F-(cit39)/*[position()=1]) 2016; 656 Hu (C6CS00639F-(cit36)/*[position()=1]) 2008; 47 Zhang (C6CS00639F-(cit35)/*[position()=1]) 2016; 25 Lv (C6CS00639F-(cit50)/*[position()=1]) 2015; 3 Deng (C6CS00639F-(cit4)/*[position()=1]) 2016; 18 Huang (C6CS00639F-(cit38)/*[position()=1]) 2016; 307 Chen (C6CS00639F-(cit29)/*[position()=1]) 2014; 2 Hou (C6CS00639F-(cit31)/*[position()=1]) 2015; 9 Wu (C6CS00639F-(cit37)/*[position()=1]) 2016; 187 |
References_xml | – issn: 1998 publication-title: Biomass for renewable energy, fuels, and chemicals doi: Klass – volume: 45 start-page: 1759 year: 2012 ident: C6CS00639F-(cit2)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300094m – volume: 2 start-page: 14557 year: 2014 ident: C6CS00639F-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02199A – volume: 34 start-page: 727 year: 2016 ident: C6CS00639F-(cit7)/*[position()=1] publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201600095 – volume: 18 start-page: 4824 year: 2016 ident: C6CS00639F-(cit4)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC01172A – volume: 6 start-page: 1930 year: 2016 ident: C6CS00639F-(cit46)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA19961A – volume: 146 start-page: 12 year: 2015 ident: C6CS00639F-(cit27)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.01.155 – volume: 10 start-page: 595 year: 2015 ident: C6CS00639F-(cit40)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201403295 – volume: 4 start-page: 2738 year: 2016 ident: C6CS00639F-(cit48)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09917J – volume: 6 start-page: 7591 year: 2016 ident: C6CS00639F-(cit26)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA22435G – volume: 167 start-page: 93 year: 2016 ident: C6CS00639F-(cit22)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.12.147 – volume: 31 start-page: 1323 year: 1939 ident: C6CS00639F-(cit15)/*[position()=1] publication-title: Ind. Eng. Chem. doi: 10.1021/ie50359a005 – volume: 47 start-page: 1645 year: 2008 ident: C6CS00639F-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704287 – volume: 4 start-page: 40439 year: 2014 ident: C6CS00639F-(cit43)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA06420H – volume: 307 start-page: 649 year: 2016 ident: C6CS00639F-(cit38)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.026 – volume: 3 start-page: 22708 year: 2015 ident: C6CS00639F-(cit50)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06393K – volume: 2 start-page: 2002 year: 2014 ident: C6CS00639F-(cit28)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500189p – volume: 4 start-page: 64744 year: 2014 ident: C6CS00639F-(cit42)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA09627D – volume: 724-725 start-page: 834 year: 2013 ident: C6CS00639F-(cit9)/*[position()=1] publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.724-725.834 – volume: 17 start-page: 1668 year: 2015 ident: C6CS00639F-(cit32)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C4GC02185A – volume: 688 start-page: 1072 year: 2016 ident: C6CS00639F-(cit34)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.148 – volume: 4 start-page: 658 year: 2011 ident: C6CS00639F-(cit17)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201000398 – volume: 214 start-page: 119 year: 2016 ident: C6CS00639F-(cit44)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.043 – volume: 4 start-page: 844 year: 2016 ident: C6CS00639F-(cit45)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b00904 – volume: 38 start-page: 4034 year: 2013 ident: C6CS00639F-(cit5)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.048 – volume: 43 start-page: 136 year: 2015 ident: C6CS00639F-(cit1)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.09.003 – volume-title: Biomass for renewable energy, fuels, and chemicals year: 1998 ident: C6CS00639F-(cit14)/*[position()=1] – volume: 3 start-page: 703 year: 2010 ident: C6CS00639F-(cit20)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201000035 – volume: 260 start-page: 148 year: 2016 ident: C6CS00639F-(cit8)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2015.06.012 – volume: 288 start-page: 179 year: 2016 ident: C6CS00639F-(cit47)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.11.105 – volume: 187 start-page: 508 year: 2016 ident: C6CS00639F-(cit37)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.108 – volume: 11 start-page: 97 year: 2000 ident: C6CS00639F-(cit10)/*[position()=1] publication-title: Ind. Crops. Prod. doi: 10.1016/S0926-6690(99)00045-X – volume: 379 start-page: 73 year: 2016 ident: C6CS00639F-(cit30)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.204 – volume: 6 start-page: 7 year: 2016 ident: C6CS00639F-(cit18)/*[position()=1] publication-title: Metabolites doi: 10.3390/metabo6010007 – volume: 18 start-page: 2078 year: 2016 ident: C6CS00639F-(cit3)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC02122G – volume: 4 start-page: 5973 year: 2016 ident: C6CS00639F-(cit19)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01821A – volume: 656 start-page: 745 year: 2016 ident: C6CS00639F-(cit39)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.10.063 – volume: 1 start-page: 5269 year: 2013 ident: C6CS00639F-(cit13)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10650k – volume: 6 start-page: 871 year: 2013 ident: C6CS00639F-(cit23)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23599d – volume: 111 start-page: 26 year: 2013 ident: C6CS00639F-(cit6)/*[position()=1] publication-title: J. For. – volume: 35 start-page: 382 year: 2009 ident: C6CS00639F-(cit21)/*[position()=1] publication-title: Environ. Int. doi: 10.1016/j.envint.2008.07.004 – volume: 2 start-page: 9684 year: 2014 ident: C6CS00639F-(cit29)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00501E – volume: 4 start-page: 21208 year: 2014 ident: C6CS00639F-(cit41)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c4ra03231d – volume: 5 start-page: 97427 year: 2015 ident: C6CS00639F-(cit16)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA20933A – volume: 15 start-page: 2722 year: 2013 ident: C6CS00639F-(cit25)/*[position()=1] publication-title: Green Chem. doi: 10.1039/c3gc40480c – volume: 174 start-page: 1175 year: 2015 ident: C6CS00639F-(cit49)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.06.098 – volume: 430 start-page: 132 year: 2006 ident: C6CS00639F-(cit24)/*[position()=1] publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2006.05.131 – volume: 18 start-page: 2106 year: 2016 ident: C6CS00639F-(cit12)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC02397A – volume: 4 start-page: 127 year: 1995 ident: C6CS00639F-(cit11)/*[position()=1] publication-title: Ind. Crops Prod. doi: 10.1016/0926-6690(95)00025-8 – volume: 9 start-page: 2556 year: 2015 ident: C6CS00639F-(cit31)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506394r – volume: 25 start-page: 120 year: 2016 ident: C6CS00639F-(cit35)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.043 |
SSID | ssj0011762 |
Score | 2.6529162 |
SecondaryResourceType | review_article |
Snippet | Since ever-increasing energy demands stimulated intensive research activities on lithium-ion batteries (LIBs), biomass as an earth-abundant renewable energy... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7176 |
SubjectTerms | Anodes Biomass Biomass energy production Composite materials durability electrochemistry Electrode materials energy Energy storage Lithium lithium batteries Lithium-ion batteries oxides Product design Rechargeable batteries renewable energy sources Renewable resources silicon tin |
Title | Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29075713 https://www.proquest.com/docview/2010861558 https://www.proquest.com/docview/1957475167 https://www.proquest.com/docview/2286920200 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TUoDGQEF1RlJHYSO8etajVQGQda0VtkJ85aAenUNAf61_P8lWxsSINL1Dqum_j9_Pye_fN7CL2rkkzySvKgVGkaxAWMdCEZCQoK5jjnghcm2cTns_R0Hn9aJIueq2pOl2zlUbG78VzJ_0gVykCu-pTsP0i2axQK4DPIF64gYbjeSsYnK83uaaAHNqC0ymEt6rUNCNtqWnkhNlIzYRxJcrUxBHLN0lKNzi8DtQ1_dWuf1TAOwSpfrtqfQ40KaWJvepahD2fgIwx4vqeLZ9oxexzH95uqf7UdOtyq9IlY7ZSbKzUez2vR7MR3y6ys-xmiNXsmyxZ-tluuLq9MwGwXRYE96O-UaZyGQcxsfEevbd2Co0UVocOLI3Ao04BFNmuo06O67NKc7O9e0_ch1eFSi7RojK1V9bOa38k_-5JP5tNpPhsvZnfRPgFvAtTh_vF49nHabTfBvxF7DM0-sI9jS7MPfdtXLZdr7ggYJxufNMYYJ7OH6IHzKvCxhcgjdEfVj9G9kU_m9wQt_4AKvgoV7KCCASrYQAX3UMFClwNUcAcVDFDBDioYoII7qDxF88l4NjoNXJINGI4s3AYwTpWkCWdEKmK8X9Dw4CWQLIRXF6CyKy7ha6i4LEtSJWVcZlBQxDKhmeD0AO3V61o9R1iHgqtYnEUVFXFImSBEgWXES-g-KgQboPe-A_PCRaDXiVB-5IYJQbN8lI6-ms6eDNDbru6FjbtyY61DL4fcjcsm1_wOrrfb-QC96W5Df-utMFGrddvkUZaAH51EKft7HUJ4mhF483CAnlkZd48CvcMSFtEBOgChd8U9WF7cotmX6H4_bA7RHghdvQITdytfO4D-BhvIqcY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass-derived+nanostructured+carbons+and+their+composites+as+anode+materials+for+lithium+ion+batteries&rft.jtitle=Chemical+Society+reviews&rft.au=Long%2C+Wenyu&rft.au=Fang%2C+Baizeng&rft.au=Ignaszak%2C+Anna&rft.au=Wu%2C+Zhuangzhi&rft.date=2017-11-27&rft.issn=1460-4744&rft.volume=46&rft.issue=23+p.7176-7190&rft.spage=7176&rft.epage=7190&rft_id=info:doi/10.1039%2Fc6cs00639f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |