In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing

Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 4; pp. 2657 - 2672
Main Authors Plunkett, Shane, El Khatib, Mirna, Şencan, İkbal, Porter, Jason E., Kumar, Anand T. N., Collins, Joshua E., Sakadžić, Sava, Vinogradov, Sergei A.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.01.2020
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/C9NR07778B

Cover

Abstract Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
AbstractList Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ~1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence times of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Author Kumar, Anand T. N.
Plunkett, Shane
Porter, Jason E.
Collins, Joshua E.
Vinogradov, Sergei A.
Şencan, İkbal
El Khatib, Mirna
Sakadžić, Sava
AuthorAffiliation 2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129
1 Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
3 Intelligent Materials Solutions, Inc., Princeton, NJ 08540
AuthorAffiliation_xml – name: 2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129
– name: 3 Intelligent Materials Solutions, Inc., Princeton, NJ 08540
– name: 1 Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
Author_xml – sequence: 1
  givenname: Shane
  surname: Plunkett
  fullname: Plunkett, Shane
  organization: Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania
– sequence: 2
  givenname: Mirna
  surname: El Khatib
  fullname: El Khatib, Mirna
  organization: Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania
– sequence: 3
  givenname: İkbal
  orcidid: 0000-0002-2903-041X
  surname: Şencan
  fullname: Şencan, İkbal
  organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA
– sequence: 4
  givenname: Jason E.
  surname: Porter
  fullname: Porter, Jason E.
  organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA
– sequence: 5
  givenname: Anand T. N.
  surname: Kumar
  fullname: Kumar, Anand T. N.
  organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA
– sequence: 6
  givenname: Joshua E.
  surname: Collins
  fullname: Collins, Joshua E.
  organization: Intelligent Materials Solutions, Inc., Princeton, USA
– sequence: 7
  givenname: Sava
  surname: Sakadžić
  fullname: Sakadžić, Sava
  organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA
– sequence: 8
  givenname: Sergei A.
  orcidid: 0000-0002-4649-5534
  surname: Vinogradov
  fullname: Vinogradov, Sergei A.
  organization: Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31939953$$D View this record in MEDLINE/PubMed
BookMark eNptkt1uFSEUhYmpsT964wMYEm-MyVgYGBi8MNETf2qaaoy9Jgyz55RmBqbAHHOewNeWk9ajNl5B2N9eWYu9j9GBDx4QekrJK0qYOl2pi29EStm-e4COasJJxZisD_Z3wQ_RcUrXhAjFBHuEDhlVTKmGHaGfZx5v3CbgHmCusktpATw5G0OyYd7iHy5f4cvVxdfTz8YvqerB99FNEBM2CbvJrJ1f4zmGDtJrHCGFcckueGxykZxLs_E9HsAk17nR5S0OA46mIBPk6CxO4FOReIweDmZM8OTuPEGXH95_X32qzr98PFu9Pa8skyRXgxqIhQaEtB3ngkLDVNeBKW-McN4Z0rZNR1rW1tD3lBkOVgghe8t7yeuGnaA3t7rz0k3QW_A5mlHPJZOJWx2M0_9WvLvS67DRkhJKpCgCL-4EYrhZIGU9uWRhHI2HsCRdM9YqRYubgj6_h16HJfoSr1C8rWtBpSzUs78d7a38nlEBXt4Cu6GkCMMeoUTvFkD_WYACk3uwdXn33bs0bvxfyy9XoLUi
CitedBy_id crossref_primary_10_1016_j_molliq_2021_118396
crossref_primary_10_1002_adma_202502739
crossref_primary_10_1016_j_mtbio_2023_100646
crossref_primary_10_1016_j_microc_2023_109181
crossref_primary_10_1039_D1NH00260K
crossref_primary_10_1186_s40486_025_00223_7
crossref_primary_10_1016_j_dyepig_2022_110756
crossref_primary_10_1039_D4BM00774C
crossref_primary_10_2147_IJN_S243157
crossref_primary_10_1002_adfm_202309966
crossref_primary_10_1016_j_microc_2022_108363
crossref_primary_10_1021_acs_iecr_0c04304
crossref_primary_10_1021_acs_macromol_2c00512
crossref_primary_10_1016_j_jconrel_2022_10_056
crossref_primary_10_1016_j_mtcomm_2024_111304
crossref_primary_10_3390_macromol3020022
crossref_primary_10_1039_D4TC02806F
crossref_primary_10_3390_pharmaceutics15020589
crossref_primary_10_1002_adpr_202200098
crossref_primary_10_1039_D2NR03186H
Cites_doi 10.1021/nn201896m
10.1016/S0040-4039(00)73374-0
10.1364/BOE.6.004994
10.1117/1.3420209
10.1021/acs.accounts.6b00382
10.1016/j.colsurfa.2018.06.036
10.1021/ac60091a018
10.1039/c0pp00356e
10.1039/C4CS00177J
10.1016/j.ejps.2016.11.013
10.1016/j.neuron.2006.05.019
10.1021/la902260j
10.1021/acs.analchem.6b04662
10.1021/nn2042362
10.1073/pnas.1008958107
10.1021/jacs.8b07086
10.1002/adom.201600141
10.1038/nmeth818
10.1002/smll.201603418
10.1039/C5TC00849B
10.1002/smll.201801304
10.1038/lsa.2018.7
10.1002/advs.201700609
10.1007/s00429-018-1678-1
10.1038/nmeth.1596
10.1021/acsnano.8b06563
10.1039/c0jm01617a
10.1039/C4NR05954A
10.1063/1.3156857
10.1055/s-1998-1945
10.1021/ja108948z
10.1002/anie.201603028
10.1021/am507591u
10.1364/OL.34.002566
10.1016/S1002-0721(09)60206-4
10.1016/j.ccr.2010.02.007
10.1021/nn3000737
10.1002/lpor.201200052
10.1021/ja5115248
10.1039/C6NR08472A
10.1117/1.JBO.17.7.076003
10.1016/j.optmat.2018.07.031
10.1364/BOE.9.004359
10.1039/c2nr30764b
10.1039/C6NR09706E
10.1073/pnas.1213291110
10.1002/anie.201101521
10.1063/1.2783476
10.1364/OE.18.023544
10.1021/jp111006z
10.1371/journal.pone.0063292
10.1038/nphoton.2012.361
10.1039/C4NR00461B
10.1016/j.cmet.2018.12.022
10.1039/C1NJ20458K
10.1021/acsbiomaterials.8b00633
10.1038/nature03968
10.1088/2050-6120/ab029f
10.1021/acs.analchem.6b03223
10.1021/cr020357g
10.1002/adma.201203641
10.1021/ja061848b
10.1021/la302690h
10.1039/b700183e
10.1126/science.aaq1144
10.1002/adfm.200600053
10.1039/C4RA09686J
10.1021/jp206345j
10.1039/b104290b
10.1021/acsnano.7b07120
10.1021/ja4075002
10.1038/s41598-017-00869-3
10.1016/j.biomaterials.2007.12.037
10.1016/j.cbpa.2010.08.014
10.1038/srep01932
10.1038/467407a
10.1177/0271678X19831016
10.1002/adma.201500248
10.1002/anie.201208196
10.1021/nl071928t
10.1021/jo0504518
10.1021/ac2022234
10.1073/pnas.93.20.10763
10.1039/b907822c
10.17691/stm2016.8.4.18
10.1021/ar500253g
10.1126/science.2321027
10.1039/C1CS15187H
10.7150/thno.5113
10.1002/adma.200400772
10.1002/anie.201005159
10.1021/acsami.7b01452
10.1088/0957-4484/23/48/485103
10.1016/j.aca.2014.04.030
10.1021/am9001698
10.1002/asia.201701817
10.2217/17435889.3.5.703
10.1039/C7NR06141B
10.1039/C8NR07566B
10.1021/acs.langmuir.9b00238
10.1039/C9CP01808E
10.1038/s41467-018-05842-w
10.1038/s41467-018-05577-8
10.1021/acsphotonics.8b00112
10.1021/ja00048a009
10.1021/acs.jpcc.8b04908
10.1016/0014-5793(84)80480-9
10.1021/nn304837c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
5PM
DOI 10.1039/C9NR07778B
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 2672
ExternalDocumentID PMC7101076
31939953
10_1039_C9NR07778B
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB018464
– fundername: NIBIB NIH HHS
  grantid: R21 EB027397
– fundername: NIMH NIH HHS
  grantid: K99 MH120053
– fundername: NINDS NIH HHS
  grantid: R24 NS092986
– fundername: NINDS NIH HHS
  grantid: P01 NS055104
– fundername: NCI NIH HHS
  grantid: R01 CA211084
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c370t-f9f0ce5e67cb4461e539bbeace53044ba0885b08382edd13a4ec6667dc4d74253
ISSN 2040-3364
2040-3372
IngestDate Thu Aug 21 18:32:15 EDT 2025
Fri Jul 11 15:32:01 EDT 2025
Mon Jun 30 06:02:14 EDT 2025
Mon Jul 21 06:00:03 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Jul 01 01:13:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-f9f0ce5e67cb4461e539bbeace53044ba0885b08382edd13a4ec6667dc4d74253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4649-5534
0000-0002-2903-041X
PMID 31939953
PQID 2348226177
PQPubID 2047485
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7101076
proquest_miscellaneous_2338991304
proquest_journals_2348226177
pubmed_primary_31939953
crossref_primary_10_1039_C9NR07778B
crossref_citationtrail_10_1039_C9NR07778B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-28
PublicationDateYYYYMMDD 2020-01-28
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gu (C9NR07778B-(cit10g)/*[position()=1]) 2018; 5
Tully (C9NR07778B-(cit17)/*[position()=1]) 2001
DaCosta (C9NR07778B-(cit5c)/*[position()=1]) 2014; 832
Ye (C9NR07778B-(cit49b)/*[position()=1]) 2010; 107
Svoboda (C9NR07778B-(cit4)/*[position()=1]) 2006; 50
Que (C9NR07778B-(cit20e)/*[position()=1]) 2017; 9
Wang (C9NR07778B-(cit23c)/*[position()=1]) 2014; 4
Yi (C9NR07778B-(cit51a)/*[position()=1]) 2006; 16
Wang (C9NR07778B-(cit16b)/*[position()=1]) 2018; 13
Wang (C9NR07778B-(cit50b)/*[position()=1]) 2007
Yazdanfar (C9NR07778B-(cit1d)/*[position()=1]) 2010; 15
Xin (C9NR07778B-(cit9c)/*[position()=1]) 2017; 13
Ovsyakin (C9NR07778B-(cit6a)/*[position()=1]) 1966; 3
Cao (C9NR07778B-(cit20a)/*[position()=1]) 2012; 28
Capagna (C9NR07778B-(cit46)/*[position()=1]) 2012
Wang (C9NR07778B-(cit20d)/*[position()=1]) 2016; 28
Cheng (C9NR07778B-(cit14b)/*[position()=1]) 2011; 115
Tan (C9NR07778B-(cit41)/*[position()=1]) 2016; 4
Jaque (C9NR07778B-(cit28b)/*[position()=1]) 2012; 4
Esipova (C9NR07778B-(cit27)/*[position()=1]) 2011; 83
Hoover (C9NR07778B-(cit2)/*[position()=1]) 2013; 7
Drobizhev (C9NR07778B-(cit3b)/*[position()=1]) 2011; 8
Dukhno (C9NR07778B-(cit42a)/*[position()=1]) 2017; 9
Nadort (C9NR07778B-(cit9b)/*[position()=1]) 2013; 8
Brettreich (C9NR07778B-(cit48)/*[position()=1]) 1998
Yaseen (C9NR07778B-(cit54)/*[position()=1]) 2015; 6
Newkome (C9NR07778B-(cit24)/*[position()=1]) 2005; 70
Zhang (C9NR07778B-(cit16a)/*[position()=1]) 2010; 28
Skripka (C9NR07778B-(cit11i)/*[position()=1]) 2017; 9
Ostrowski (C9NR07778B-(cit9a)/*[position()=1]) 2012; 6
Chen (C9NR07778B-(cit9e)/*[position()=1]) 2018; 9
Chamanzar (C9NR07778B-(cit11h)/*[position()=1]) 2018; 9
De Jong (C9NR07778B-(cit36b)/*[position()=1]) 2008; 29
Peng (C9NR07778B-(cit18b)/*[position()=1]) 2015; 137
Schaferling (C9NR07778B-(cit10c)/*[position()=1]) 2017
Muhr (C9NR07778B-(cit44)/*[position()=1]) 2017; 89
Mader (C9NR07778B-(cit15a)/*[position()=1]) 2010; 14
Heer (C9NR07778B-(cit53)/*[position()=1]) 2004; 16
Esipova (C9NR07778B-(cit13)/*[position()=1]) 2012; 109
Tajon (C9NR07778B-(cit10e)/*[position()=1]) 2018; 84
Wang (C9NR07778B-(cit50a)/*[position()=1]) 2005; 437
Xu (C9NR07778B-(cit1c)/*[position()=1]) 1996; 93
Wilhelm (C9NR07778B-(cit5d)/*[position()=1]) 2017; 11
Pichaandi (C9NR07778B-(cit11c)/*[position()=1]) 2011; 115
Bogdan (C9NR07778B-(cit14a)/*[position()=1]) 2010; 20
Reddy (C9NR07778B-(cit15b)/*[position()=1]) 2018; 14
Su (C9NR07778B-(cit10d)/*[position()=1]) 2017; 50
Sun (C9NR07778B-(cit23a)/*[position()=1]) 2009
Chan (C9NR07778B-(cit6c)/*[position()=1]) 2015; 27
Feng (C9NR07778B-(cit51b)/*[position()=1]) 2010; 254
Tian (C9NR07778B-(cit11g)/*[position()=1]) 2018; 9
Lebedev (C9NR07778B-(cit26a)/*[position()=1]) 2009; 1
Esipova (C9NR07778B-(cit26b)/*[position()=1]) 2019; 29
Cheng (C9NR07778B-(cit47)/*[position()=1]) 2018; 140
Liebherr (C9NR07778B-(cit12a)/*[position()=1]) 2012; 23
Wang (C9NR07778B-(cit35a)/*[position()=1]) 2010; 299
Wilhelm (C9NR07778B-(cit20c)/*[position()=1]) 2015; 7
Auzel (C9NR07778B-(cit5a)/*[position()=1]) 2004; 104
Melle (C9NR07778B-(cit42c)/*[position()=1]) 2018; 122
Alonso-Cristobal (C9NR07778B-(cit18a)/*[position()=1]) 2015; 7
Hou (C9NR07778B-(cit21b)/*[position()=1]) 2013; 7
Dantelle (C9NR07778B-(cit10j)/*[position()=1]) 2019; 21
Hawker (C9NR07778B-(cit25a)/*[position()=1]) 1992; 114
del Rosal (C9NR07778B-(cit10h)/*[position()=1]) 2019; 7
Muhr (C9NR07778B-(cit20b)/*[position()=1]) 2014; 47
Marin (C9NR07778B-(cit42d)/*[position()=1]) 2018; 5
Gu (C9NR07778B-(cit40)/*[position()=1]) 2018; 5
Sarkar (C9NR07778B-(cit45)/*[position()=1]) 2013; 25
Reddy (C9NR07778B-(cit39)/*[position()=1]) 2018; 14
Turro (C9NR07778B-(cit43)/*[position()=1]) 1991
Sikwal (C9NR07778B-(cit19b)/*[position()=1]) 2017; 97
Schaferling (C9NR07778B-(cit23e)/*[position()=1]) 2016; 8
Longmire (C9NR07778B-(cit36a)/*[position()=1]) 2008; 3
Chen (C9NR07778B-(cit10f)/*[position()=1]) 2018; 359
Boyer (C9NR07778B-(cit30)/*[position()=1]) 2010; 26
Helmchen (C9NR07778B-(cit1b)/*[position()=1]) 2005; 2
Cohen (C9NR07778B-(cit7a)/*[position()=1]) 2010; 467
Denk (C9NR07778B-(cit1a)/*[position()=1]) 1990; 248
Wang (C9NR07778B-(cit9f)/*[position()=1]) 2018; 7
Egawa (C9NR07778B-(cit35b)/*[position()=1]) 2013; 3
Dong (C9NR07778B-(cit49a)/*[position()=1]) 2011; 133
Twyman (C9NR07778B-(cit25b)/*[position()=1]) 1994; 35
Andresen (C9NR07778B-(cit20g)/*[position()=1]) 2019; 35
Drees (C9NR07778B-(cit12c)/*[position()=1]) 2016; 55
Shan (C9NR07778B-(cit52b)/*[position()=1]) 2007; 91
Boyer (C9NR07778B-(cit52a)/*[position()=1]) 2006; 128
Xie (C9NR07778B-(cit6b)/*[position()=1]) 2013; 135
Gorris (C9NR07778B-(cit10a)/*[position()=1]) 2013; 52
Li (C9NR07778B-(cit38)/*[position()=1]) 2019
Wilhelm (C9NR07778B-(cit12b)/*[position()=1]) 2013; 3
Guller (C9NR07778B-(cit8c)/*[position()=1]) 2018; 4
Green (C9NR07778B-(cit9d)/*[position()=1]) 2017; 7
Megregian (C9NR07778B-(cit22)/*[position()=1]) 1954; 26
Cortelletti (C9NR07778B-(cit28a)/*[position()=1]) 2018; 10
Gainer (C9NR07778B-(cit37)/*[position()=1]) 2012; 17
Haase (C9NR07778B-(cit5b)/*[position()=1]) 2011; 50
Zhou (C9NR07778B-(cit11d)/*[position()=1]) 2012; 41
Zhang (C9NR07778B-(cit32)/*[position()=1]) 2007; 7
Vinegoni (C9NR07778B-(cit11a)/*[position()=1]) 2009; 34
Arppe (C9NR07778B-(cit23b)/*[position()=1]) 2014; 6
Caminade (C9NR07778B-(cit19a)/*[position()=1]) 2012; 36
Labrador-Paez (C9NR07778B-(cit29)/*[position()=1]) 2018; 10
Ceroni (C9NR07778B-(cit34)/*[position()=1]) 2011; 10
Ma (C9NR07778B-(cit23d)/*[position()=1]) 2015; 3
Xu (C9NR07778B-(cit11f)/*[position()=1]) 2013; 7
Tanokura (C9NR07778B-(cit33)/*[position()=1]) 1984; 171
Chen (C9NR07778B-(cit11e)/*[position()=1]) 2012; 6
Maestro (C9NR07778B-(cit7b)/*[position()=1]) 2010; 18
Muhr (C9NR07778B-(cit42b)/*[position()=1]) 2017; 89
Mitroshina (C9NR07778B-(cit8b)/*[position()=1]) 2016; 8
Jin (C9NR07778B-(cit31)/*[position()=1]) 2011; 5
Xu (C9NR07778B-(cit11b)/*[position()=1]) 2009; 94
Ling (C9NR07778B-(cit21a)/*[position()=1]) 2011; 50
Ricard (C9NR07778B-(cit3a)/*[position()=1]) 2018; 223
Yang (C9NR07778B-(cit10i)/*[position()=1]) 2019; 13
Gnach (C9NR07778B-(cit8a)/*[position()=1]) 2015; 44
Tan (C9NR07778B-(cit10b)/*[position()=1]) 2016; 4
Li (C9NR07778B-(cit20f)/*[position()=1]) 2018; 555
Nareoja (C9NR07778B-(cit23f)/*[position()=1]) 2017; 89
References_xml – volume: 5
  start-page: 7838
  year: 2011
  ident: C9NR07778B-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn201896m
– volume: 35
  start-page: 4423
  year: 1994
  ident: C9NR07778B-(cit25b)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)73374-0
– volume: 6
  start-page: 4994
  year: 2015
  ident: C9NR07778B-(cit54)/*[position()=1]
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.004994
– volume: 15
  start-page: 030505
  year: 2010
  ident: C9NR07778B-(cit1d)/*[position()=1]
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3420209
– volume: 50
  start-page: 32
  year: 2017
  ident: C9NR07778B-(cit10d)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00382
– volume: 555
  start-page: 55
  year: 2018
  ident: C9NR07778B-(cit20f)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2018.06.036
– volume: 26
  start-page: 1161
  year: 1954
  ident: C9NR07778B-(cit22)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac60091a018
– volume: 10
  start-page: 1056
  year: 2011
  ident: C9NR07778B-(cit34)/*[position()=1]
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c0pp00356e
– volume: 44
  start-page: 1561
  year: 2015
  ident: C9NR07778B-(cit8a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00177J
– volume: 97
  start-page: 113
  year: 2017
  ident: C9NR07778B-(cit19b)/*[position()=1]
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2016.11.013
– volume: 50
  start-page: 823
  year: 2006
  ident: C9NR07778B-(cit4)/*[position()=1]
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.05.019
– volume: 26
  start-page: 1157
  year: 2010
  ident: C9NR07778B-(cit30)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la902260j
– volume: 89
  start-page: 4868
  year: 2017
  ident: C9NR07778B-(cit42b)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04662
– volume: 6
  start-page: 2969
  year: 2012
  ident: C9NR07778B-(cit11e)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2042362
– volume: 107
  start-page: 22430
  year: 2010
  ident: C9NR07778B-(cit49b)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1008958107
– volume: 8
  start-page: 378
  year: 2016
  ident: C9NR07778B-(cit23e)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 140
  start-page: 12890
  year: 2018
  ident: C9NR07778B-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07086
– volume: 4
  start-page: 984
  year: 2016
  ident: C9NR07778B-(cit41)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600141
– volume: 2
  start-page: 932
  year: 2005
  ident: C9NR07778B-(cit1b)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth818
– volume: 13
  start-page: 111
  issue: 14
  year: 2017
  ident: C9NR07778B-(cit9c)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201603418
– volume: 3
  start-page: 6616
  year: 2015
  ident: C9NR07778B-(cit23d)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00849B
– volume: 14
  start-page: 1801304
  year: 2018
  ident: C9NR07778B-(cit39)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201801304
– volume: 7
  start-page: 18007
  year: 2018
  ident: C9NR07778B-(cit9f)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2018.7
– volume: 5
  start-page: 1700609
  issue: 3
  year: 2018
  ident: C9NR07778B-(cit10g)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700609
– volume: 223
  start-page: 3011
  year: 2018
  ident: C9NR07778B-(cit3a)/*[position()=1]
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1678-1
– volume: 8
  start-page: 393
  year: 2011
  ident: C9NR07778B-(cit3b)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1596
– volume: 13
  start-page: 408
  year: 2019
  ident: C9NR07778B-(cit10i)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06563
– volume: 20
  start-page: 7543
  year: 2010
  ident: C9NR07778B-(cit14a)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01617a
– volume: 7
  start-page: 1403
  year: 2015
  ident: C9NR07778B-(cit20c)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR05954A
– volume: 94
  start-page: 251107
  year: 2009
  ident: C9NR07778B-(cit11b)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3156857
– start-page: 1396
  year: 1998
  ident: C9NR07778B-(cit48)/*[position()=1]
  publication-title: Synlett
  doi: 10.1055/s-1998-1945
– volume: 133
  start-page: 998
  year: 2011
  ident: C9NR07778B-(cit49a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108948z
– volume: 55
  start-page: 11668
  year: 2016
  ident: C9NR07778B-(cit12c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201603028
– volume: 7
  start-page: 12422
  year: 2015
  ident: C9NR07778B-(cit18a)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507591u
– volume: 34
  start-page: 2566
  year: 2009
  ident: C9NR07778B-(cit11a)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.002566
– volume: 28
  start-page: 807
  year: 2010
  ident: C9NR07778B-(cit16a)/*[position()=1]
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(09)60206-4
– volume: 254
  start-page: 1038
  year: 2010
  ident: C9NR07778B-(cit51b)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2010.02.007
– volume: 28
  start-page: 617
  year: 2016
  ident: C9NR07778B-(cit20d)/*[position()=1]
  publication-title: Prog. Chem.
– volume: 6
  start-page: 2686
  year: 2012
  ident: C9NR07778B-(cit9a)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3000737
– volume: 7
  start-page: 663
  year: 2013
  ident: C9NR07778B-(cit11f)/*[position()=1]
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201200052
– volume: 137
  start-page: 2336
  year: 2015
  ident: C9NR07778B-(cit18b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5115248
– volume: 9
  start-page: 3079
  year: 2017
  ident: C9NR07778B-(cit11i)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR08472A
– volume: 17
  start-page: 076003
  issue: 7
  year: 2012
  ident: C9NR07778B-(cit37)/*[position()=1]
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.17.7.076003
– volume: 84
  start-page: 345
  year: 2018
  ident: C9NR07778B-(cit10e)/*[position()=1]
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2018.07.031
– volume: 9
  start-page: 4359
  year: 2018
  ident: C9NR07778B-(cit11h)/*[position()=1]
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.004359
– volume: 4
  start-page: 4301
  year: 2012
  ident: C9NR07778B-(cit28b)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30764b
– volume: 9
  start-page: 11994
  year: 2017
  ident: C9NR07778B-(cit42a)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09706E
– volume: 109
  start-page: 20826
  year: 2012
  ident: C9NR07778B-(cit13)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1213291110
– volume: 50
  start-page: 11360
  year: 2011
  ident: C9NR07778B-(cit21a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101521
– volume: 91
  start-page: 123103
  year: 2007
  ident: C9NR07778B-(cit52b)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2783476
– volume: 18
  start-page: 23544
  year: 2010
  ident: C9NR07778B-(cit7b)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.18.023544
– volume: 115
  start-page: 2686
  year: 2011
  ident: C9NR07778B-(cit14b)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111006z
– volume: 8
  start-page: e63292
  issue: 5
  year: 2013
  ident: C9NR07778B-(cit9b)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0063292
– volume: 7
  start-page: 93
  year: 2013
  ident: C9NR07778B-(cit2)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.361
– volume: 6
  start-page: 6837
  year: 2014
  ident: C9NR07778B-(cit23b)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR00461B
– volume: 29
  start-page: 736
  year: 2019
  ident: C9NR07778B-(cit26b)/*[position()=1]
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.12.022
– volume: 36
  start-page: 217
  year: 2012
  ident: C9NR07778B-(cit19a)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C1NJ20458K
– volume: 4
  start-page: 3143
  year: 2018
  ident: C9NR07778B-(cit8c)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00633
– volume-title: Designing Dendrimers
  year: 2012
  ident: C9NR07778B-(cit46)/*[position()=1]
– volume: 437
  start-page: 121
  year: 2005
  ident: C9NR07778B-(cit50a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature03968
– volume: 7
  start-page: 022001
  issue: 2
  year: 2019
  ident: C9NR07778B-(cit10h)/*[position()=1]
  publication-title: Methods Appl. Fluoresc.
  doi: 10.1088/2050-6120/ab029f
– volume: 89
  start-page: 1501
  year: 2017
  ident: C9NR07778B-(cit23f)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03223
– volume: 104
  start-page: 139
  year: 2004
  ident: C9NR07778B-(cit5a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020357g
– volume: 25
  start-page: 856
  year: 2013
  ident: C9NR07778B-(cit45)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203641
– volume: 128
  start-page: 7444
  year: 2006
  ident: C9NR07778B-(cit52a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061848b
– volume: 5
  start-page: 1700609
  issue: 3
  year: 2018
  ident: C9NR07778B-(cit40)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700609
– volume: 14
  start-page: 1801304
  year: 2018
  ident: C9NR07778B-(cit15b)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201801304
– volume: 28
  start-page: 12861
  year: 2012
  ident: C9NR07778B-(cit20a)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la302690h
– start-page: 2901
  year: 2007
  ident: C9NR07778B-(cit50b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b700183e
– volume: 359
  start-page: 679
  year: 2018
  ident: C9NR07778B-(cit10f)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaq1144
– volume: 16
  start-page: 2324
  year: 2006
  ident: C9NR07778B-(cit51a)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600053
– volume: 4
  start-page: 55897
  year: 2014
  ident: C9NR07778B-(cit23c)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09686J
– volume-title: Modern Molecular Photochemistry
  year: 1991
  ident: C9NR07778B-(cit43)/*[position()=1]
– volume: 115
  start-page: 19054
  year: 2011
  ident: C9NR07778B-(cit11c)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp206345j
– start-page: 1229
  year: 2001
  ident: C9NR07778B-(cit17)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b104290b
– volume: 11
  start-page: 10644
  year: 2017
  ident: C9NR07778B-(cit5d)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07120
– volume: 135
  start-page: 12608
  year: 2013
  ident: C9NR07778B-(cit6b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4075002
– volume: 7
  start-page: 762
  year: 2017
  ident: C9NR07778B-(cit9d)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00869-3
– volume: 29
  start-page: 1912
  year: 2008
  ident: C9NR07778B-(cit36b)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.037
– volume: 14
  start-page: 582
  year: 2010
  ident: C9NR07778B-(cit15a)/*[position()=1]
  publication-title: Curr. Opin.Chem. Biol.
  doi: 10.1016/j.cbpa.2010.08.014
– volume: 3
  year: 2013
  ident: C9NR07778B-(cit35b)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01932
– volume: 467
  start-page: 407
  year: 2010
  ident: C9NR07778B-(cit7a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/467407a
– volume: 299
  start-page: F1048
  year: 2010
  ident: C9NR07778B-(cit35a)/*[position()=1]
  publication-title: Am. J. Physiol.: Renal, Fluid Electrolyte Physiol.
– year: 2019
  ident: C9NR07778B-(cit38)/*[position()=1]
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X19831016
– volume: 27
  start-page: 5753
  year: 2015
  ident: C9NR07778B-(cit6c)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500248
– volume: 52
  start-page: 3584
  year: 2013
  ident: C9NR07778B-(cit10a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208196
– volume: 7
  start-page: 3203
  year: 2007
  ident: C9NR07778B-(cit32)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl071928t
– volume: 70
  start-page: 4893
  year: 2005
  ident: C9NR07778B-(cit24)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0504518
– volume: 83
  start-page: 8756
  year: 2011
  ident: C9NR07778B-(cit27)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac2022234
– volume: 93
  start-page: 10763
  year: 1996
  ident: C9NR07778B-(cit1c)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.20.10763
– volume-title: Rev. Fluores. 2016
  year: 2017
  ident: C9NR07778B-(cit10c)/*[position()=1]
– start-page: 5000
  year: 2009
  ident: C9NR07778B-(cit23a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b907822c
– volume: 8
  start-page: 133
  year: 2016
  ident: C9NR07778B-(cit8b)/*[position()=1]
  publication-title: Sovrem. Tehnol. Med.
  doi: 10.17691/stm2016.8.4.18
– volume: 47
  start-page: 3481
  year: 2014
  ident: C9NR07778B-(cit20b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500253g
– volume: 248
  start-page: 73
  year: 1990
  ident: C9NR07778B-(cit1a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.2321027
– volume: 41
  start-page: 1323
  year: 2012
  ident: C9NR07778B-(cit11d)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15187H
– volume: 3
  start-page: 239
  year: 2013
  ident: C9NR07778B-(cit12b)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.5113
– volume: 16
  start-page: 2102
  year: 2004
  ident: C9NR07778B-(cit53)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400772
– volume: 50
  start-page: 5808
  year: 2011
  ident: C9NR07778B-(cit5b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201005159
– volume: 9
  start-page: 14647
  year: 2017
  ident: C9NR07778B-(cit20e)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01452
– volume: 23
  start-page: 485103
  issue: 48
  year: 2012
  ident: C9NR07778B-(cit12a)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/48/485103
– volume: 3
  start-page: 322
  year: 1966
  ident: C9NR07778B-(cit6a)/*[position()=1]
  publication-title: JETP Lett.
– volume: 832
  start-page: 1
  year: 2014
  ident: C9NR07778B-(cit5c)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.04.030
– volume: 1
  start-page: 1292
  year: 2009
  ident: C9NR07778B-(cit26a)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am9001698
– volume: 13
  start-page: 614
  year: 2018
  ident: C9NR07778B-(cit16b)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201701817
– volume: 3
  start-page: 703
  year: 2008
  ident: C9NR07778B-(cit36a)/*[position()=1]
  publication-title: Nanomedicine
  doi: 10.2217/17435889.3.5.703
– volume: 10
  start-page: 2568
  year: 2018
  ident: C9NR07778B-(cit28a)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06141B
– volume: 10
  start-page: 22319
  year: 2018
  ident: C9NR07778B-(cit29)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR07566B
– volume: 35
  start-page: 5093
  year: 2019
  ident: C9NR07778B-(cit20g)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00238
– volume: 21
  start-page: 11132
  year: 2019
  ident: C9NR07778B-(cit10j)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP01808E
– volume: 9
  start-page: 3290
  year: 2018
  ident: C9NR07778B-(cit9e)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05842-w
– volume: 9
  start-page: 3082
  year: 2018
  ident: C9NR07778B-(cit11g)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05577-8
– volume: 5
  start-page: 2261
  year: 2018
  ident: C9NR07778B-(cit42d)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00112
– volume: 114
  start-page: 8405
  year: 1992
  ident: C9NR07778B-(cit25a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00048a009
– volume: 122
  start-page: 18751
  year: 2018
  ident: C9NR07778B-(cit42c)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b04908
– volume: 89
  start-page: 4868
  year: 2017
  ident: C9NR07778B-(cit44)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04662
– volume: 171
  start-page: 165
  year: 1984
  ident: C9NR07778B-(cit33)/*[position()=1]
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(84)80480-9
– volume: 4
  start-page: 984
  year: 2016
  ident: C9NR07778B-(cit10b)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600141
– volume: 7
  start-page: 330
  year: 2013
  ident: C9NR07778B-(cit21b)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn304837c
SSID ssj0069363
Score 2.4287837
Snippet Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2657
SubjectTerms Animals
Biocompatibility
Blurring
Brain - blood supply
Capillaries
Carboxylates
Cerebrovascular Circulation
Continuous radiation
Dendrimers
Dendrimers - chemistry
Detection
Emission analysis
Energy Transfer
Excitation
Feasibility studies
Fluxes
HeLa Cells
High resolution
Humans
Hydrogen-Ion Concentration
Image resolution
Infrared radiation
Lanthanoid Series Elements - chemistry
Ligands
Luminescence
Mapping
Mice
Microscopy
Microscopy - methods
Nanoparticles
Nanoparticles - chemistry
Photons
Polyethylene glycol
Polyethylene Glycols - chemistry
Solubility
Tissues
Title In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing
URI https://www.ncbi.nlm.nih.gov/pubmed/31939953
https://www.proquest.com/docview/2348226177
https://www.proquest.com/docview/2338991304
https://pubmed.ncbi.nlm.nih.gov/PMC7101076
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfK9gIPiP8UBjKCPaAoWxqncc3bVnVaR1cmaKW9RU7iqNXatGrTSfAF-D58Qu5i50-3CQEvUeS4iZv7xXdn_-6OkA8J8oI6nNuJAhcFN95s6fjCZopHQoVx5Et0FM-H_unYO7tsXzYav2qspU0WHkQ_7owr-R-pQhvIFaNk_0Gy5U2hAc5BvnAECcPxr2TcT63r6fXCipVa2ln-Cq05Muww1uS7XmMdd4cXWIdZppu1DZNMjPn8V2usLzOd6xJFWFRGU-PA9zYDxiDHWC1N4FuipKHR5hvyOWrmWIsrstbIgDfqzxi5MGPDCOSsxMzFbJNeGULwt4msdvLPp_Anrd7M-jyBW4ZF8363vS968Kb16iwavMfOVShLNgjyXzXWziSWUOzVFy9c5MAVweCa9YRLJAU_NeefmCp31TToIueRMZ3r_EDV2_j2PO7W8OrVJ2Vf58A2Ct719e9uKQ-HYe7VSKQrh3PeCSsVWdAChl-Ck_FgEIx6l6N7ZNflHKkBu0e9UX9Q6H9fsLx-XznuIikuE4fVvbfNoFu-zU2Kbs3mGT0iD42zQo808h6ThkqfkAe1FJZPyc9-ShGDtIZBWmGQIgYpYvDwJgKpXFODQKoR-IlW-KMyozn-KOCP1vBHFwmt4Y8a_D0j45PeqHtqm-IedsS4k9mJSJxItZXPo9Dz_JZqMxGGYAbAieN5oQT11w7BQei4Ko5bTHoqAlebx5EXc1A07DnZSRepekmoAJM-DiPht6TrSTBguc8FZ3HL8zpO0vGa5GPxroPIZL7HAiyzIGdgMBF0xfBrLpfjJnlf9l3qfC939torRBaY-WAduJgnCgsc8CZ5V14GOOMWHHxaiw32wXyWYDfCoF5oCZePAWWIceasSfiW7MsOmAl--0o6neQZ4cFNaDncf_XnYb0m96tvcI_sZKuNegMmdRa-NRj-Da9-1Eo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+deep-tissue+microscopy+with+UCNP%2FJanus-dendrimers+as+imaging+probes%3A+resolution+at+depth+and+feasibility+of+ratiometric+sensing&rft.jtitle=Nanoscale&rft.au=Plunkett%2C+Shane&rft.au=Mirna+El+Khatib&rft.au=%C5%9Eencan%2C+%C4%B0kbal&rft.au=Porter%2C+Jason+E&rft.date=2020-01-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=4&rft.spage=2657&rft.epage=2672&rft_id=info:doi/10.1039%2Fc9nr07778b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon