In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for...
Saved in:
Published in | Nanoscale Vol. 12; no. 4; pp. 2657 - 2672 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/C9NR07778B |
Cover
Abstract | Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on
in vivo
high-resolution microscopy – an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using
a posteriori
deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging
in vivo
using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated
via
EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge. |
---|---|
AbstractList | Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge. Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge. Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy – an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge. Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one ‘face’ of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ~1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence times of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge. |
Author | Kumar, Anand T. N. Plunkett, Shane Porter, Jason E. Collins, Joshua E. Vinogradov, Sergei A. Şencan, İkbal El Khatib, Mirna Sakadžić, Sava |
AuthorAffiliation | 2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 1 Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104 3 Intelligent Materials Solutions, Inc., Princeton, NJ 08540 |
AuthorAffiliation_xml | – name: 2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 – name: 3 Intelligent Materials Solutions, Inc., Princeton, NJ 08540 – name: 1 Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 givenname: Shane surname: Plunkett fullname: Plunkett, Shane organization: Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania – sequence: 2 givenname: Mirna surname: El Khatib fullname: El Khatib, Mirna organization: Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania – sequence: 3 givenname: İkbal orcidid: 0000-0002-2903-041X surname: Şencan fullname: Şencan, İkbal organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA – sequence: 4 givenname: Jason E. surname: Porter fullname: Porter, Jason E. organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA – sequence: 5 givenname: Anand T. N. surname: Kumar fullname: Kumar, Anand T. N. organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA – sequence: 6 givenname: Joshua E. surname: Collins fullname: Collins, Joshua E. organization: Intelligent Materials Solutions, Inc., Princeton, USA – sequence: 7 givenname: Sava surname: Sakadžić fullname: Sakadžić, Sava organization: Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, USA – sequence: 8 givenname: Sergei A. orcidid: 0000-0002-4649-5534 surname: Vinogradov fullname: Vinogradov, Sergei A. organization: Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31939953$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt1uFSEUhYmpsT964wMYEm-MyVgYGBi8MNETf2qaaoy9Jgyz55RmBqbAHHOewNeWk9ajNl5B2N9eWYu9j9GBDx4QekrJK0qYOl2pi29EStm-e4COasJJxZisD_Z3wQ_RcUrXhAjFBHuEDhlVTKmGHaGfZx5v3CbgHmCusktpATw5G0OyYd7iHy5f4cvVxdfTz8YvqerB99FNEBM2CbvJrJ1f4zmGDtJrHCGFcckueGxykZxLs_E9HsAk17nR5S0OA46mIBPk6CxO4FOReIweDmZM8OTuPEGXH95_X32qzr98PFu9Pa8skyRXgxqIhQaEtB3ngkLDVNeBKW-McN4Z0rZNR1rW1tD3lBkOVgghe8t7yeuGnaA3t7rz0k3QW_A5mlHPJZOJWx2M0_9WvLvS67DRkhJKpCgCL-4EYrhZIGU9uWRhHI2HsCRdM9YqRYubgj6_h16HJfoSr1C8rWtBpSzUs78d7a38nlEBXt4Cu6GkCMMeoUTvFkD_WYACk3uwdXn33bs0bvxfyy9XoLUi |
CitedBy_id | crossref_primary_10_1016_j_molliq_2021_118396 crossref_primary_10_1002_adma_202502739 crossref_primary_10_1016_j_mtbio_2023_100646 crossref_primary_10_1016_j_microc_2023_109181 crossref_primary_10_1039_D1NH00260K crossref_primary_10_1186_s40486_025_00223_7 crossref_primary_10_1016_j_dyepig_2022_110756 crossref_primary_10_1039_D4BM00774C crossref_primary_10_2147_IJN_S243157 crossref_primary_10_1002_adfm_202309966 crossref_primary_10_1016_j_microc_2022_108363 crossref_primary_10_1021_acs_iecr_0c04304 crossref_primary_10_1021_acs_macromol_2c00512 crossref_primary_10_1016_j_jconrel_2022_10_056 crossref_primary_10_1016_j_mtcomm_2024_111304 crossref_primary_10_3390_macromol3020022 crossref_primary_10_1039_D4TC02806F crossref_primary_10_3390_pharmaceutics15020589 crossref_primary_10_1002_adpr_202200098 crossref_primary_10_1039_D2NR03186H |
Cites_doi | 10.1021/nn201896m 10.1016/S0040-4039(00)73374-0 10.1364/BOE.6.004994 10.1117/1.3420209 10.1021/acs.accounts.6b00382 10.1016/j.colsurfa.2018.06.036 10.1021/ac60091a018 10.1039/c0pp00356e 10.1039/C4CS00177J 10.1016/j.ejps.2016.11.013 10.1016/j.neuron.2006.05.019 10.1021/la902260j 10.1021/acs.analchem.6b04662 10.1021/nn2042362 10.1073/pnas.1008958107 10.1021/jacs.8b07086 10.1002/adom.201600141 10.1038/nmeth818 10.1002/smll.201603418 10.1039/C5TC00849B 10.1002/smll.201801304 10.1038/lsa.2018.7 10.1002/advs.201700609 10.1007/s00429-018-1678-1 10.1038/nmeth.1596 10.1021/acsnano.8b06563 10.1039/c0jm01617a 10.1039/C4NR05954A 10.1063/1.3156857 10.1055/s-1998-1945 10.1021/ja108948z 10.1002/anie.201603028 10.1021/am507591u 10.1364/OL.34.002566 10.1016/S1002-0721(09)60206-4 10.1016/j.ccr.2010.02.007 10.1021/nn3000737 10.1002/lpor.201200052 10.1021/ja5115248 10.1039/C6NR08472A 10.1117/1.JBO.17.7.076003 10.1016/j.optmat.2018.07.031 10.1364/BOE.9.004359 10.1039/c2nr30764b 10.1039/C6NR09706E 10.1073/pnas.1213291110 10.1002/anie.201101521 10.1063/1.2783476 10.1364/OE.18.023544 10.1021/jp111006z 10.1371/journal.pone.0063292 10.1038/nphoton.2012.361 10.1039/C4NR00461B 10.1016/j.cmet.2018.12.022 10.1039/C1NJ20458K 10.1021/acsbiomaterials.8b00633 10.1038/nature03968 10.1088/2050-6120/ab029f 10.1021/acs.analchem.6b03223 10.1021/cr020357g 10.1002/adma.201203641 10.1021/ja061848b 10.1021/la302690h 10.1039/b700183e 10.1126/science.aaq1144 10.1002/adfm.200600053 10.1039/C4RA09686J 10.1021/jp206345j 10.1039/b104290b 10.1021/acsnano.7b07120 10.1021/ja4075002 10.1038/s41598-017-00869-3 10.1016/j.biomaterials.2007.12.037 10.1016/j.cbpa.2010.08.014 10.1038/srep01932 10.1038/467407a 10.1177/0271678X19831016 10.1002/adma.201500248 10.1002/anie.201208196 10.1021/nl071928t 10.1021/jo0504518 10.1021/ac2022234 10.1073/pnas.93.20.10763 10.1039/b907822c 10.17691/stm2016.8.4.18 10.1021/ar500253g 10.1126/science.2321027 10.1039/C1CS15187H 10.7150/thno.5113 10.1002/adma.200400772 10.1002/anie.201005159 10.1021/acsami.7b01452 10.1088/0957-4484/23/48/485103 10.1016/j.aca.2014.04.030 10.1021/am9001698 10.1002/asia.201701817 10.2217/17435889.3.5.703 10.1039/C7NR06141B 10.1039/C8NR07566B 10.1021/acs.langmuir.9b00238 10.1039/C9CP01808E 10.1038/s41467-018-05842-w 10.1038/s41467-018-05577-8 10.1021/acsphotonics.8b00112 10.1021/ja00048a009 10.1021/acs.jpcc.8b04908 10.1016/0014-5793(84)80480-9 10.1021/nn304837c |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 5PM |
DOI | 10.1039/C9NR07778B |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 2672 |
ExternalDocumentID | PMC7101076 31939953 10_1039_C9NR07778B |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB018464 – fundername: NIBIB NIH HHS grantid: R21 EB027397 – fundername: NIMH NIH HHS grantid: K99 MH120053 – fundername: NINDS NIH HHS grantid: R24 NS092986 – fundername: NINDS NIH HHS grantid: P01 NS055104 – fundername: NCI NIH HHS grantid: R01 CA211084 |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c370t-f9f0ce5e67cb4461e539bbeace53044ba0885b08382edd13a4ec6667dc4d74253 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Aug 21 18:32:15 EDT 2025 Fri Jul 11 15:32:01 EDT 2025 Mon Jun 30 06:02:14 EDT 2025 Mon Jul 21 06:00:03 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 01:13:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-f9f0ce5e67cb4461e539bbeace53044ba0885b08382edd13a4ec6667dc4d74253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4649-5534 0000-0002-2903-041X |
PMID | 31939953 |
PQID | 2348226177 |
PQPubID | 2047485 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7101076 proquest_miscellaneous_2338991304 proquest_journals_2348226177 pubmed_primary_31939953 crossref_primary_10_1039_C9NR07778B crossref_citationtrail_10_1039_C9NR07778B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-28 |
PublicationDateYYYYMMDD | 2020-01-28 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gu (C9NR07778B-(cit10g)/*[position()=1]) 2018; 5 Tully (C9NR07778B-(cit17)/*[position()=1]) 2001 DaCosta (C9NR07778B-(cit5c)/*[position()=1]) 2014; 832 Ye (C9NR07778B-(cit49b)/*[position()=1]) 2010; 107 Svoboda (C9NR07778B-(cit4)/*[position()=1]) 2006; 50 Que (C9NR07778B-(cit20e)/*[position()=1]) 2017; 9 Wang (C9NR07778B-(cit23c)/*[position()=1]) 2014; 4 Yi (C9NR07778B-(cit51a)/*[position()=1]) 2006; 16 Wang (C9NR07778B-(cit16b)/*[position()=1]) 2018; 13 Wang (C9NR07778B-(cit50b)/*[position()=1]) 2007 Yazdanfar (C9NR07778B-(cit1d)/*[position()=1]) 2010; 15 Xin (C9NR07778B-(cit9c)/*[position()=1]) 2017; 13 Ovsyakin (C9NR07778B-(cit6a)/*[position()=1]) 1966; 3 Cao (C9NR07778B-(cit20a)/*[position()=1]) 2012; 28 Capagna (C9NR07778B-(cit46)/*[position()=1]) 2012 Wang (C9NR07778B-(cit20d)/*[position()=1]) 2016; 28 Cheng (C9NR07778B-(cit14b)/*[position()=1]) 2011; 115 Tan (C9NR07778B-(cit41)/*[position()=1]) 2016; 4 Jaque (C9NR07778B-(cit28b)/*[position()=1]) 2012; 4 Esipova (C9NR07778B-(cit27)/*[position()=1]) 2011; 83 Hoover (C9NR07778B-(cit2)/*[position()=1]) 2013; 7 Drobizhev (C9NR07778B-(cit3b)/*[position()=1]) 2011; 8 Dukhno (C9NR07778B-(cit42a)/*[position()=1]) 2017; 9 Nadort (C9NR07778B-(cit9b)/*[position()=1]) 2013; 8 Brettreich (C9NR07778B-(cit48)/*[position()=1]) 1998 Yaseen (C9NR07778B-(cit54)/*[position()=1]) 2015; 6 Newkome (C9NR07778B-(cit24)/*[position()=1]) 2005; 70 Zhang (C9NR07778B-(cit16a)/*[position()=1]) 2010; 28 Skripka (C9NR07778B-(cit11i)/*[position()=1]) 2017; 9 Ostrowski (C9NR07778B-(cit9a)/*[position()=1]) 2012; 6 Chen (C9NR07778B-(cit9e)/*[position()=1]) 2018; 9 Chamanzar (C9NR07778B-(cit11h)/*[position()=1]) 2018; 9 De Jong (C9NR07778B-(cit36b)/*[position()=1]) 2008; 29 Peng (C9NR07778B-(cit18b)/*[position()=1]) 2015; 137 Schaferling (C9NR07778B-(cit10c)/*[position()=1]) 2017 Muhr (C9NR07778B-(cit44)/*[position()=1]) 2017; 89 Mader (C9NR07778B-(cit15a)/*[position()=1]) 2010; 14 Heer (C9NR07778B-(cit53)/*[position()=1]) 2004; 16 Esipova (C9NR07778B-(cit13)/*[position()=1]) 2012; 109 Tajon (C9NR07778B-(cit10e)/*[position()=1]) 2018; 84 Wang (C9NR07778B-(cit50a)/*[position()=1]) 2005; 437 Xu (C9NR07778B-(cit1c)/*[position()=1]) 1996; 93 Wilhelm (C9NR07778B-(cit5d)/*[position()=1]) 2017; 11 Pichaandi (C9NR07778B-(cit11c)/*[position()=1]) 2011; 115 Bogdan (C9NR07778B-(cit14a)/*[position()=1]) 2010; 20 Reddy (C9NR07778B-(cit15b)/*[position()=1]) 2018; 14 Su (C9NR07778B-(cit10d)/*[position()=1]) 2017; 50 Sun (C9NR07778B-(cit23a)/*[position()=1]) 2009 Chan (C9NR07778B-(cit6c)/*[position()=1]) 2015; 27 Feng (C9NR07778B-(cit51b)/*[position()=1]) 2010; 254 Tian (C9NR07778B-(cit11g)/*[position()=1]) 2018; 9 Lebedev (C9NR07778B-(cit26a)/*[position()=1]) 2009; 1 Esipova (C9NR07778B-(cit26b)/*[position()=1]) 2019; 29 Cheng (C9NR07778B-(cit47)/*[position()=1]) 2018; 140 Liebherr (C9NR07778B-(cit12a)/*[position()=1]) 2012; 23 Wang (C9NR07778B-(cit35a)/*[position()=1]) 2010; 299 Wilhelm (C9NR07778B-(cit20c)/*[position()=1]) 2015; 7 Auzel (C9NR07778B-(cit5a)/*[position()=1]) 2004; 104 Melle (C9NR07778B-(cit42c)/*[position()=1]) 2018; 122 Alonso-Cristobal (C9NR07778B-(cit18a)/*[position()=1]) 2015; 7 Hou (C9NR07778B-(cit21b)/*[position()=1]) 2013; 7 Dantelle (C9NR07778B-(cit10j)/*[position()=1]) 2019; 21 Hawker (C9NR07778B-(cit25a)/*[position()=1]) 1992; 114 del Rosal (C9NR07778B-(cit10h)/*[position()=1]) 2019; 7 Muhr (C9NR07778B-(cit20b)/*[position()=1]) 2014; 47 Marin (C9NR07778B-(cit42d)/*[position()=1]) 2018; 5 Gu (C9NR07778B-(cit40)/*[position()=1]) 2018; 5 Sarkar (C9NR07778B-(cit45)/*[position()=1]) 2013; 25 Reddy (C9NR07778B-(cit39)/*[position()=1]) 2018; 14 Turro (C9NR07778B-(cit43)/*[position()=1]) 1991 Sikwal (C9NR07778B-(cit19b)/*[position()=1]) 2017; 97 Schaferling (C9NR07778B-(cit23e)/*[position()=1]) 2016; 8 Longmire (C9NR07778B-(cit36a)/*[position()=1]) 2008; 3 Chen (C9NR07778B-(cit10f)/*[position()=1]) 2018; 359 Boyer (C9NR07778B-(cit30)/*[position()=1]) 2010; 26 Helmchen (C9NR07778B-(cit1b)/*[position()=1]) 2005; 2 Cohen (C9NR07778B-(cit7a)/*[position()=1]) 2010; 467 Denk (C9NR07778B-(cit1a)/*[position()=1]) 1990; 248 Wang (C9NR07778B-(cit9f)/*[position()=1]) 2018; 7 Egawa (C9NR07778B-(cit35b)/*[position()=1]) 2013; 3 Dong (C9NR07778B-(cit49a)/*[position()=1]) 2011; 133 Twyman (C9NR07778B-(cit25b)/*[position()=1]) 1994; 35 Andresen (C9NR07778B-(cit20g)/*[position()=1]) 2019; 35 Drees (C9NR07778B-(cit12c)/*[position()=1]) 2016; 55 Shan (C9NR07778B-(cit52b)/*[position()=1]) 2007; 91 Boyer (C9NR07778B-(cit52a)/*[position()=1]) 2006; 128 Xie (C9NR07778B-(cit6b)/*[position()=1]) 2013; 135 Gorris (C9NR07778B-(cit10a)/*[position()=1]) 2013; 52 Li (C9NR07778B-(cit38)/*[position()=1]) 2019 Wilhelm (C9NR07778B-(cit12b)/*[position()=1]) 2013; 3 Guller (C9NR07778B-(cit8c)/*[position()=1]) 2018; 4 Green (C9NR07778B-(cit9d)/*[position()=1]) 2017; 7 Megregian (C9NR07778B-(cit22)/*[position()=1]) 1954; 26 Cortelletti (C9NR07778B-(cit28a)/*[position()=1]) 2018; 10 Gainer (C9NR07778B-(cit37)/*[position()=1]) 2012; 17 Haase (C9NR07778B-(cit5b)/*[position()=1]) 2011; 50 Zhou (C9NR07778B-(cit11d)/*[position()=1]) 2012; 41 Zhang (C9NR07778B-(cit32)/*[position()=1]) 2007; 7 Vinegoni (C9NR07778B-(cit11a)/*[position()=1]) 2009; 34 Arppe (C9NR07778B-(cit23b)/*[position()=1]) 2014; 6 Caminade (C9NR07778B-(cit19a)/*[position()=1]) 2012; 36 Labrador-Paez (C9NR07778B-(cit29)/*[position()=1]) 2018; 10 Ceroni (C9NR07778B-(cit34)/*[position()=1]) 2011; 10 Ma (C9NR07778B-(cit23d)/*[position()=1]) 2015; 3 Xu (C9NR07778B-(cit11f)/*[position()=1]) 2013; 7 Tanokura (C9NR07778B-(cit33)/*[position()=1]) 1984; 171 Chen (C9NR07778B-(cit11e)/*[position()=1]) 2012; 6 Maestro (C9NR07778B-(cit7b)/*[position()=1]) 2010; 18 Muhr (C9NR07778B-(cit42b)/*[position()=1]) 2017; 89 Mitroshina (C9NR07778B-(cit8b)/*[position()=1]) 2016; 8 Jin (C9NR07778B-(cit31)/*[position()=1]) 2011; 5 Xu (C9NR07778B-(cit11b)/*[position()=1]) 2009; 94 Ling (C9NR07778B-(cit21a)/*[position()=1]) 2011; 50 Ricard (C9NR07778B-(cit3a)/*[position()=1]) 2018; 223 Yang (C9NR07778B-(cit10i)/*[position()=1]) 2019; 13 Gnach (C9NR07778B-(cit8a)/*[position()=1]) 2015; 44 Tan (C9NR07778B-(cit10b)/*[position()=1]) 2016; 4 Li (C9NR07778B-(cit20f)/*[position()=1]) 2018; 555 Nareoja (C9NR07778B-(cit23f)/*[position()=1]) 2017; 89 |
References_xml | – volume: 5 start-page: 7838 year: 2011 ident: C9NR07778B-(cit31)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn201896m – volume: 35 start-page: 4423 year: 1994 ident: C9NR07778B-(cit25b)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)73374-0 – volume: 6 start-page: 4994 year: 2015 ident: C9NR07778B-(cit54)/*[position()=1] publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004994 – volume: 15 start-page: 030505 year: 2010 ident: C9NR07778B-(cit1d)/*[position()=1] publication-title: J. Biomed. Opt. doi: 10.1117/1.3420209 – volume: 50 start-page: 32 year: 2017 ident: C9NR07778B-(cit10d)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00382 – volume: 555 start-page: 55 year: 2018 ident: C9NR07778B-(cit20f)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2018.06.036 – volume: 26 start-page: 1161 year: 1954 ident: C9NR07778B-(cit22)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac60091a018 – volume: 10 start-page: 1056 year: 2011 ident: C9NR07778B-(cit34)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c0pp00356e – volume: 44 start-page: 1561 year: 2015 ident: C9NR07778B-(cit8a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00177J – volume: 97 start-page: 113 year: 2017 ident: C9NR07778B-(cit19b)/*[position()=1] publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2016.11.013 – volume: 50 start-page: 823 year: 2006 ident: C9NR07778B-(cit4)/*[position()=1] publication-title: Neuron doi: 10.1016/j.neuron.2006.05.019 – volume: 26 start-page: 1157 year: 2010 ident: C9NR07778B-(cit30)/*[position()=1] publication-title: Langmuir doi: 10.1021/la902260j – volume: 89 start-page: 4868 year: 2017 ident: C9NR07778B-(cit42b)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04662 – volume: 6 start-page: 2969 year: 2012 ident: C9NR07778B-(cit11e)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2042362 – volume: 107 start-page: 22430 year: 2010 ident: C9NR07778B-(cit49b)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1008958107 – volume: 8 start-page: 378 year: 2016 ident: C9NR07778B-(cit23e)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 140 start-page: 12890 year: 2018 ident: C9NR07778B-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07086 – volume: 4 start-page: 984 year: 2016 ident: C9NR07778B-(cit41)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600141 – volume: 2 start-page: 932 year: 2005 ident: C9NR07778B-(cit1b)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth818 – volume: 13 start-page: 111 issue: 14 year: 2017 ident: C9NR07778B-(cit9c)/*[position()=1] publication-title: Small doi: 10.1002/smll.201603418 – volume: 3 start-page: 6616 year: 2015 ident: C9NR07778B-(cit23d)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00849B – volume: 14 start-page: 1801304 year: 2018 ident: C9NR07778B-(cit39)/*[position()=1] publication-title: Small doi: 10.1002/smll.201801304 – volume: 7 start-page: 18007 year: 2018 ident: C9NR07778B-(cit9f)/*[position()=1] publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2018.7 – volume: 5 start-page: 1700609 issue: 3 year: 2018 ident: C9NR07778B-(cit10g)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700609 – volume: 223 start-page: 3011 year: 2018 ident: C9NR07778B-(cit3a)/*[position()=1] publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1678-1 – volume: 8 start-page: 393 year: 2011 ident: C9NR07778B-(cit3b)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth.1596 – volume: 13 start-page: 408 year: 2019 ident: C9NR07778B-(cit10i)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b06563 – volume: 20 start-page: 7543 year: 2010 ident: C9NR07778B-(cit14a)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm01617a – volume: 7 start-page: 1403 year: 2015 ident: C9NR07778B-(cit20c)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR05954A – volume: 94 start-page: 251107 year: 2009 ident: C9NR07778B-(cit11b)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3156857 – start-page: 1396 year: 1998 ident: C9NR07778B-(cit48)/*[position()=1] publication-title: Synlett doi: 10.1055/s-1998-1945 – volume: 133 start-page: 998 year: 2011 ident: C9NR07778B-(cit49a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108948z – volume: 55 start-page: 11668 year: 2016 ident: C9NR07778B-(cit12c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201603028 – volume: 7 start-page: 12422 year: 2015 ident: C9NR07778B-(cit18a)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507591u – volume: 34 start-page: 2566 year: 2009 ident: C9NR07778B-(cit11a)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.34.002566 – volume: 28 start-page: 807 year: 2010 ident: C9NR07778B-(cit16a)/*[position()=1] publication-title: J. Rare Earths doi: 10.1016/S1002-0721(09)60206-4 – volume: 254 start-page: 1038 year: 2010 ident: C9NR07778B-(cit51b)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2010.02.007 – volume: 28 start-page: 617 year: 2016 ident: C9NR07778B-(cit20d)/*[position()=1] publication-title: Prog. Chem. – volume: 6 start-page: 2686 year: 2012 ident: C9NR07778B-(cit9a)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3000737 – volume: 7 start-page: 663 year: 2013 ident: C9NR07778B-(cit11f)/*[position()=1] publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201200052 – volume: 137 start-page: 2336 year: 2015 ident: C9NR07778B-(cit18b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5115248 – volume: 9 start-page: 3079 year: 2017 ident: C9NR07778B-(cit11i)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR08472A – volume: 17 start-page: 076003 issue: 7 year: 2012 ident: C9NR07778B-(cit37)/*[position()=1] publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.7.076003 – volume: 84 start-page: 345 year: 2018 ident: C9NR07778B-(cit10e)/*[position()=1] publication-title: Opt. Mater. doi: 10.1016/j.optmat.2018.07.031 – volume: 9 start-page: 4359 year: 2018 ident: C9NR07778B-(cit11h)/*[position()=1] publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.004359 – volume: 4 start-page: 4301 year: 2012 ident: C9NR07778B-(cit28b)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30764b – volume: 9 start-page: 11994 year: 2017 ident: C9NR07778B-(cit42a)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09706E – volume: 109 start-page: 20826 year: 2012 ident: C9NR07778B-(cit13)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1213291110 – volume: 50 start-page: 11360 year: 2011 ident: C9NR07778B-(cit21a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201101521 – volume: 91 start-page: 123103 year: 2007 ident: C9NR07778B-(cit52b)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2783476 – volume: 18 start-page: 23544 year: 2010 ident: C9NR07778B-(cit7b)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.18.023544 – volume: 115 start-page: 2686 year: 2011 ident: C9NR07778B-(cit14b)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp111006z – volume: 8 start-page: e63292 issue: 5 year: 2013 ident: C9NR07778B-(cit9b)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0063292 – volume: 7 start-page: 93 year: 2013 ident: C9NR07778B-(cit2)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.361 – volume: 6 start-page: 6837 year: 2014 ident: C9NR07778B-(cit23b)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR00461B – volume: 29 start-page: 736 year: 2019 ident: C9NR07778B-(cit26b)/*[position()=1] publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.12.022 – volume: 36 start-page: 217 year: 2012 ident: C9NR07778B-(cit19a)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C1NJ20458K – volume: 4 start-page: 3143 year: 2018 ident: C9NR07778B-(cit8c)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00633 – volume-title: Designing Dendrimers year: 2012 ident: C9NR07778B-(cit46)/*[position()=1] – volume: 437 start-page: 121 year: 2005 ident: C9NR07778B-(cit50a)/*[position()=1] publication-title: Nature doi: 10.1038/nature03968 – volume: 7 start-page: 022001 issue: 2 year: 2019 ident: C9NR07778B-(cit10h)/*[position()=1] publication-title: Methods Appl. Fluoresc. doi: 10.1088/2050-6120/ab029f – volume: 89 start-page: 1501 year: 2017 ident: C9NR07778B-(cit23f)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03223 – volume: 104 start-page: 139 year: 2004 ident: C9NR07778B-(cit5a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020357g – volume: 25 start-page: 856 year: 2013 ident: C9NR07778B-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203641 – volume: 128 start-page: 7444 year: 2006 ident: C9NR07778B-(cit52a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061848b – volume: 5 start-page: 1700609 issue: 3 year: 2018 ident: C9NR07778B-(cit40)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700609 – volume: 14 start-page: 1801304 year: 2018 ident: C9NR07778B-(cit15b)/*[position()=1] publication-title: Small doi: 10.1002/smll.201801304 – volume: 28 start-page: 12861 year: 2012 ident: C9NR07778B-(cit20a)/*[position()=1] publication-title: Langmuir doi: 10.1021/la302690h – start-page: 2901 year: 2007 ident: C9NR07778B-(cit50b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b700183e – volume: 359 start-page: 679 year: 2018 ident: C9NR07778B-(cit10f)/*[position()=1] publication-title: Science doi: 10.1126/science.aaq1144 – volume: 16 start-page: 2324 year: 2006 ident: C9NR07778B-(cit51a)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600053 – volume: 4 start-page: 55897 year: 2014 ident: C9NR07778B-(cit23c)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA09686J – volume-title: Modern Molecular Photochemistry year: 1991 ident: C9NR07778B-(cit43)/*[position()=1] – volume: 115 start-page: 19054 year: 2011 ident: C9NR07778B-(cit11c)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp206345j – start-page: 1229 year: 2001 ident: C9NR07778B-(cit17)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b104290b – volume: 11 start-page: 10644 year: 2017 ident: C9NR07778B-(cit5d)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07120 – volume: 135 start-page: 12608 year: 2013 ident: C9NR07778B-(cit6b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4075002 – volume: 7 start-page: 762 year: 2017 ident: C9NR07778B-(cit9d)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-00869-3 – volume: 29 start-page: 1912 year: 2008 ident: C9NR07778B-(cit36b)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.037 – volume: 14 start-page: 582 year: 2010 ident: C9NR07778B-(cit15a)/*[position()=1] publication-title: Curr. Opin.Chem. Biol. doi: 10.1016/j.cbpa.2010.08.014 – volume: 3 year: 2013 ident: C9NR07778B-(cit35b)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01932 – volume: 467 start-page: 407 year: 2010 ident: C9NR07778B-(cit7a)/*[position()=1] publication-title: Nature doi: 10.1038/467407a – volume: 299 start-page: F1048 year: 2010 ident: C9NR07778B-(cit35a)/*[position()=1] publication-title: Am. J. Physiol.: Renal, Fluid Electrolyte Physiol. – year: 2019 ident: C9NR07778B-(cit38)/*[position()=1] publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X19831016 – volume: 27 start-page: 5753 year: 2015 ident: C9NR07778B-(cit6c)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500248 – volume: 52 start-page: 3584 year: 2013 ident: C9NR07778B-(cit10a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208196 – volume: 7 start-page: 3203 year: 2007 ident: C9NR07778B-(cit32)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl071928t – volume: 70 start-page: 4893 year: 2005 ident: C9NR07778B-(cit24)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo0504518 – volume: 83 start-page: 8756 year: 2011 ident: C9NR07778B-(cit27)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac2022234 – volume: 93 start-page: 10763 year: 1996 ident: C9NR07778B-(cit1c)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.20.10763 – volume-title: Rev. Fluores. 2016 year: 2017 ident: C9NR07778B-(cit10c)/*[position()=1] – start-page: 5000 year: 2009 ident: C9NR07778B-(cit23a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b907822c – volume: 8 start-page: 133 year: 2016 ident: C9NR07778B-(cit8b)/*[position()=1] publication-title: Sovrem. Tehnol. Med. doi: 10.17691/stm2016.8.4.18 – volume: 47 start-page: 3481 year: 2014 ident: C9NR07778B-(cit20b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500253g – volume: 248 start-page: 73 year: 1990 ident: C9NR07778B-(cit1a)/*[position()=1] publication-title: Science doi: 10.1126/science.2321027 – volume: 41 start-page: 1323 year: 2012 ident: C9NR07778B-(cit11d)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15187H – volume: 3 start-page: 239 year: 2013 ident: C9NR07778B-(cit12b)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.5113 – volume: 16 start-page: 2102 year: 2004 ident: C9NR07778B-(cit53)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200400772 – volume: 50 start-page: 5808 year: 2011 ident: C9NR07778B-(cit5b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201005159 – volume: 9 start-page: 14647 year: 2017 ident: C9NR07778B-(cit20e)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01452 – volume: 23 start-page: 485103 issue: 48 year: 2012 ident: C9NR07778B-(cit12a)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/48/485103 – volume: 3 start-page: 322 year: 1966 ident: C9NR07778B-(cit6a)/*[position()=1] publication-title: JETP Lett. – volume: 832 start-page: 1 year: 2014 ident: C9NR07778B-(cit5c)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.04.030 – volume: 1 start-page: 1292 year: 2009 ident: C9NR07778B-(cit26a)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am9001698 – volume: 13 start-page: 614 year: 2018 ident: C9NR07778B-(cit16b)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201701817 – volume: 3 start-page: 703 year: 2008 ident: C9NR07778B-(cit36a)/*[position()=1] publication-title: Nanomedicine doi: 10.2217/17435889.3.5.703 – volume: 10 start-page: 2568 year: 2018 ident: C9NR07778B-(cit28a)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06141B – volume: 10 start-page: 22319 year: 2018 ident: C9NR07778B-(cit29)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR07566B – volume: 35 start-page: 5093 year: 2019 ident: C9NR07778B-(cit20g)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00238 – volume: 21 start-page: 11132 year: 2019 ident: C9NR07778B-(cit10j)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP01808E – volume: 9 start-page: 3290 year: 2018 ident: C9NR07778B-(cit9e)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05842-w – volume: 9 start-page: 3082 year: 2018 ident: C9NR07778B-(cit11g)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05577-8 – volume: 5 start-page: 2261 year: 2018 ident: C9NR07778B-(cit42d)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00112 – volume: 114 start-page: 8405 year: 1992 ident: C9NR07778B-(cit25a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00048a009 – volume: 122 start-page: 18751 year: 2018 ident: C9NR07778B-(cit42c)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04908 – volume: 89 start-page: 4868 year: 2017 ident: C9NR07778B-(cit44)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04662 – volume: 171 start-page: 165 year: 1984 ident: C9NR07778B-(cit33)/*[position()=1] publication-title: FEBS Lett. doi: 10.1016/0014-5793(84)80480-9 – volume: 4 start-page: 984 year: 2016 ident: C9NR07778B-(cit10b)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600141 – volume: 7 start-page: 330 year: 2013 ident: C9NR07778B-(cit21b)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn304837c |
SSID | ssj0069363 |
Score | 2.4287837 |
Snippet | Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2657 |
SubjectTerms | Animals Biocompatibility Blurring Brain - blood supply Capillaries Carboxylates Cerebrovascular Circulation Continuous radiation Dendrimers Dendrimers - chemistry Detection Emission analysis Energy Transfer Excitation Feasibility studies Fluxes HeLa Cells High resolution Humans Hydrogen-Ion Concentration Image resolution Infrared radiation Lanthanoid Series Elements - chemistry Ligands Luminescence Mapping Mice Microscopy Microscopy - methods Nanoparticles Nanoparticles - chemistry Photons Polyethylene glycol Polyethylene Glycols - chemistry Solubility Tissues |
Title | In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31939953 https://www.proquest.com/docview/2348226177 https://www.proquest.com/docview/2338991304 https://pubmed.ncbi.nlm.nih.gov/PMC7101076 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfK9gIPiP8UBjKCPaAoWxqncc3bVnVaR1cmaKW9RU7iqNXatGrTSfAF-D58Qu5i50-3CQEvUeS4iZv7xXdn_-6OkA8J8oI6nNuJAhcFN95s6fjCZopHQoVx5Et0FM-H_unYO7tsXzYav2qspU0WHkQ_7owr-R-pQhvIFaNk_0Gy5U2hAc5BvnAECcPxr2TcT63r6fXCipVa2ln-Cq05Muww1uS7XmMdd4cXWIdZppu1DZNMjPn8V2usLzOd6xJFWFRGU-PA9zYDxiDHWC1N4FuipKHR5hvyOWrmWIsrstbIgDfqzxi5MGPDCOSsxMzFbJNeGULwt4msdvLPp_Anrd7M-jyBW4ZF8363vS968Kb16iwavMfOVShLNgjyXzXWziSWUOzVFy9c5MAVweCa9YRLJAU_NeefmCp31TToIueRMZ3r_EDV2_j2PO7W8OrVJ2Vf58A2Ct719e9uKQ-HYe7VSKQrh3PeCSsVWdAChl-Ck_FgEIx6l6N7ZNflHKkBu0e9UX9Q6H9fsLx-XznuIikuE4fVvbfNoFu-zU2Kbs3mGT0iD42zQo808h6ThkqfkAe1FJZPyc9-ShGDtIZBWmGQIgYpYvDwJgKpXFODQKoR-IlW-KMyozn-KOCP1vBHFwmt4Y8a_D0j45PeqHtqm-IedsS4k9mJSJxItZXPo9Dz_JZqMxGGYAbAieN5oQT11w7BQei4Ko5bTHoqAlebx5EXc1A07DnZSRepekmoAJM-DiPht6TrSTBguc8FZ3HL8zpO0vGa5GPxroPIZL7HAiyzIGdgMBF0xfBrLpfjJnlf9l3qfC939torRBaY-WAduJgnCgsc8CZ5V14GOOMWHHxaiw32wXyWYDfCoF5oCZePAWWIceasSfiW7MsOmAl--0o6neQZ4cFNaDncf_XnYb0m96tvcI_sZKuNegMmdRa-NRj-Da9-1Eo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+deep-tissue+microscopy+with+UCNP%2FJanus-dendrimers+as+imaging+probes%3A+resolution+at+depth+and+feasibility+of+ratiometric+sensing&rft.jtitle=Nanoscale&rft.au=Plunkett%2C+Shane&rft.au=Mirna+El+Khatib&rft.au=%C5%9Eencan%2C+%C4%B0kbal&rft.au=Porter%2C+Jason+E&rft.date=2020-01-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=4&rft.spage=2657&rft.epage=2672&rft_id=info:doi/10.1039%2Fc9nr07778b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |