Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability
Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. He...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 56; no. 15; pp. 2332 - 2335 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
20.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain
in situ
grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.
A printable dielectric polymer composite with enhanced dielectric constant and thermal stability. |
---|---|
AbstractList | Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain
in situ
grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.
A printable dielectric polymer composite with enhanced dielectric constant and thermal stability. Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices. Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices. Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices. |
Author | Hu, Yong Armstrong, Jason Zhou, Chi An, Lu Guo, Zipeng Ren, Shenqiang Chivate, Aditya Tushar Khuje, Saurabh Vishwas Hu, Feng Huang, Yulong |
AuthorAffiliation | Department of Chemistry Environment & Water Institute Research and Education in Energy Department of Industrial and Systems Engineering The State University of New York Department of Mechanical and Aerospace Engineering University at Buffalo |
AuthorAffiliation_xml | – sequence: 0 name: Department of Mechanical and Aerospace Engineering – sequence: 0 name: Department of Chemistry – sequence: 0 name: The State University of New York – sequence: 0 name: Environment & Water Institute – sequence: 0 name: University at Buffalo – sequence: 0 name: Department of Industrial and Systems Engineering – sequence: 0 name: Research and Education in Energy |
Author_xml | – sequence: 1 givenname: Feng surname: Hu fullname: Hu, Feng – sequence: 2 givenname: Lu surname: An fullname: An, Lu – sequence: 3 givenname: Aditya Tushar surname: Chivate fullname: Chivate, Aditya Tushar – sequence: 4 givenname: Zipeng surname: Guo fullname: Guo, Zipeng – sequence: 5 givenname: Saurabh Vishwas surname: Khuje fullname: Khuje, Saurabh Vishwas – sequence: 6 givenname: Yulong surname: Huang fullname: Huang, Yulong – sequence: 7 givenname: Yong surname: Hu fullname: Hu, Yong – sequence: 8 givenname: Jason surname: Armstrong fullname: Armstrong, Jason – sequence: 9 givenname: Chi surname: Zhou fullname: Zhou, Chi – sequence: 10 givenname: Shenqiang surname: Ren fullname: Ren, Shenqiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31990279$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rHSEQAHApKc1XL7knLPQSCpvoqrt6LEvSNgRyaaG3RWdd4sNdN-o2ef99fe8lLYRAvajDbwac8RDtTX4yCJ0QfEEwlZcgAbComVi9QweE1qzkTPza25y5LBvK-D46jHGF8yJcfED7lEiJq0YeILh25slqZwo19cUc7JTU5tZb4wykYKGYvVuPJhTgx9lHm0zxaNN9kZZpK2cTRpuS_W3Telsk3eeIckXMlazL0WP0flAumo_P-xH6eX31o_1W3t59_d5-uS2BNjiVQ81BMNMbKqDWg9b90DAJBmut6UCEZqqngg91rzStgDSgtcC9opwNouKcHqHzXd05-IfFxNSNNoJxTk3GL7GrpKhrVhFK_k8pa3jurZCZfnpFV34JU35IVlwwjEVVZXX2rBY9mr7LnRxVWHcvnc4A7wAEH2MwQwc2qWT9lIKyriO42wyza2Xbbod5k1M-v0p5qfomPt3hEOGv-_cz6B-vnqqK |
CitedBy_id | crossref_primary_10_1002_smtd_202101198 crossref_primary_10_1021_acs_jpcc_0c08444 crossref_primary_10_1039_D2PY00550F crossref_primary_10_1016_j_ceramint_2020_07_218 crossref_primary_10_1016_j_jallcom_2020_155889 crossref_primary_10_1039_D1CP04040E crossref_primary_10_1016_j_mseb_2021_115347 crossref_primary_10_1016_j_ceramint_2021_04_245 crossref_primary_10_3390_molecules27196372 crossref_primary_10_1002_aisy_202000117 |
Cites_doi | 10.1146/annurev-matsci-070317-124435 10.1063/1.3428656 10.1002/adma.201601727 10.1002/adma.200600703 10.1021/acs.chemrev.5b00495 10.1103/PhysRevB.28.1081 10.1039/c0jm00270d 10.1063/1.2188032 10.1002/adma.200401816 10.1021/cm101614p 10.1002/adma.200602097 10.1038/s41586-018-0550-z 10.1016/j.synthmet.2008.04.014 10.1039/c3nr03036a 10.1002/adma.200801758 10.1039/C8CS00583D 10.1021/acsami.5b05344 10.1039/C7TC03593D 10.1002/adma.201504501 10.1021/ma2024057 10.1109/TEPM.2004.843109 10.1002/adma.200500313 10.1039/c2jm32579a 10.1002/smll.201400363 10.1002/adma.201202183 10.1002/app.34431 10.1021/jp409474k 10.1021/jacs.5b06736 10.1002/adma.200304911 10.1039/c2jm35532a 10.1021/ja062306x 10.1016/j.apsusc.2014.03.131 10.1038/nature14647 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c9cc08648j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database AGRICOLA CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 2335 |
ExternalDocumentID | 31990279 10_1039_C9CC08648J c9cc08648j |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-f65c84ede38c6bfbbdf749ce0bbb3f18b4ad385f6dab32c17cbb80da354f82553 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 10:15:56 EDT 2025 Fri Jul 11 16:19:02 EDT 2025 Mon Jun 30 03:40:22 EDT 2025 Wed Feb 19 02:31:34 EST 2025 Tue Jul 01 04:09:01 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Tue Dec 17 20:58:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-f65c84ede38c6bfbbdf749ce0bbb3f18b4ad385f6dab32c17cbb80da354f82553 |
Notes | 10.1039/c9cc08648j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9987-3316 0000-0003-2965-9995 |
PMID | 31990279 |
PQID | 2358400822 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2347503989 crossref_primary_10_1039_C9CC08648J rsc_primary_c9cc08648j pubmed_primary_31990279 crossref_citationtrail_10_1039_C9CC08648J proquest_journals_2358400822 proquest_miscellaneous_2986642131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200220 |
PublicationDateYYYYMMDD | 2020-02-20 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jiang (C9CC08648J-(cit5)/*[position()=1]) 2019; 48 Li (C9CC08648J-(cit8)/*[position()=1]) 2010; 96 Dang (C9CC08648J-(cit11)/*[position()=1]) 2003; 15 Li (C9CC08648J-(cit6)/*[position()=1]) 2015; 523 He (C9CC08648J-(cit19)/*[position()=1]) 2009; 21 Dang (C9CC08648J-(cit21)/*[position()=1]) 2007; 19 Wilkinson (C9CC08648J-(cit10)/*[position()=1]) 1983; 28 Zhang (C9CC08648J-(cit30)/*[position()=1]) 2012; 123 Maity (C9CC08648J-(cit25)/*[position()=1]) 2017; 5 Li (C9CC08648J-(cit32)/*[position()=1]) 2012; 22 Pang (C9CC08648J-(cit16)/*[position()=1]) 2013; 5 Li (C9CC08648J-(cit23)/*[position()=1]) 2010; 22 Shen (C9CC08648J-(cit13)/*[position()=1]) 2007; 19 Fu (C9CC08648J-(cit28)/*[position()=1]) 2015; 7 Calame (C9CC08648J-(cit29)/*[position()=1]) 2006; 99 Fredin (C9CC08648J-(cit14)/*[position()=1]) 2012; 24 Kim (C9CC08648J-(cit26)/*[position()=1]) 2014; 10 Zhu (C9CC08648J-(cit9)/*[position()=1]) 2012; 45 Liu (C9CC08648J-(cit33)/*[position()=1]) 2018; 562 Gao (C9CC08648J-(cit7)/*[position()=1]) 2014; 118 Yao (C9CC08648J-(cit3)/*[position()=1]) 2017; 29 Lu (C9CC08648J-(cit24)/*[position()=1]) 2006; 128 Prateek (C9CC08648J-(cit1)/*[position()=1]) 2016; 116 Jiang (C9CC08648J-(cit17)/*[position()=1]) 2015; 137 Ho (C9CC08648J-(cit22)/*[position()=1]) 2008; 158 Li (C9CC08648J-(cit2)/*[position()=1]) 2018; 48 Wang (C9CC08648J-(cit4)/*[position()=1]) 2010; 20 Zhang (C9CC08648J-(cit27)/*[position()=1]) 2014; 305 Qi (C9CC08648J-(cit12)/*[position()=1]) 2005; 17 Zhu (C9CC08648J-(cit31)/*[position()=1]) 2016; 28 Johnson (C9CC08648J-(cit18)/*[position()=1]) 2004; 27 Zhang (C9CC08648J-(cit20)/*[position()=1]) 2005; 17 Song (C9CC08648J-(cit15)/*[position()=1]) 2012; 22 |
References_xml | – volume: 48 start-page: 219 year: 2018 ident: C9CC08648J-(cit2)/*[position()=1] publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124435 – volume: 96 start-page: 192905 year: 2010 ident: C9CC08648J-(cit8)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3428656 – volume: 29 start-page: 1601727 year: 2017 ident: C9CC08648J-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601727 – volume: 19 start-page: 852 year: 2007 ident: C9CC08648J-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200600703 – volume: 116 start-page: 4260 year: 2016 ident: C9CC08648J-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00495 – volume: 28 start-page: 1081 year: 1983 ident: C9CC08648J-(cit10)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.28.1081 – volume: 20 start-page: 5945 year: 2010 ident: C9CC08648J-(cit4)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm00270d – volume: 99 start-page: 084101 year: 2006 ident: C9CC08648J-(cit29)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2188032 – volume: 17 start-page: 1777 year: 2005 ident: C9CC08648J-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200401816 – volume: 22 start-page: 5350 year: 2010 ident: C9CC08648J-(cit23)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm101614p – volume: 19 start-page: 1418 year: 2007 ident: C9CC08648J-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602097 – volume: 562 start-page: 96 year: 2018 ident: C9CC08648J-(cit33)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0550-z – volume: 158 start-page: 630 year: 2008 ident: C9CC08648J-(cit22)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/j.synthmet.2008.04.014 – volume: 5 start-page: 8695 year: 2013 ident: C9CC08648J-(cit16)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr03036a – volume: 21 start-page: 710 year: 2009 ident: C9CC08648J-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200801758 – volume: 48 start-page: 1194 year: 2019 ident: C9CC08648J-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00583D – volume: 7 start-page: 24480 year: 2015 ident: C9CC08648J-(cit28)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05344 – volume: 5 start-page: 12121 year: 2017 ident: C9CC08648J-(cit25)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03593D – volume: 28 start-page: 63 year: 2016 ident: C9CC08648J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504501 – volume: 45 start-page: 2937 year: 2012 ident: C9CC08648J-(cit9)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma2024057 – volume: 27 start-page: 164 year: 2004 ident: C9CC08648J-(cit18)/*[position()=1] publication-title: IEEE Trans. Electron. Packag. Manuf. doi: 10.1109/TEPM.2004.843109 – volume: 17 start-page: 1897 year: 2005 ident: C9CC08648J-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200500313 – volume: 22 start-page: 16491 year: 2012 ident: C9CC08648J-(cit15)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm32579a – volume: 10 start-page: 3405 year: 2014 ident: C9CC08648J-(cit26)/*[position()=1] publication-title: Small doi: 10.1002/smll.201400363 – volume: 24 start-page: 5946 year: 2012 ident: C9CC08648J-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201202183 – volume: 123 start-page: 2595 year: 2012 ident: C9CC08648J-(cit30)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34431 – volume: 118 start-page: 831 year: 2014 ident: C9CC08648J-(cit7)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp409474k – volume: 137 start-page: 11760 year: 2015 ident: C9CC08648J-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06736 – volume: 15 start-page: 1625 year: 2003 ident: C9CC08648J-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200304911 – volume: 22 start-page: 23468 year: 2012 ident: C9CC08648J-(cit32)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm35532a – volume: 128 start-page: 8120 year: 2006 ident: C9CC08648J-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062306x – volume: 305 start-page: 531 year: 2014 ident: C9CC08648J-(cit27)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.03.131 – volume: 523 start-page: 576 year: 2015 ident: C9CC08648J-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/nature14647 |
SSID | ssj0000158 |
Score | 2.3814583 |
Snippet | Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability.... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2332 |
SubjectTerms | ceramics chemical reactions Conducting polymers Dielectric properties Dielectric strength dielectrics Electronics Frequency ranges mathematical theory Montmorillonite Nanocomposites nanosheets Percolation theory Permittivity Polymer matrix composites Polymers radio waves Thermal stability |
Title | Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31990279 https://www.proquest.com/docview/2358400822 https://www.proquest.com/docview/2347503989 https://www.proquest.com/docview/2986642131 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhsCAjuCCUJa2dxD6uqpZlVZZLKlVcovgRbRF0q26CBD-G38r4EScrqhVwqVrXdSPPF9sz-b4ZhF4L2CNTAE7EU6kimjIVsXGZRpmewIqpJc2IESd_PE9Pl_RslawGg1891lJTi2P5c6-u5H-sCm1gV6OS_QfLhkGhAd6DfeEVLAyvf2XjuclmaaRPTu2_3tROCLV2xW3W0tRg-PFN7yxz3NCztA-8Nk4ytTVUmNoXkPBcSlipjYTE5e--9tA3JBeQfVWJDdsG6ZddW11hkF6Q4bSxh2Ttt0lDAGocnbLjC8CflW_z5uqi3BmCyPeyDph739iA7uf1th3BxynAKTW67zggy0VDWiqqpZr4gna91ZckPMqIyy95rH1bSiNwq1b9JdvlIm-hmfQXYOLDpbr9mOzdKGJi8qxKLiX4dJR96bbDlgJw_qmYLxeLIp-t8lvoYAJuyGSIDk5m-YdFL0GZrQAbLrxNgEv4u27s60eeP_wYONXs2moz9lST30N3vTuCTxy27qOB3jxAt8OkPUSyxRgGi-KAMdxhDHuM4YAxbDCGPcZwH2N2EI8xHDD2CC3ns3x6GvnCHJEkWVxHVZpIRrXShMlUVEKoKqNc6lgIQaoxE7RUhCVVqkpBJnKcSSFYrEqS0IqBD0sO0XBzudFPEM5iScu4JERlDIZQ4K1IcDngHKkUjSkdoTft3BXSZ603xVO-FpY9QXgx5dOpneezEXoV-m5drpa9vY5aExT-Xr4qjGCc2uoHI_QyfA1TbR6flRt92Zg-1Dz054zf0Iez1EjHyXiEHjvzhkuBzY7Hkwx-fQj2Ds0dTp7efGXP0J3uvjpCw3rX6OdwIq7FCw_L3xJwvCk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+printable+dielectric+polymer+composite+with+tunable+permittivity+and+thermal+stability&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Hu%2C+Feng&rft.au=Lu%2C+An&rft.au=Aditya+Tushar+Chivate&rft.au=Guo%2C+Zipeng&rft.date=2020-02-20&rft.pub=Royal+Society+of+Chemistry&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=56&rft.issue=15&rft.spage=2332&rft.epage=2335&rft_id=info:doi/10.1039%2Fc9cc08648j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |