Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability

Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. He...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 56; no. 15; pp. 2332 - 2335
Main Authors Hu, Feng, An, Lu, Chivate, Aditya Tushar, Guo, Zipeng, Khuje, Saurabh Vishwas, Huang, Yulong, Hu, Yong, Armstrong, Jason, Zhou, Chi, Ren, Shenqiang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 20.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices. A printable dielectric polymer composite with enhanced dielectric constant and thermal stability.
AbstractList Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices. A printable dielectric polymer composite with enhanced dielectric constant and thermal stability.
Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.
Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.
Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability. However, their advanced electronic applications are limited due to their relatively low permittivity, compared to their ceramic counterparts. Here, we report flexible all organic percolative nanocomposites that contain in situ grown conductive polymer networks and dielectric polymer matrix, in which their dielectric properties can be designed and guided from the percolation theory. High dielectric constant of all organic percolative nanocomposites is shown over a broad frequency range under intensive bending cycles, while their thermal stability is attributed to thermally conductive 2D montmorillonite nanosheets. The printable polymer composites with high dielectric performance and thermal stability will find broader interest in flexible hybrid electronics and radio frequency devices.
Author Hu, Yong
Armstrong, Jason
Zhou, Chi
An, Lu
Guo, Zipeng
Ren, Shenqiang
Chivate, Aditya Tushar
Khuje, Saurabh Vishwas
Hu, Feng
Huang, Yulong
AuthorAffiliation Department of Chemistry
Environment & Water Institute
Research and Education in Energy
Department of Industrial and Systems Engineering
The State University of New York
Department of Mechanical and Aerospace Engineering
University at Buffalo
AuthorAffiliation_xml – sequence: 0
  name: Department of Mechanical and Aerospace Engineering
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: The State University of New York
– sequence: 0
  name: Environment & Water Institute
– sequence: 0
  name: University at Buffalo
– sequence: 0
  name: Department of Industrial and Systems Engineering
– sequence: 0
  name: Research and Education in Energy
Author_xml – sequence: 1
  givenname: Feng
  surname: Hu
  fullname: Hu, Feng
– sequence: 2
  givenname: Lu
  surname: An
  fullname: An, Lu
– sequence: 3
  givenname: Aditya Tushar
  surname: Chivate
  fullname: Chivate, Aditya Tushar
– sequence: 4
  givenname: Zipeng
  surname: Guo
  fullname: Guo, Zipeng
– sequence: 5
  givenname: Saurabh Vishwas
  surname: Khuje
  fullname: Khuje, Saurabh Vishwas
– sequence: 6
  givenname: Yulong
  surname: Huang
  fullname: Huang, Yulong
– sequence: 7
  givenname: Yong
  surname: Hu
  fullname: Hu, Yong
– sequence: 8
  givenname: Jason
  surname: Armstrong
  fullname: Armstrong, Jason
– sequence: 9
  givenname: Chi
  surname: Zhou
  fullname: Zhou, Chi
– sequence: 10
  givenname: Shenqiang
  surname: Ren
  fullname: Ren, Shenqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31990279$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rHSEQAHApKc1XL7knLPQSCpvoqrt6LEvSNgRyaaG3RWdd4sNdN-o2ef99fe8lLYRAvajDbwac8RDtTX4yCJ0QfEEwlZcgAbComVi9QweE1qzkTPza25y5LBvK-D46jHGF8yJcfED7lEiJq0YeILh25slqZwo19cUc7JTU5tZb4wykYKGYvVuPJhTgx9lHm0zxaNN9kZZpK2cTRpuS_W3Telsk3eeIckXMlazL0WP0flAumo_P-xH6eX31o_1W3t59_d5-uS2BNjiVQ81BMNMbKqDWg9b90DAJBmut6UCEZqqngg91rzStgDSgtcC9opwNouKcHqHzXd05-IfFxNSNNoJxTk3GL7GrpKhrVhFK_k8pa3jurZCZfnpFV34JU35IVlwwjEVVZXX2rBY9mr7LnRxVWHcvnc4A7wAEH2MwQwc2qWT9lIKyriO42wyza2Xbbod5k1M-v0p5qfomPt3hEOGv-_cz6B-vnqqK
CitedBy_id crossref_primary_10_1002_smtd_202101198
crossref_primary_10_1021_acs_jpcc_0c08444
crossref_primary_10_1039_D2PY00550F
crossref_primary_10_1016_j_ceramint_2020_07_218
crossref_primary_10_1016_j_jallcom_2020_155889
crossref_primary_10_1039_D1CP04040E
crossref_primary_10_1016_j_mseb_2021_115347
crossref_primary_10_1016_j_ceramint_2021_04_245
crossref_primary_10_3390_molecules27196372
crossref_primary_10_1002_aisy_202000117
Cites_doi 10.1146/annurev-matsci-070317-124435
10.1063/1.3428656
10.1002/adma.201601727
10.1002/adma.200600703
10.1021/acs.chemrev.5b00495
10.1103/PhysRevB.28.1081
10.1039/c0jm00270d
10.1063/1.2188032
10.1002/adma.200401816
10.1021/cm101614p
10.1002/adma.200602097
10.1038/s41586-018-0550-z
10.1016/j.synthmet.2008.04.014
10.1039/c3nr03036a
10.1002/adma.200801758
10.1039/C8CS00583D
10.1021/acsami.5b05344
10.1039/C7TC03593D
10.1002/adma.201504501
10.1021/ma2024057
10.1109/TEPM.2004.843109
10.1002/adma.200500313
10.1039/c2jm32579a
10.1002/smll.201400363
10.1002/adma.201202183
10.1002/app.34431
10.1021/jp409474k
10.1021/jacs.5b06736
10.1002/adma.200304911
10.1039/c2jm35532a
10.1021/ja062306x
10.1016/j.apsusc.2014.03.131
10.1038/nature14647
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c9cc08648j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
AGRICOLA
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 2335
ExternalDocumentID 31990279
10_1039_C9CC08648J
c9cc08648j
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-f65c84ede38c6bfbbdf749ce0bbb3f18b4ad385f6dab32c17cbb80da354f82553
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 10:15:56 EDT 2025
Fri Jul 11 16:19:02 EDT 2025
Mon Jun 30 03:40:22 EDT 2025
Wed Feb 19 02:31:34 EST 2025
Tue Jul 01 04:09:01 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
Tue Dec 17 20:58:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-f65c84ede38c6bfbbdf749ce0bbb3f18b4ad385f6dab32c17cbb80da354f82553
Notes 10.1039/c9cc08648j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9987-3316
0000-0003-2965-9995
PMID 31990279
PQID 2358400822
PQPubID 2047502
PageCount 4
ParticipantIDs proquest_miscellaneous_2347503989
crossref_primary_10_1039_C9CC08648J
rsc_primary_c9cc08648j
pubmed_primary_31990279
crossref_citationtrail_10_1039_C9CC08648J
proquest_journals_2358400822
proquest_miscellaneous_2986642131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200220
PublicationDateYYYYMMDD 2020-02-20
PublicationDate_xml – month: 2
  year: 2020
  text: 20200220
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jiang (C9CC08648J-(cit5)/*[position()=1]) 2019; 48
Li (C9CC08648J-(cit8)/*[position()=1]) 2010; 96
Dang (C9CC08648J-(cit11)/*[position()=1]) 2003; 15
Li (C9CC08648J-(cit6)/*[position()=1]) 2015; 523
He (C9CC08648J-(cit19)/*[position()=1]) 2009; 21
Dang (C9CC08648J-(cit21)/*[position()=1]) 2007; 19
Wilkinson (C9CC08648J-(cit10)/*[position()=1]) 1983; 28
Zhang (C9CC08648J-(cit30)/*[position()=1]) 2012; 123
Maity (C9CC08648J-(cit25)/*[position()=1]) 2017; 5
Li (C9CC08648J-(cit32)/*[position()=1]) 2012; 22
Pang (C9CC08648J-(cit16)/*[position()=1]) 2013; 5
Li (C9CC08648J-(cit23)/*[position()=1]) 2010; 22
Shen (C9CC08648J-(cit13)/*[position()=1]) 2007; 19
Fu (C9CC08648J-(cit28)/*[position()=1]) 2015; 7
Calame (C9CC08648J-(cit29)/*[position()=1]) 2006; 99
Fredin (C9CC08648J-(cit14)/*[position()=1]) 2012; 24
Kim (C9CC08648J-(cit26)/*[position()=1]) 2014; 10
Zhu (C9CC08648J-(cit9)/*[position()=1]) 2012; 45
Liu (C9CC08648J-(cit33)/*[position()=1]) 2018; 562
Gao (C9CC08648J-(cit7)/*[position()=1]) 2014; 118
Yao (C9CC08648J-(cit3)/*[position()=1]) 2017; 29
Lu (C9CC08648J-(cit24)/*[position()=1]) 2006; 128
Prateek (C9CC08648J-(cit1)/*[position()=1]) 2016; 116
Jiang (C9CC08648J-(cit17)/*[position()=1]) 2015; 137
Ho (C9CC08648J-(cit22)/*[position()=1]) 2008; 158
Li (C9CC08648J-(cit2)/*[position()=1]) 2018; 48
Wang (C9CC08648J-(cit4)/*[position()=1]) 2010; 20
Zhang (C9CC08648J-(cit27)/*[position()=1]) 2014; 305
Qi (C9CC08648J-(cit12)/*[position()=1]) 2005; 17
Zhu (C9CC08648J-(cit31)/*[position()=1]) 2016; 28
Johnson (C9CC08648J-(cit18)/*[position()=1]) 2004; 27
Zhang (C9CC08648J-(cit20)/*[position()=1]) 2005; 17
Song (C9CC08648J-(cit15)/*[position()=1]) 2012; 22
References_xml – volume: 48
  start-page: 219
  year: 2018
  ident: C9CC08648J-(cit2)/*[position()=1]
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124435
– volume: 96
  start-page: 192905
  year: 2010
  ident: C9CC08648J-(cit8)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3428656
– volume: 29
  start-page: 1601727
  year: 2017
  ident: C9CC08648J-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601727
– volume: 19
  start-page: 852
  year: 2007
  ident: C9CC08648J-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600703
– volume: 116
  start-page: 4260
  year: 2016
  ident: C9CC08648J-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00495
– volume: 28
  start-page: 1081
  year: 1983
  ident: C9CC08648J-(cit10)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.28.1081
– volume: 20
  start-page: 5945
  year: 2010
  ident: C9CC08648J-(cit4)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00270d
– volume: 99
  start-page: 084101
  year: 2006
  ident: C9CC08648J-(cit29)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2188032
– volume: 17
  start-page: 1777
  year: 2005
  ident: C9CC08648J-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401816
– volume: 22
  start-page: 5350
  year: 2010
  ident: C9CC08648J-(cit23)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm101614p
– volume: 19
  start-page: 1418
  year: 2007
  ident: C9CC08648J-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602097
– volume: 562
  start-page: 96
  year: 2018
  ident: C9CC08648J-(cit33)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0550-z
– volume: 158
  start-page: 630
  year: 2008
  ident: C9CC08648J-(cit22)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2008.04.014
– volume: 5
  start-page: 8695
  year: 2013
  ident: C9CC08648J-(cit16)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr03036a
– volume: 21
  start-page: 710
  year: 2009
  ident: C9CC08648J-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801758
– volume: 48
  start-page: 1194
  year: 2019
  ident: C9CC08648J-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00583D
– volume: 7
  start-page: 24480
  year: 2015
  ident: C9CC08648J-(cit28)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05344
– volume: 5
  start-page: 12121
  year: 2017
  ident: C9CC08648J-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03593D
– volume: 28
  start-page: 63
  year: 2016
  ident: C9CC08648J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504501
– volume: 45
  start-page: 2937
  year: 2012
  ident: C9CC08648J-(cit9)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma2024057
– volume: 27
  start-page: 164
  year: 2004
  ident: C9CC08648J-(cit18)/*[position()=1]
  publication-title: IEEE Trans. Electron. Packag. Manuf.
  doi: 10.1109/TEPM.2004.843109
– volume: 17
  start-page: 1897
  year: 2005
  ident: C9CC08648J-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500313
– volume: 22
  start-page: 16491
  year: 2012
  ident: C9CC08648J-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32579a
– volume: 10
  start-page: 3405
  year: 2014
  ident: C9CC08648J-(cit26)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201400363
– volume: 24
  start-page: 5946
  year: 2012
  ident: C9CC08648J-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202183
– volume: 123
  start-page: 2595
  year: 2012
  ident: C9CC08648J-(cit30)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34431
– volume: 118
  start-page: 831
  year: 2014
  ident: C9CC08648J-(cit7)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409474k
– volume: 137
  start-page: 11760
  year: 2015
  ident: C9CC08648J-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06736
– volume: 15
  start-page: 1625
  year: 2003
  ident: C9CC08648J-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304911
– volume: 22
  start-page: 23468
  year: 2012
  ident: C9CC08648J-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35532a
– volume: 128
  start-page: 8120
  year: 2006
  ident: C9CC08648J-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062306x
– volume: 305
  start-page: 531
  year: 2014
  ident: C9CC08648J-(cit27)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.03.131
– volume: 523
  start-page: 576
  year: 2015
  ident: C9CC08648J-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14647
SSID ssj0000158
Score 2.3814583
Snippet Lightweight and printable polymer dielectrics are ubiquitous in flexible hybrid electronics, exhibiting high breakdown strength and mechanical reliability....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2332
SubjectTerms ceramics
chemical reactions
Conducting polymers
Dielectric properties
Dielectric strength
dielectrics
Electronics
Frequency ranges
mathematical theory
Montmorillonite
Nanocomposites
nanosheets
Percolation theory
Permittivity
Polymer matrix composites
Polymers
radio waves
Thermal stability
Title Flexible and printable dielectric polymer composite with tunable permittivity and thermal stability
URI https://www.ncbi.nlm.nih.gov/pubmed/31990279
https://www.proquest.com/docview/2358400822
https://www.proquest.com/docview/2347503989
https://www.proquest.com/docview/2986642131
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhsCAjuCCUJa2dxD6uqpZlVZZLKlVcovgRbRF0q26CBD-G38r4EScrqhVwqVrXdSPPF9sz-b4ZhF4L2CNTAE7EU6kimjIVsXGZRpmewIqpJc2IESd_PE9Pl_RslawGg1891lJTi2P5c6-u5H-sCm1gV6OS_QfLhkGhAd6DfeEVLAyvf2XjuclmaaRPTu2_3tROCLV2xW3W0tRg-PFN7yxz3NCztA-8Nk4ytTVUmNoXkPBcSlipjYTE5e--9tA3JBeQfVWJDdsG6ZddW11hkF6Q4bSxh2Ttt0lDAGocnbLjC8CflW_z5uqi3BmCyPeyDph739iA7uf1th3BxynAKTW67zggy0VDWiqqpZr4gna91ZckPMqIyy95rH1bSiNwq1b9JdvlIm-hmfQXYOLDpbr9mOzdKGJi8qxKLiX4dJR96bbDlgJw_qmYLxeLIp-t8lvoYAJuyGSIDk5m-YdFL0GZrQAbLrxNgEv4u27s60eeP_wYONXs2moz9lST30N3vTuCTxy27qOB3jxAt8OkPUSyxRgGi-KAMdxhDHuM4YAxbDCGPcZwH2N2EI8xHDD2CC3ns3x6GvnCHJEkWVxHVZpIRrXShMlUVEKoKqNc6lgIQaoxE7RUhCVVqkpBJnKcSSFYrEqS0IqBD0sO0XBzudFPEM5iScu4JERlDIZQ4K1IcDngHKkUjSkdoTft3BXSZ603xVO-FpY9QXgx5dOpneezEXoV-m5drpa9vY5aExT-Xr4qjGCc2uoHI_QyfA1TbR6flRt92Zg-1Dz054zf0Iez1EjHyXiEHjvzhkuBzY7Hkwx-fQj2Ds0dTp7efGXP0J3uvjpCw3rX6OdwIq7FCw_L3xJwvCk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+printable+dielectric+polymer+composite+with+tunable+permittivity+and+thermal+stability&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Hu%2C+Feng&rft.au=Lu%2C+An&rft.au=Aditya+Tushar+Chivate&rft.au=Guo%2C+Zipeng&rft.date=2020-02-20&rft.pub=Royal+Society+of+Chemistry&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=56&rft.issue=15&rft.spage=2332&rft.epage=2335&rft_id=info:doi/10.1039%2Fc9cc08648j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon