Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral Imagery—Active Sample Selection for Model Transfer

Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical appli...

Full description

Saved in:
Bibliographic Details
Published inDrones (Basel) Vol. 6; no. 3; p. 73
Main Authors Franceschini, Marston, Becker, Rolf, Wichern, Florian, Kooistra, Lammert
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical applications. Optical imaging systems carried as payload in Unmanned Aerial Vehicles (UAVs) platforms have increasingly been proposed as alternative non-destructive solutions for crop characterization and monitoring. The vegetation spectral response in the visible and near-infrared wavelengths provides information on many aspects of its composition and structure. Combining spectral measurements and multivariate modelling approaches it is possible to represent the often complex relationship between canopy reflectance and specific plant traits. However, empirical models are limited and strictly represent characteristics of the observations used during model training, therefore having low generalization potential. A method to mitigate this issue consists of adding informative samples from the target domain (i.e., new observations) to the training dataset. This approach searches for a compromise between representing the variability in new data and selecting only a minimal number of additional samples for calibration transfer. In this study, a method to actively choose new training samples based on their spectral diversity and prediction uncertainty was implemented and tested using a multi-annual dataset. Accurate predictions were obtained using hyperspectral imagery and linear multivariate models (Partial Least Squares Regression—PLSR) for grassland dry matter (DM; R2 = 0.92, RMSE = 3.25 dt ha−1), nitrogen (N) content in % of DM (R2 = 0.58, RMSE = 0.27%) and N-uptake (R2 = 0.91, RMSE = 6.50 kg ha−1). In addition, the number of samples from the target dates added to the training dataset could be reduced by up to 77% and 74% for DM and N-related traits, respectively, after model transfer. Despite this reduction, RMSE values for optimal transfer sets (identified after validation and used as benchmark) were only 20–30% lower than those values obtained after model transfer based on prediction uncertainty reduction, indicating that loss of accuracy was relatively small. These results demonstrate that considerably simple approaches based on UAV hyperspectral data can be applied in preliminary grassland monitoring frameworks, even with limited datasets.
AbstractList Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical applications. Optical imaging systems carried as payload in Unmanned Aerial Vehicles (UAVs) platforms have increasingly been proposed as alternative non-destructive solutions for crop characterization and monitoring. The vegetation spectral response in the visible and near-infrared wavelengths provides information on many aspects of its composition and structure. Combining spectral measurements and multivariate modelling approaches it is possible to represent the often complex relationship between canopy reflectance and specific plant traits. However, empirical models are limited and strictly represent characteristics of the observations used during model training, therefore having low generalization potential. A method to mitigate this issue consists of adding informative samples from the target domain (i.e., new observations) to the training dataset. This approach searches for a compromise between representing the variability in new data and selecting only a minimal number of additional samples for calibration transfer. In this study, a method to actively choose new training samples based on their spectral diversity and prediction uncertainty was implemented and tested using a multi-annual dataset. Accurate predictions were obtained using hyperspectral imagery and linear multivariate models (Partial Least Squares Regression—PLSR) for grassland dry matter (DM; R2 = 0.92, RMSE = 3.25 dt ha −1 ), nitrogen (N) content in % of DM ( R2 = 0.58, RMSE = 0.27%) and N-uptake ( R2 = 0.91, RMSE = 6.50 kg ha −1 ). In addition, the number of samples from the target dates added to the training dataset could be reduced by up to 77% and 74% for DM and N-related traits, respectively, after model transfer. Despite this reduction, RMSE values for optimal transfer sets (identified after validation and used as benchmark) were only 20–30% lower than those values obtained after model transfer based on prediction uncertainty reduction, indicating that loss of accuracy was relatively small. These results demonstrate that considerably simple approaches based on UAV hyperspectral data can be applied in preliminary grassland monitoring frameworks, even with limited datasets.
Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical applications. Optical imaging systems carried as payload in Unmanned Aerial Vehicles (UAVs) platforms have increasingly been proposed as alternative non-destructive solutions for crop characterization and monitoring. The vegetation spectral response in the visible and near-infrared wavelengths provides information on many aspects of its composition and structure. Combining spectral measurements and multivariate modelling approaches it is possible to represent the often complex relationship between canopy reflectance and specific plant traits. However, empirical models are limited and strictly represent characteristics of the observations used during model training, therefore having low generalization potential. A method to mitigate this issue consists of adding informative samples from the target domain (i.e., new observations) to the training dataset. This approach searches for a compromise between representing the variability in new data and selecting only a minimal number of additional samples for calibration transfer. In this study, a method to actively choose new training samples based on their spectral diversity and prediction uncertainty was implemented and tested using a multi-annual dataset. Accurate predictions were obtained using hyperspectral imagery and linear multivariate models (Partial Least Squares Regression—PLSR) for grassland dry matter (DM; R2 = 0.92, RMSE = 3.25 dt ha−1), nitrogen (N) content in % of DM (R2 = 0.58, RMSE = 0.27%) and N-uptake (R2 = 0.91, RMSE = 6.50 kg ha−1). In addition, the number of samples from the target dates added to the training dataset could be reduced by up to 77% and 74% for DM and N-related traits, respectively, after model transfer. Despite this reduction, RMSE values for optimal transfer sets (identified after validation and used as benchmark) were only 20–30% lower than those values obtained after model transfer based on prediction uncertainty reduction, indicating that loss of accuracy was relatively small. These results demonstrate that considerably simple approaches based on UAV hyperspectral data can be applied in preliminary grassland monitoring frameworks, even with limited datasets.
Author Wichern, Florian
Becker, Rolf
Franceschini, Marston
Kooistra, Lammert
Author_xml – sequence: 1
  givenname: Marston
  orcidid: 0000-0002-1295-4798
  surname: Franceschini
  fullname: Franceschini, Marston
– sequence: 2
  givenname: Rolf
  orcidid: 0000-0002-2150-0982
  surname: Becker
  fullname: Becker, Rolf
– sequence: 3
  givenname: Florian
  orcidid: 0000-0002-4962-4266
  surname: Wichern
  fullname: Wichern, Florian
– sequence: 4
  givenname: Lammert
  orcidid: 0000-0001-5549-5993
  surname: Kooistra
  fullname: Kooistra, Lammert
BookMark eNpVUcGKFDEQDbKC67pH7wHPrekkPd19HAfdHVgVcVe8heqkMpuhJ2krmYW5efMH_EK_xB5HRKGgXhWP94p6T9lZTBEZe16Ll0r14pWjec4LoYRo1SN2LhuhK60XX87-wU_YZc5bIYSUuln09Tn7_nEPsQQfLJSQIk-eXxHkPEJ0_HVIuxnzI34fCqUNRr5KsWAsvNxT2m_u-d3yM78-TEh5QlsIRr7ewQbp8PPbj6Ut4QH5J9hN49xwnBlHF5-Iv0sOR35LELNHesYeexgzXv7pF-zu7Zvb1XV18-FqvVreVFa1olRe2ka20ivEudA2WEvXDAN0gA3YXtcCRQud9WC7btBW2cGpXlp02LraqQu2Pum6BFszUdgBHUyCYH4vEm0MUAl2RNM36KRw4DXqY_XS2a5xoFvZD_0As9aLk9ZE6eseczHbtKc4n2_kQks9f1nImVWdWJZSzoT-r2stzDE681906hdPqJPh
CitedBy_id crossref_primary_10_1016_j_fcr_2024_109427
crossref_primary_10_3390_app13084812
crossref_primary_10_3390_grasses3020007
crossref_primary_10_1007_s10661_023_11562_6
crossref_primary_10_3390_rs15030639
crossref_primary_10_3390_rs15215138
crossref_primary_10_1007_s11119_023_10064_2
crossref_primary_10_1007_s11119_023_10079_9
Cites_doi 10.1016/j.rse.2019.111273
10.1016/j.agee.2012.08.012
10.1007/978-3-031-01560-1
10.3390/agriculture8050070
10.3390/rs13020287
10.1016/j.agrformet.2020.108096
10.1016/j.chemolab.2004.12.011
10.3389/fpls.2020.603921
10.1890/14-2098.1
10.3390/rs61111013
10.3390/rs12010126
10.1080/01431160110115834
10.1016/j.plantsci.2018.06.015
10.1016/j.chemolab.2014.05.016
10.1016/j.isprsjprs.2017.10.014
10.1371/journal.pone.0245784
10.1016/j.geomorph.2016.11.021
10.1109/TNNLS.2018.2868649
10.5194/bg-2021-250
10.1109/JPROC.2020.3004555
10.3390/ijgi4042792
10.1109/LGRS.2016.2560799
10.1016/j.trac.2021.116331
10.3390/rs13173459
10.1016/j.rse.2018.11.016
10.3390/rs12101650
10.1016/j.rse.2019.111402
10.1002/cem.2736
10.1016/j.ins.2018.09.060
10.1016/j.eja.2019.04.001
10.1109/MGRS.2016.2548504
10.1371/journal.pone.0234703
10.1016/j.patrec.2020.11.019
10.1016/j.rse.2020.111830
10.3390/rs11151835
10.1007/s11119-021-09790-2
10.1016/j.isprsjprs.2015.05.005
10.1016/j.rse.2020.111758
10.1016/j.apenergy.2012.09.055
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/drones6030073
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
test
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_95ed20daf4e44e4492dc85da4729b9ba
10_3390_drones6030073
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PIMPY
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-f2c5272f3ee3eeec5e12d5bba8ae5ac9410e07a8cfac88b4c3cbd392cede7d1d3
IEDL.DBID DOA
ISSN 2504-446X
IngestDate Tue Oct 22 15:13:11 EDT 2024
Thu Oct 10 17:00:00 EDT 2024
Thu Sep 26 20:34:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-f2c5272f3ee3eeec5e12d5bba8ae5ac9410e07a8cfac88b4c3cbd392cede7d1d3
ORCID 0000-0002-4962-4266
0000-0002-2150-0982
0000-0001-5549-5993
0000-0002-1295-4798
OpenAccessLink https://doaj.org/article/95ed20daf4e44e4492dc85da4729b9ba
PQID 2642402202
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_95ed20daf4e44e4492dc85da4729b9ba
proquest_journals_2642402202
crossref_primary_10_3390_drones6030073
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Oliveira (ref_33) 2020; 246
Obermeier (ref_37) 2019; 232
Higgins (ref_1) 2019; 106
ref_14
ref_36
ref_35
Weiss (ref_5) 2020; 236
ref_34
Zhuang (ref_39) 2021; 109
ref_32
Wang (ref_26) 2019; 221
ref_31
Jenal (ref_7) 2020; 88
ref_18
ref_16
Reynolds (ref_4) 2019; 282
Suomalainen (ref_21) 2014; 6
Chong (ref_28) 2005; 78
Wu (ref_15) 2019; 30
Verrelst (ref_27) 2016; 13
Wan (ref_42) 2020; 291
James (ref_23) 2017; 280
Mishra (ref_40) 2021; 143
Oenema (ref_3) 2012; 162
ref_43
ref_20
ref_41
Afanador (ref_30) 2014; 137
Geipel (ref_38) 2021; 22
ref_2
Honkavaara (ref_24) 2017; 134
Liu (ref_19) 2021; 142
ref_9
ref_8
Platikanov (ref_29) 2015; 29
Capolupo (ref_10) 2015; 4
Tuia (ref_13) 2016; 4
Berger (ref_6) 2020; 242
Verrelst (ref_12) 2015; 108
Douak (ref_17) 2013; 103
Singh (ref_25) 2015; 25
Astor (ref_11) 2021; 11
Richter (ref_22) 2002; 23
References_xml – volume: 232
  start-page: 111273
  year: 2019
  ident: ref_37
  article-title: Grassland ecosystem services in a changing environment: The potential of hyperspectral monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111273
  contributor:
    fullname: Obermeier
– volume: 162
  start-page: 116
  year: 2012
  ident: ref_3
  article-title: Improving nitrogen management on grassland on commercial pilot dairy farms in the Netherlands
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2012.08.012
  contributor:
    fullname: Oenema
– ident: ref_14
  doi: 10.1007/978-3-031-01560-1
– ident: ref_2
  doi: 10.3390/agriculture8050070
– ident: ref_16
  doi: 10.3390/rs13020287
– volume: 291
  start-page: 108096
  year: 2020
  ident: ref_42
  article-title: Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108096
  contributor:
    fullname: Wan
– volume: 78
  start-page: 103
  year: 2005
  ident: ref_28
  article-title: Performance of some variable selection methods when multicollinearity is present
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.12.011
  contributor:
    fullname: Chong
– volume: 11
  start-page: 603921
  year: 2021
  ident: ref_11
  article-title: Prediction of Biomass and N Fixation of Legume–Grass Mixtures Using Sensor Fusion
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.603921
  contributor:
    fullname: Astor
– volume: 25
  start-page: 2180
  year: 2015
  ident: ref_25
  article-title: Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
  publication-title: Ecol. Appl.
  doi: 10.1890/14-2098.1
  contributor:
    fullname: Singh
– volume: 6
  start-page: 11013
  year: 2014
  ident: ref_21
  article-title: A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles
  publication-title: Remote Sens.
  doi: 10.3390/rs61111013
  contributor:
    fullname: Suomalainen
– ident: ref_34
  doi: 10.3390/rs12010126
– volume: 23
  start-page: 2609
  year: 2002
  ident: ref_22
  article-title: Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110115834
  contributor:
    fullname: Richter
– volume: 282
  start-page: 14
  year: 2019
  ident: ref_4
  article-title: What is cost-efficient phenotyping? Optimizing costs for different scenarios
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.06.015
  contributor:
    fullname: Reynolds
– volume: 137
  start-page: 162
  year: 2014
  ident: ref_30
  article-title: An assessment of the jackknife and bootstrap procedures on uncertainty estimation in the variable importance in the projection metric
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.05.016
  contributor:
    fullname: Afanador
– volume: 134
  start-page: 96
  year: 2017
  ident: ref_24
  article-title: Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.10.014
  contributor:
    fullname: Honkavaara
– ident: ref_9
  doi: 10.1371/journal.pone.0245784
– volume: 280
  start-page: 51
  year: 2017
  ident: ref_23
  article-title: Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.11.021
  contributor:
    fullname: James
– volume: 30
  start-page: 1348
  year: 2019
  ident: ref_15
  article-title: Pool-Based Sequential Active Learning for Regression
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2868649
  contributor:
    fullname: Wu
– ident: ref_36
  doi: 10.5194/bg-2021-250
– volume: 109
  start-page: 43
  year: 2021
  ident: ref_39
  article-title: A Comprehensive Survey on Transfer Learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
  contributor:
    fullname: Zhuang
– volume: 4
  start-page: 2792
  year: 2015
  ident: ref_10
  article-title: Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4042792
  contributor:
    fullname: Capolupo
– volume: 13
  start-page: 1012
  year: 2016
  ident: ref_27
  article-title: Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2560799
  contributor:
    fullname: Verrelst
– volume: 143
  start-page: 116331
  year: 2021
  ident: ref_40
  article-title: Are standard sample measurements still needed to transfer multivariate calibration models between near-infrared spectrometers? The answer is not always
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2021.116331
  contributor:
    fullname: Mishra
– ident: ref_8
  doi: 10.3390/rs13173459
– volume: 221
  start-page: 405
  year: 2019
  ident: ref_26
  article-title: Mapping foliar functional traits and their uncertainties across three years in a grassland experiment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.016
  contributor:
    fullname: Wang
– ident: ref_32
  doi: 10.3390/rs12101650
– volume: 236
  start-page: 111402
  year: 2020
  ident: ref_5
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
  contributor:
    fullname: Weiss
– volume: 29
  start-page: 528
  year: 2015
  ident: ref_29
  article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation: Comparison of variable selection methods
  publication-title: J. Chemom.
  doi: 10.1002/cem.2736
  contributor:
    fullname: Platikanov
– ident: ref_18
  doi: 10.1016/j.ins.2018.09.060
– volume: 106
  start-page: 67
  year: 2019
  ident: ref_1
  article-title: Improving productivity and increasing the efficiency of soil nutrient management on grassland farms in the UK and Ireland using precision agriculture technology
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.04.001
  contributor:
    fullname: Higgins
– volume: 4
  start-page: 41
  year: 2016
  ident: ref_13
  article-title: Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2548504
  contributor:
    fullname: Tuia
– ident: ref_31
  doi: 10.1371/journal.pone.0234703
– volume: 142
  start-page: 11
  year: 2021
  ident: ref_19
  article-title: Pool-based unsupervised active learning for regression using iterative representativeness-diversity maximization (iRDM)
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.11.019
  contributor:
    fullname: Liu
– volume: 246
  start-page: 111830
  year: 2020
  ident: ref_33
  article-title: Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111830
  contributor:
    fullname: Oliveira
– ident: ref_41
– ident: ref_35
  doi: 10.3390/rs11151835
– volume: 22
  start-page: 1437
  year: 2021
  ident: ref_38
  article-title: Forage yield and quality estimation by means of UAV and hyperspectral imaging
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09790-2
  contributor:
    fullname: Geipel
– volume: 108
  start-page: 273
  year: 2015
  ident: ref_12
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.005
  contributor:
    fullname: Verrelst
– volume: 242
  start-page: 111758
  year: 2020
  ident: ref_6
  article-title: Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111758
  contributor:
    fullname: Berger
– volume: 88
  start-page: 493
  year: 2020
  ident: ref_7
  article-title: Investigating the Potential of a Newly Developed UAV-based VNIR/SWIR Imaging System for Forage Mass Monitoring
  publication-title: PFG–J. Photogramm. Remote Sens. Geoinf. Sci.
  contributor:
    fullname: Jenal
– ident: ref_43
– ident: ref_20
– volume: 103
  start-page: 328
  year: 2013
  ident: ref_17
  article-title: Kernel ridge regression with active learning for wind speed prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.055
  contributor:
    fullname: Douak
SSID ssj0002245691
Score 2.2998514
Snippet Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 73
SubjectTerms Active learning
Agricultural production
Biomass
Cost analysis
Datasets
Empirical analysis
Fertilizers
Grasslands
hyperspectral imagery
Hyperspectral imaging
Least squares method
Monitoring
Multivariate analysis
multivariate linear model
Nitrogen
nitrogen management
pasture growth monitoring
Reduction
Spectra
Spectral sensitivity
Training
Uncertainty
uncertainty analysis
Unmanned aerial vehicles
Vegetation
Vis-NIR spectroscopy
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELZgufSCWkHFUlr5gHqLcPyzSU7VbgXdVuqqQBdxixx7jJBgl2bDobfe-gJ9wj5JZxwvFUJC8iGyI1kaj2fms8ffMHaI_ej4lM2UCS7TIERmtYQM4W0lizxYMPTA-etsNJ3rL5fmMh24rVJa5domRkPtl47OyI_QcdNFAGL1D3c_MqoaRberqYTGJtuSiBTkgG1Njmffzh5OWSTd61V5T66pEN8f-ZY48Eeo26JQj5xR5Ox_YpKjnzl5ybZTgMjH_Yq-Yhuw2GG_T-9tn9UTBcmXgX9qMeyltEQ-uaYcnxWn79l11y5RJ3hknVp0PNXh4fPxBZ8i5uyfVrY4w-dboq_4-ffXn3G0efzcElMwP4-VcWgWjGc51Uq74dGjBWh32fzk-PvHaZZKKGROFaLLgnRGFjIoAGzgDOTSm6axJS6CdZXOBYjCli5YV5aNdso1HkMmBx4Kn3v1mg0WKLA9xo0TwQYhfNnk2o98paBEdKjRmqKDCzBk79eyrO96powaEQYJvX4k9CGbkKQffiKC69ixbK_qtF_qyoCXwtugQVOrpHel8VYjGGiqxg7ZwXqd6rTrVvV_Hdl_fvgNeyHpGUPMJTtgg669h7cYXHTNu6RB_wC9cNYJ
  priority: 102
  providerName: ProQuest
Title Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral Imagery—Active Sample Selection for Model Transfer
URI https://www.proquest.com/docview/2642402202
https://doaj.org/article/95ed20daf4e44e4492dc85da4729b9ba
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA26XryIouLquuQg3oppPrbtcVdcV8HFrxVvJU0moOiu1Hrw5s0_4C_0lzhJqygevAg5lBBIeZNm3tCZN4Ts4Dw6PqEjoZyJJDAWackhwvA240nsNChf4Hwy7o0m8vhaXX9r9eVzwmp54Bq4vUyB5cxqJ0H6kXFrUmW1RFZYZEVNjVj2LZi6DaIuSAyyuBbVFBjX79nSa9_38EyzRPxwQkGr_9dVHPzLcJksNcSQ9usXWiFzMF0lr2dPus7mCQDSmaOHJdJdn45IBzc-t-eR-ufxTVXO8CzQoDY1rWjTf4dO-ld0hLFmXVJZ4g5H91624vn95a0f7jp6ob1CML0IHXH8Lshjqe-RdkeDJ3NQrpHJ8OByfxQ1rRMiIxJWRY4bxRPuBAAOMApiblVR6BTB1yaTMQOW6NQ4bdK0kEaYwiJVMmAhsbEV66Q1RcA2CFWGOe0Ys2kRS9uzmYAUo0KJtyg6NgdtsvuJZf5QK2TkGFl40PMfoLfJwCP9tcgLW4cJNHfemDv_y9xt0vm0U958bY85kjr_k4gzvvkfe2yRRe6LHEKmWYe0qvIJtpF6VEWXzKfDwy5ZGByMT8-74cx9AElw4Ls
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKPZRLBWortuXhQ9VbhOPHJjmhBbEsr5Uq2Ipb5NhjhNTu0mw4cOutf4BfyC9hxsmCEBKSD1ESydJ4PN-MPfMNY9_xPQKfsokywSUahEislpBgeFvILA0WDBU4n437o4k-vjSX3YHbvEurXNjEaKj9zNEZ-Q4CN10EYKy-e_M3oa5RdLvatdBYYu-1QqChSvHh4dMZi6RbvSJtqTUVRvc7viYG_D5qtsjUCyiKjP2vDHJEmeEq-9i5h3zQrucaewfTT-z_z1vb5vREMfJZ4Ic1Or2UlMj3rinDZ87peXzd1DPUCB45p6YN77rw8MngFx9hxNkWVtY4w9EfIq-4e_h3P4gWj59b4gnm57EvDs2C3iynTmm_ecSzAPVnNhkeXOyPkq6BQuJUJpokSGdkJoMCwAHOQCq9qSqb4xJYV-hUgMhs7oJ1eV5pp1zl0WFy4CHzqVdf2PIUBbbOuHEi2CCEz6tU-74vFOQYG2q0pQhvAXrsx0KW5U3Lk1FifEFCL18Ivcf2SNJPPxG9dXwxq6_KbreUhQEvhbdBg6ZRSO9y463GUKAqKttjG4t1Krs9Ny-fNeTr25-32YfRxdlpeXo0PvnGViQVNMSssg223NS3sIluRlNtRV16BGC315Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxELYglRAXVASIQFt8QNxW8fonu3tCCTSk_ESFEtTbymuPq0qQlM32wI0bL8AT8iSd8TpFFRKSDyt7JUvj8cx89vgbxp5jPzo-ZTNlgss0CJFZLSFDeFvJIg8WDD1w_rAYz5f67ak5TflPm5RWubWJ0VD7taMz8hE6broIQKw-Cikt4vj17OXF94wqSNFNayqncZvtFBq1asB2poeL40_XJy6S7viqvCfaVIj1R74lPvwx6rko1A3HFPn7_zHP0efMdtm9FCzySb-699ktWD1gvz5e2j7DJwqVrwN_02IITCmKfHpO-T4bTt-L865do37wyEC16niqycOXky98jvizf2bZ4gxH34jK4sefn78n0f7xE0uswfwkVsmhWTC25VQ37SuP3i1A-5AtZ4efX82zVE4hc6oQXRakM7KQQQFgA2cgl940jS1xQayrdC5AFLZ0wbqybLRTrvEYPjnwUPjcq0dssEKBPWbcOBFsEMKXTa792FcKSkSKGi0rOrsAQ_ZiK8v6omfNqBFtkNDrG0IfsilJ-vonIruOHev2rE57p64MeCm8DRo0tUp6VxpvNQKDpmrskO1t16lOO3BT_9WXJ_8ffsbuoCLV748W756yu5JeN8QUsz026NpL2MeYo2sOkjJdAbaH3Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Grassland+Biomass+and+Nitrogen+Content+through+UAV+Hyperspectral+Imagery%E2%80%94Active+Sample+Selection+for+Model+Transfer&rft.jtitle=Drones+%28Basel%29&rft.au=Marston+H.+D.+Franceschini&rft.au=Rolf+Becker&rft.au=Florian+Wichern&rft.au=Lammert+Kooistra&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=6&rft.issue=3&rft.spage=73&rft_id=info:doi/10.3390%2Fdrones6030073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_95ed20daf4e44e4492dc85da4729b9ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon