Structure-function relationship of terpenoid glycosyltransferases from plants

Covering: up to 2021 Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scie...

Full description

Saved in:
Bibliographic Details
Published inNatural product reports Vol. 39; no. 2; pp. 389 - 49
Main Authors Kurze, Elisabeth, Wüst, Matthias, Liao, Jieren, McGraphery, Kate, Hoffmann, Thomas, Song, Chuankui, Schwab, Wilfried
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 23.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covering: up to 2021 Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants. The spatial size of the catalytic centre and a large hydrophobic pocket in the active site affect the enzymatic activity and substrate preference of uridine diphosphate-sugar-dependent terpenoid glycosyltransferases in plants.
AbstractList Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Covering: up to 2021 Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants. The spatial size of the catalytic centre and a large hydrophobic pocket in the active site affect the enzymatic activity and substrate preference of uridine diphosphate-sugar-dependent terpenoid glycosyltransferases in plants.
Covering: up to 2021
Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Author Wüst, Matthias
McGraphery, Kate
Schwab, Wilfried
Liao, Jieren
Kurze, Elisabeth
Song, Chuankui
Hoffmann, Thomas
AuthorAffiliation Technische Universität München
TUM School of Life Sciences
University of Bonn
State Key Laboratory of Tea Plant Biology and Utilization
Institute of Nutritional and Food Sciences
International Joint Laboratory on Tea Chemistry and Health Effects
Chair of Food Chemistry
Biotechnology of Natural Products
Anhui Agricultural University Hefei
AuthorAffiliation_xml – name: Biotechnology of Natural Products
– name: University of Bonn
– name: Institute of Nutritional and Food Sciences
– name: Chair of Food Chemistry
– name: Technische Universität München
– name: International Joint Laboratory on Tea Chemistry and Health Effects
– name: State Key Laboratory of Tea Plant Biology and Utilization
– name: TUM School of Life Sciences
– name: Anhui Agricultural University Hefei
Author_xml – sequence: 1
  givenname: Elisabeth
  surname: Kurze
  fullname: Kurze, Elisabeth
– sequence: 2
  givenname: Matthias
  surname: Wüst
  fullname: Wüst, Matthias
– sequence: 3
  givenname: Jieren
  surname: Liao
  fullname: Liao, Jieren
– sequence: 4
  givenname: Kate
  surname: McGraphery
  fullname: McGraphery, Kate
– sequence: 5
  givenname: Thomas
  surname: Hoffmann
  fullname: Hoffmann, Thomas
– sequence: 6
  givenname: Chuankui
  surname: Song
  fullname: Song, Chuankui
– sequence: 7
  givenname: Wilfried
  surname: Schwab
  fullname: Schwab, Wilfried
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34486004$$D View this record in MEDLINE/PubMed
BookMark eNqF0s9rHSEQB3AJKclLmkvuLQu9lMK2M-vq6jGkPyFNCm3Oi88d0w37dKvu4f33NXlpCqHQk4KfGfQ7HrF9HzwxdorwFoHrdwP6GQC4Mntsha2Euu1Es89W0EhRg5DqkB2ldAuA2El5wA552yoJ0K7Y1-85LjYvkWq3eJvH4KtIk7nbpJ_jXAVXZYoz-TAO1c20tSFtpxyNT46iSZQqF8Ommifjc3rOnjkzJTp5WI_Z9ccPP84_1xdXn76cn13UlneQa4d6GLi1BtcCcS0VESFoIE4K0VmpRSu05AJM13XNYLUqp3LQrSDhAPkxe73rO8fwa6GU-82YLE3lEhSW1DdSIrSNUOL_VEgtsUOlC331hN6GJfrykNKQo5bQdKqolw9qWW9o6Oc4bkzc9n8yLeDNDtgYUorkHglCfzew_j1efrsf2FnB8ATbMd-nXzIep3-XvNiVxGQfW__9A_w30Eqgeg
CitedBy_id crossref_primary_10_1111_pbi_13983
crossref_primary_10_1021_acs_jafc_4c12576
crossref_primary_10_1021_acschembio_4c00413
crossref_primary_10_1016_j_csbj_2023_10_046
crossref_primary_10_1016_j_ijbiomac_2023_125916
crossref_primary_10_1038_s41477_024_01827_4
crossref_primary_10_1016_j_pep_2024_106430
crossref_primary_10_1021_acs_jafc_3c04027
crossref_primary_10_1016_j_phytochem_2023_113669
crossref_primary_10_3390_ijms24119542
crossref_primary_10_1039_D2SC06504E
crossref_primary_10_1021_acs_jafc_2c07312
crossref_primary_10_1111_pbi_70059
crossref_primary_10_1016_j_apsb_2024_04_001
crossref_primary_10_1016_j_ijbiomac_2024_138821
crossref_primary_10_1021_acs_jafc_4c02832
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024054550
crossref_primary_10_1016_j_xplc_2024_101005
crossref_primary_10_1021_acs_jafc_1c05788
crossref_primary_10_1021_acs_jafc_4c07923
crossref_primary_10_1039_D1CC07021E
crossref_primary_10_1016_j_tifs_2022_11_008
crossref_primary_10_3389_fbioe_2024_1396268
crossref_primary_10_1093_database_baad020
crossref_primary_10_1038_s41467_024_50662_w
crossref_primary_10_3390_plants13091171
crossref_primary_10_1093_plcell_koae268
crossref_primary_10_3390_fermentation10070349
crossref_primary_10_1016_j_plaphy_2024_109273
crossref_primary_10_1016_j_xplc_2022_100506
crossref_primary_10_1021_acs_jafc_4c08469
crossref_primary_10_3389_fimmu_2024_1442722
crossref_primary_10_1016_j_indcrop_2025_120612
crossref_primary_10_1021_acssuschemeng_3c06260
crossref_primary_10_1038_s42004_024_01231_1
crossref_primary_10_1093_treephys_tpad111
crossref_primary_10_1016_j_jbiotec_2024_11_005
crossref_primary_10_1007_s11103_023_01390_0
crossref_primary_10_1038_s41467_024_49010_9
crossref_primary_10_1016_j_ijbiomac_2025_139728
crossref_primary_10_1038_s41467_023_42393_1
crossref_primary_10_1016_j_synbio_2022_10_001
crossref_primary_10_1021_acs_jafc_4c06229
crossref_primary_10_1021_acssuschemeng_1c07593
crossref_primary_10_1016_j_ijbiomac_2025_141340
crossref_primary_10_1016_j_xplc_2025_101257
crossref_primary_10_1016_j_indcrop_2022_115784
Cites_doi 10.1002/elsc.201400156
10.1104/pp.107.114280
10.1105/tpc.20.00002
10.1111/tpj.14409
10.3390/life10110286
10.1016/j.copbio.2011.04.013
10.1104/pp.113.232470
10.1016/j.pbi.2005.03.007
10.1016/j.xplc.2019.100004
10.1016/j.febslet.2012.03.003
10.1111/tpj.14420
10.1111/tpj.13140
10.1016/S0014-5793(00)01275-8
10.1111/nph.16364
10.1007/s00018-019-03292-1
10.1016/j.jmb.2009.08.017
10.1002/chem.200800548
10.1080/09168451.2017.1387514
10.1016/j.gresc.2021.01.005
10.1104/pp.106.088484
10.1093/jxb/ery419
10.1007/s13765-017-0322-8
10.1007/s00018-007-7190-z
10.1104/pp.16.00226
10.1016/j.abb.2004.06.021
10.1105/tpc.109.073270
10.1016/j.pbi.2021.102050
10.1016/j.phytochem.2009.01.020
10.1093/pcp/pcv062
10.1186/s12864-017-3844-x
10.1093/aob/mcy123
10.1097/00008571-199708000-00001
10.4014/jmb.0904.04033
10.1007/s00425-004-1299-1
10.1007/s11515-008-0111-1
10.1021/bi011717h
10.1002/adsc.202001549
10.1039/P19890001711
10.1016/j.febslet.2009.09.042
10.1016/j.plipres.2017.06.002
10.1016/j.pbi.2005.03.014
10.1002/bab.1649
10.1016/j.molp.2018.09.001
10.1042/BCJ20200477
10.1007/s00253-016-7465-0
10.1073/pnas.0409233102
10.1093/jxb/ers001
10.1021/acscatal.0c04171
10.1039/a709175c
10.1016/j.tetlet.2006.02.082
10.1093/plcell/koaa045
10.1111/j.1365-313X.2005.02344.x
10.3390/12030455
10.1111/1750-3841.13598
10.3389/fpls.2017.00984
10.1073/pnas.1012999107
10.1111/pce.13479
10.1074/jbc.M801983200
10.1007/s00018-015-2066-0
10.1007/s00425-013-1922-0
10.1002/anie.201905505
10.1073/pnas.1902104116
10.1074/jbc.M402925200
10.1107/S2059798320005306
10.1104/pp.20.00953
10.1016/j.jmb.2007.05.036
10.1002/bip.22297
10.1038/sj.emboj.7600970
10.1021/acsomega.9b00535
10.1038/srep46629
10.1074/jbc.M605767200
10.1093/glycob/cwz056
10.1016/j.xplc.2020.100081
10.1002/cben.202000009
10.1016/S1389-1723(02)80130-X
10.1038/s41598-018-19535-3
10.1039/C4CS00426D
10.1002/ange.201506505
10.1093/pcp/pcu147
10.2174/138955751612160727164559
10.1021/acs.biochem.7b01007
10.1105/tpc.108.063826
10.5344/ajev.2014.14104
10.1105/tpc.010436
10.1016/B978-0-08-100596-5.22781-9
10.1111/tpj.12634
10.1111/j.1365-313X.2011.04853.x
10.1186/s13007-020-00641-1
10.1186/s12870-018-1286-5
10.1042/BST20191140
10.1038/s41467-019-11154-4
10.1105/tpc.18.00406
10.1007/s11103-004-7204-2
10.1186/s12934-016-0609-1
10.1021/jacs.9b12211
10.1016/j.jbiotec.2016.06.034
10.1104/pp.20.00433
10.1039/D0NP00040J
10.1107/S0909049513020712
10.1016/j.phytochem.2020.112347
10.1055/s-0028-1112217
10.1038/cr.2015.111
10.1105/tpc.18.00641
10.2183/pjab.93.008
10.1042/BST20190651
10.1105/tpc.105.035055
10.1016/j.febslet.2010.03.037
10.1073/pnas.0706421104
10.1021/acs.biochem.6b00709
10.1016/j.phytochem.2008.12.009
10.1016/j.plantsci.2013.12.013
10.1186/s12864-020-07195-5
10.1016/S1389-1723(00)88727-7
10.1104/pp.108.128256
10.1111/j.1365-313X.2008.03446.x
10.1111/pbi.13035
10.1007/s11101-005-1422-3
10.1074/jbc.M007447200
10.1093/jxb/eru410
10.1016/S0922-338X(98)80090-1
10.1111/nph.16079
10.1016/j.tplants.2005.09.007
10.3762/bjoc.13.180
10.1007/s00425-007-0492-4
10.1007/s00253-014-6229-y
10.3109/10409238.2014.953628
10.1073/pnas.1604828113
10.3389/fpls.2019.01376
10.1039/np9910800069
10.1098/rsos.191121
10.1002/chem.201103069
10.1111/j.1365-313X.2011.04493.x
10.1186/s12870-019-2212-1
10.1146/annurev.biochem.76.061005.092322
10.1021/acs.jafc.5b04398
10.1104/pp.15.00403
10.1093/jxb/ern117
10.1104/pp.112.202747
10.1007/978-3-319-26932-0_2
10.1016/j.molp.2019.06.001
10.1016/S0167-7799(01)01765-6
10.1007/s11101-010-9183-z
10.1021/acs.biochem.7b00946
10.1104/pp.114.242578
10.1021/pr800808m
10.1271/bbb.62.1332
10.1074/jbc.M111.242586
10.1073/pnas.1320660111
10.1105/tpc.111.095174
10.1111/j.1365-313X.2004.02275.x
10.1007/s11101-013-9301-9
10.3389/fpls.2019.00835
10.1007/s00253-004-1806-0
10.1016/j.phytochem.2015.06.017
10.1038/nchembio.2552
10.1039/C4OB02106A
10.1021/acscatal.8b00710
10.1093/pcp/pcv151
10.1007/BF00469377
10.1371/journal.pone.0207212
10.1016/j.biotechadv.2016.03.006
10.1074/jbc.M611498200
10.1111/tpj.13324
10.1186/gb-2001-2-2-reviews3004
10.1111/tpj.12577
10.1007/s11101-016-9460-6
10.1021/acs.biochem.0c00224
10.1111/tpj.14321
10.1002/3527602437.ch25
10.1021/acscatal.9b05232
10.1016/j.febslet.2005.06.084
10.1016/j.phytochem.2009.01.013
10.1105/tpc.110.074625
10.1016/j.abb.2013.10.005
10.1016/j.jmb.2010.03.059
10.1016/j.phytochem.2007.12.010
10.1073/pnas.2012745117
10.1038/s41589-018-0154-9
10.1104/pp.104.049981
10.1016/0031-9422(91)85025-U
10.1016/j.tim.2007.03.004
10.1105/tpc.113.115154
10.1146/annurev.arplant.57.032905.105429
10.1105/tpc.105.031542
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
DOI 10.1039/d1np00038a
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4752
EndPage 49
ExternalDocumentID 34486004
10_1039_D1NP00038A
d1np00038a
Genre Journal Article
Review
GroupedDBID -
0-7
0R
123
1TJ
29M
2WC
4.4
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
N9A
O9-
OK1
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
X
YNT
---
-~X
0R~
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
YQT
-JG
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-f19dd3cca1b511b68eee1090e3e811fc6954596350a7772dc980906d945e5f013
ISSN 0265-0568
1460-4752
IngestDate Thu Jul 10 18:42:36 EDT 2025
Fri Jul 11 09:12:50 EDT 2025
Mon Jun 30 12:05:18 EDT 2025
Wed Feb 19 02:26:53 EST 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 00:53:51 EDT 2025
Thu Feb 24 04:20:34 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-f19dd3cca1b511b68eee1090e3e811fc6954596350a7772dc980906d945e5f013
Notes 10.1039/d1np00038a
Dedicated to Professor Rodney Croteau in honour of his 75th birthday.
Electronic supplementary information (ESI) available. See DOI
Elisabeth Kurze received her MSc in Biochemistry from the University of Leipzig and completed her PhD at TUM in 2019. Matthias Wüst received his PhD in Food Chemistry from the University of Frankfurt/Main. He has been Full Professor of Food Chemistry at the University of Bonn since 2009. Liao Jieren obtained her MSc in tea bioengineering at Nanjing Agriculture University in 2019. She is currently carrying out PhD research at TUM. Kate McGraphery completed her master's degree in Molecular Biology LMU and her bachelor's degree in Biochemistry in Toronto. She received her PhD from TUM in 2020. Thomas Hoffmann studied Food Chemistry at LMU and received his PhD in 2001 from TUM. Since 2004, he has been working at the professorship Biotechnology of Natural Products TUM. Chuankui Song obtained his PhD (2015) at TUM. He established his own research group at the State Key Laboratory of Tea Plant Biology and Utilization of Anhui Agricultural University in 2016. Wilfried Schwab received his PhD in Food Chemistry from the University of Würzburg in 1989. He joined Hoechst AG in 1991. In 2003, he was awarded an Endowed Chair at TUM and has been Professor of Biotechnology of Natural Products since 2010.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7852-1194
0000-0002-9753-3967
0000-0001-6808-5555
PMID 34486004
PQID 2631960278
PQPubID 2047500
PageCount 21
ParticipantIDs crossref_citationtrail_10_1039_D1NP00038A
proquest_miscellaneous_2661042585
proquest_miscellaneous_2569617189
proquest_journals_2631960278
pubmed_primary_34486004
crossref_primary_10_1039_D1NP00038A
rsc_primary_d1np00038a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-23
PublicationDateYYYYMMDD 2022-02-23
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Natural product reports
PublicationTitleAlternate Nat Prod Rep
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sun (D1NP00038A/cit148/1) 2019; 100
Itkin (D1NP00038A/cit44/1) 2016; 113
Gachon (D1NP00038A/cit12/1) 2005; 10
Jørgensen (D1NP00038A/cit158/1) 2005; 8
Li (D1NP00038A/cit39/1) 2020; 10
Li (D1NP00038A/cit99d/1) 2018; 122
Augustin (D1NP00038A/cit112/1) 2012; 160
Stucky (D1NP00038A/cit121a/1) 2015; 66
Jing (D1NP00038A/cit23b/1) 2018; 42
Shibuya (D1NP00038A/cit115/1) 2010; 584
Wüst (D1NP00038A/cit79a/1) 2002; 41
He (D1NP00038A/cit136/1) 2006; 281
Song (D1NP00038A/cit26/1) 2018; 11
Wu (D1NP00038A/cit37/1) 2017; 8
Shao (D1NP00038A/cit60/1) 2005; 17
Zheng (D1NP00038A/cit106/1) 2019; 10
Jumper (D1NP00038A/cit154/1) 2021
Elshahawi (D1NP00038A/cit4/1) 2015; 44
McIntosh (D1NP00038A/cit34a/1) 2016; 15
Orihara (D1NP00038A/cit122d/1) 1991; 30
Brazier-Hicks (D1NP00038A/cit53/1) 2007; 104
Wang (D1NP00038A/cit59/1) 2020; 117
Lu (D1NP00038A/cit89/1) 2018; 65
He (D1NP00038A/cit72/1) 2019; 58
Li (D1NP00038A/cit31/1) 2001; 276
Huang (D1NP00038A/cit1/1) 2016; 16
Lee (D1NP00038A/cit71/1) 2019; 116
Kubo (D1NP00038A/cit137/1) 2004; 429
Li (D1NP00038A/cit61/1) 2007; 370
Cheng (D1NP00038A/cit86/1) 2019; 9
Song (D1NP00038A/cit24/1) 2015; 56
Nunes (D1NP00038A/cit122a/1) 2009; 75
Li (D1NP00038A/cit99b/1) 2017; 89
Wetterhorn (D1NP00038A/cit63a/1) 2017; 56
Schwab (D1NP00038A/cit74/1) 2008; 54
Zeier (D1NP00038A/cit155b/1) 2021; 62
Wu (D1NP00038A/cit104/1) 2019; 70
Hofer (D1NP00038A/cit96/1) 2016; 100
Rosén (D1NP00038A/cit52b/1) 2004; 279
Yu (D1NP00038A/cit42b/1) 2017; 18
Hiromoto (D1NP00038A/cit56/1) 2013; 20
Hjelmeland (D1NP00038A/cit88a/1) 2015; 66
Hsu (D1NP00038A/cit64/1) 2018; 14
Wang (D1NP00038A/cit134/1) 2016; 26
Könen (D1NP00038A/cit76/1) 2021
Seo (D1NP00038A/cit94b/1) 2009; 19
Yang (D1NP00038A/cit47/1) 2018; 14
García (D1NP00038A/cit90/1) 2007; 12
Noguchi (D1NP00038A/cit140/1) 2009; 21
Harrison (D1NP00038A/cit81/1) 2014; 544
Wang (D1NP00038A/cit41a/1) 2012; 63
Kohara (D1NP00038A/cit113/1) 2005; 57
Pfander (D1NP00038A/cit84a/1) 1991; 8
Figueroa (D1NP00038A/cit117b/1) 2020
Bönisch (D1NP00038A/cit21/1) 2014; 165
Ramirez-Estrada (D1NP00038A/cit121b/1) 2017; 8
Hashimoto (D1NP00038A/cit157c/1) 2010; 399
Jung (D1NP00038A/cit116/1) 2014; 55
Hansen (D1NP00038A/cit52a/1) 2009; 8
Nakagawa (D1NP00038A/cit93a/1) 1998; 62
Yuan (D1NP00038A/cit36b/1) 2018; 9
Mackenzie (D1NP00038A/cit33/1) 1997; 7
Bowles (D1NP00038A/cit7/1) 2006; 57
Griesser (D1NP00038A/cit51/1) 2008; 146
Landmann (D1NP00038A/cit125/1) 2007; 226
Ueda (D1NP00038A/cit16a/1) 2015; 13
Liu (D1NP00038A/cit70/1) 2020; 1
Huang (D1NP00038A/cit144/1) 2018; 59
Chen (D1NP00038A/cit143/1) 2015; 127
Rehman (D1NP00038A/cit36c/1) 2018; 8
Ohgami (D1NP00038A/cit105/1) 2015; 168
Kristensen (D1NP00038A/cit40/1) 2005; 102
Huang (D1NP00038A/cit124/1) 2019; 6
Akere (D1NP00038A/cit38a/1) 2020; 477
Sindhuwinata (D1NP00038A/cit152/1) 2013; 99
Song (D1NP00038A/cit23a/1) 2016; 85
Caputi (D1NP00038A/cit83/1) 2008; 14
Erb (D1NP00038A/cit2/1) 2020; 184
Moraga (D1NP00038A/cit118/1) 2004; 219
Chong (D1NP00038A/cit50/1) 2002; 14
Sun (D1NP00038A/cit45/1) 2020; 184
Yano (D1NP00038A/cit91a/1) 1990; 54
Wilson (D1NP00038A/cit128/1) 2017; 56
Rao (D1NP00038A/cit99c/1) 2019; 19
Nakagawa (D1NP00038A/cit92b/1) 2000; 89
Ozohanics (D1NP00038A/cit153/1) 2020; 10
Joshi (D1NP00038A/cit38c/1) 2019; 29
Thorson (D1NP00038A/cit27b/1) 2003
Nomura (D1NP00038A/cit111/1) 2019; 99
Mohnike (D1NP00038A/cit155a/1) 2021; 33
Bowles (D1NP00038A/cit15/1) 2005; 8
Putkaradze (D1NP00038A/cit142/1) 2021; 38
Alseekh (D1NP00038A/cit5/1) 2020; 174
Schwab (D1NP00038A/cit75/1) 2015; 63
Ati (D1NP00038A/cit9/1) 2017; 13
Nagatoshi (D1NP00038A/cit119/1) 2012; 586
Sugimoto (D1NP00038A/cit149b/1) 2014; 111
Wüst (D1NP00038A/cit80/1) 2017
Richman (D1NP00038A/cit109/1) 2005; 41
Huang (D1NP00038A/cit82/1) 2009; 70
Hansen (D1NP00038A/cit129/1) 2009; 70
Kim (D1NP00038A/cit97/1) 2019; 17
Hashimoto (D1NP00038A/cit157b/1) 2010; 107
Shao (D1NP00038A/cit151/1) 2020; 16
Liu (D1NP00038A/cit57/1) 2020; 32
Rohmer (D1NP00038A/cit77/1) 1999; 16
Zhang (D1NP00038A/cit58/1) 2020; 142
Diretto (D1NP00038A/cit120/1) 2019; 224
Lee (D1NP00038A/cit41b/1) 2017; 60
Teze (D1NP00038A/cit65/1) 2021; 11
Desmet (D1NP00038A/cit126/1) 2012; 18
Griesser (D1NP00038A/cit46/1) 2008; 59
Seki (D1NP00038A/cit145/1) 2018; 82
Kim (D1NP00038A/cit38b/1) 2013; 238
Li (D1NP00038A/cit68/1) 2021; 2
Ross (D1NP00038A/cit14/1) 2001; 2
Yauk (D1NP00038A/cit101/1) 2014; 80
Osmani (D1NP00038A/cit100/1) 2008; 148
Naoumkina (D1NP00038A/cit114b/1) 2010; 22
Tiwari (D1NP00038A/cit8/1) 2016; 34
Nakagawa (D1NP00038A/cit94a/1) 1991; 55
Wang (D1NP00038A/cit99a/1) 2020
Louveau (D1NP00038A/cit19/1) 2019
Maharjan (D1NP00038A/cit67/1) 2020; 76
Liu (D1NP00038A/cit88c/1) 2017; 82
Takaichi (D1NP00038A/cit95/1) 2007; 64
Seki (D1NP00038A/cit79b/1) 2015; 56
Asada (D1NP00038A/cit103/1) 2013; 25
Tegl (D1NP00038A/cit156a/1) 2020; 48
Sayama (D1NP00038A/cit139/1) 2012; 24
He (D1NP00038A/cit42a/1) 2018; 18
Modolo (D1NP00038A/cit62/1) 2009; 392
Su (D1NP00038A/cit149a/1) 2018; 13
Chang (D1NP00038A/cit123/1) 2011; 22
Méndez (D1NP00038A/cit16b/1) 2001; 19
Maharjan (D1NP00038A/cit66/1) 2020; 59
Dai (D1NP00038A/cit34b/1) 2021; 8
Priest (D1NP00038A/cit117a/1) 2005; 579
Heiling (D1NP00038A/cit108/1) 2021
Ohta (D1NP00038A/cit91b/1) 1991; 55
Noguchi (D1NP00038A/cit93b/1) 1998; 85
Song (D1NP00038A/cit150/1) 2008; 69
Zhang (D1NP00038A/cit36a/1) 2020; 21
Zong (D1NP00038A/cit55/1) 2019; 99
Shimoda (D1NP00038A/cit122e/1) 2006; 47
Wang (D1NP00038A/cit20/1) 2009; 4
Barik (D1NP00038A/cit132/1) 2020
Dewitte (D1NP00038A/cit146/1) 2016; 233
Salas (D1NP00038A/cit27a/1) 2007; 15
Lairson (D1NP00038A/cit28/1) 2008; 77
Kalinowska (D1NP00038A/cit17/1) 2005; 4
Moses (D1NP00038A/cit18/1) 2014; 49
Biswas (D1NP00038A/cit35/1) 2020; 48
Zhang (D1NP00038A/cit48/1) 2021; 2
Shoda (D1NP00038A/cit147/1) 2017; 93
Pateraki (D1NP00038A/cit78/1) 2015; 148
Li (D1NP00038A/cit121c/1) 2014; 219–220
Bönisch (D1NP00038A/cit22/1) 2014; 166
Irmisch (D1NP00038A/cit43/1) 2018; 30
Ferrer (D1NP00038A/cit87b/1) 2017; 67
Yonekura-Sakakibara (D1NP00038A/cit10/1) 2011; 66
Yonekura-Sakakibara (D1NP00038A/cit49b/1) 2007; 282
Dudareva (D1NP00038A/cit73/1) 2004; 135
Ono (D1NP00038A/cit138/1) 2010; 22
Kita (D1NP00038A/cit110/1) 2000; 469
Brown (D1NP00038A/cit49a/1) 2005; 17
Podolak (D1NP00038A/cit87a/1) 2010; 9
Pott (D1NP00038A/cit3/1) 2019; 10
Schwab (D1NP00038A/cit29/1) 2015; 99
Lao (D1NP00038A/cit30/1) 2014; 79
Offen (D1NP00038A/cit32/1) 2006; 25
Zhao (D1NP00038A/cit107/1) 2020; 226
Hiroyuki (D1NP00038A/cit92a/1) 2002; 94
Nidetzky (D1NP00038A/cit127/1) 2018; 8
Cartwright (D1NP00038A/cit130/1) 2008; 283
Achnine (D1NP00038A/cit114c/1) 2005; 41
Furuya (D1NP00038A/cit122c/1) 1989; 1
Liu (D1NP00038A/cit156b/1) 2021; 363
Osmani (D1NP00038A/cit13/1) 2009; 70
Yan (D1NP00038A/cit131/1) 2020; 77
Rivas (D1NP00038A/cit84b/1) 2013; 12
Louveau (D1NP00038A/cit141/1) 2018; 30
Schwab (D1NP00038A/cit85/1) 2015; 15
Maicas (D1NP00038A/cit88b/1) 2005; 67
Wang (D1NP00038A/cit133/1) 2009; 583
George Thompson (D1NP00038A/cit54/1) 2017; 7
Nagatoshi (D1NP00038A/cit102/1) 2011; 286
Yang (D1NP00038A/cit69/1) 2019; 10
Ishag (D1NP00038A/cit91c/1) 1985; 321
Wetterhorn (D1NP00038A/cit63b/1) 2016; 55
Bashyal (D1NP00038A/cit98/1) 2019; 4
Kellokumpu (D1NP00038A/cit157a/1) 2016; 73
Meesapyodsuk (D1NP00038A/cit114a/1) 2007; 143
Wang (D1NP00038A/cit6/1) 2019; 12
Sgorbini (D1NP00038A/cit122b/1) 2015; 117
Olsson (D1NP00038A/cit135/1) 2016; 15
Song (D1NP00038A/cit25/1) 2016; 171
Caputi (D1NP00038A/cit11/1) 2012; 69
References_xml – issn: 2021
  end-page: p 105-115
  publication-title: Comprehensive Foodomics
  doi: Könen Wüst Passon
– issn: 2003
  end-page: p 685-711
  publication-title: Carbohydrate-Based Drug Discovery
  doi: Thorson Vogt
– issn: 2017
  end-page: p 9-10
  publication-title: Springer Handbook of Odor
  doi: Wüst
– volume: 15
  start-page: 376
  year: 2015
  ident: D1NP00038A/cit85/1
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201400156
– volume: 146
  start-page: 1528
  year: 2008
  ident: D1NP00038A/cit51/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.114280
– volume: 32
  start-page: 2917
  year: 2020
  ident: D1NP00038A/cit57/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00002
– volume: 99
  start-page: 1127
  year: 2019
  ident: D1NP00038A/cit111/1
  publication-title: Plant J.
  doi: 10.1111/tpj.14409
– volume: 10
  year: 2020
  ident: D1NP00038A/cit153/1
  publication-title: Life
  doi: 10.3390/life10110286
– volume: 22
  start-page: 800
  year: 2011
  ident: D1NP00038A/cit123/1
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.04.013
– volume: 165
  start-page: 561
  year: 2014
  ident: D1NP00038A/cit21/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.232470
– volume: 8
  start-page: 254
  year: 2005
  ident: D1NP00038A/cit15/1
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2005.03.007
– volume: 1
  start-page: 100004
  year: 2020
  ident: D1NP00038A/cit70/1
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2019.100004
– volume: 586
  start-page: 1055
  year: 2012
  ident: D1NP00038A/cit119/1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.03.003
– volume: 100
  start-page: 20
  year: 2019
  ident: D1NP00038A/cit148/1
  publication-title: Plant J.
  doi: 10.1111/tpj.14420
– volume: 85
  start-page: 730
  year: 2016
  ident: D1NP00038A/cit23a/1
  publication-title: Plant J.
  doi: 10.1111/tpj.13140
– volume: 469
  start-page: 173
  year: 2000
  ident: D1NP00038A/cit110/1
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)01275-8
– volume: 9
  year: 2018
  ident: D1NP00038A/cit36b/1
  publication-title: Genes
– volume: 226
  start-page: 362
  year: 2020
  ident: D1NP00038A/cit107/1
  publication-title: New Phytol.
  doi: 10.1111/nph.16364
– volume: 77
  start-page: 2423
  year: 2020
  ident: D1NP00038A/cit131/1
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03292-1
– volume: 392
  start-page: 1292
  year: 2009
  ident: D1NP00038A/cit62/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.08.017
– volume: 14
  start-page: 6656
  year: 2008
  ident: D1NP00038A/cit83/1
  publication-title: Chemistry
  doi: 10.1002/chem.200800548
– volume: 82
  start-page: 927
  year: 2018
  ident: D1NP00038A/cit145/1
  publication-title: Biosci., Biotechnol., Biochem.
  doi: 10.1080/09168451.2017.1387514
– volume: 2
  start-page: 45
  year: 2021
  ident: D1NP00038A/cit68/1
  publication-title: Green Synthesis and Catalysis
  doi: 10.1016/j.gresc.2021.01.005
– volume: 143
  start-page: 959
  year: 2007
  ident: D1NP00038A/cit114a/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.088484
– volume: 70
  start-page: 925
  year: 2019
  ident: D1NP00038A/cit104/1
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery419
– volume: 60
  start-page: 647
  year: 2017
  ident: D1NP00038A/cit41b/1
  publication-title: Appl. Biol. Chem.
  doi: 10.1007/s13765-017-0322-8
– volume: 64
  start-page: 2607
  year: 2007
  ident: D1NP00038A/cit95/1
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-007-7190-z
– volume: 171
  start-page: 139
  year: 2016
  ident: D1NP00038A/cit25/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00226
– volume: 148
  start-page: 107
  year: 2015
  ident: D1NP00038A/cit78/1
  publication-title: Adv. Biochem. Eng./Biotechnol.
– volume: 429
  start-page: 198
  year: 2004
  ident: D1NP00038A/cit137/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2004.06.021
– year: 2021
  ident: D1NP00038A/cit108/1
  publication-title: Plant Cell
– volume: 22
  start-page: 850
  year: 2010
  ident: D1NP00038A/cit114b/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073270
– volume: 62
  start-page: 102050
  year: 2021
  ident: D1NP00038A/cit155b/1
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2021.102050
– volume: 54
  start-page: 1023
  year: 1990
  ident: D1NP00038A/cit91a/1
  publication-title: Agric. Biol. Chem.
– volume: 70
  start-page: 457
  year: 2009
  ident: D1NP00038A/cit82/1
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.01.020
– volume: 56
  start-page: 1463
  year: 2015
  ident: D1NP00038A/cit79b/1
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv062
– volume: 18
  start-page: 474
  year: 2017
  ident: D1NP00038A/cit42b/1
  publication-title: BMC Genom.
  doi: 10.1186/s12864-017-3844-x
– volume: 122
  start-page: 1203
  year: 2018
  ident: D1NP00038A/cit99d/1
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcy123
– volume: 7
  start-page: 255
  year: 1997
  ident: D1NP00038A/cit33/1
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-199708000-00001
– volume: 19
  start-page: 1542
  year: 2009
  ident: D1NP00038A/cit94b/1
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.0904.04033
– start-page: 21
  year: 2020
  ident: D1NP00038A/cit132/1
  publication-title: Int. J. Mol. Sci.
– volume: 219
  start-page: 955
  year: 2004
  ident: D1NP00038A/cit118/1
  publication-title: Planta
  doi: 10.1007/s00425-004-1299-1
– volume: 4
  start-page: 39
  year: 2009
  ident: D1NP00038A/cit20/1
  publication-title: Front. Biol. China
  doi: 10.1007/s11515-008-0111-1
– volume: 41
  start-page: 1820
  year: 2002
  ident: D1NP00038A/cit79a/1
  publication-title: Biochemistry
  doi: 10.1021/bi011717h
– volume: 363
  start-page: 2157
  year: 2021
  ident: D1NP00038A/cit156b/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202001549
– start-page: 21
  year: 2020
  ident: D1NP00038A/cit99a/1
  publication-title: Int. J. Mol. Sci.
– volume: 1
  start-page: 1711
  year: 1989
  ident: D1NP00038A/cit122c/1
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/P19890001711
– volume: 583
  start-page: 3303
  year: 2009
  ident: D1NP00038A/cit133/1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.09.042
– volume: 67
  start-page: 27
  year: 2017
  ident: D1NP00038A/cit87b/1
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2017.06.002
– volume: 8
  start-page: 280
  year: 2005
  ident: D1NP00038A/cit158/1
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2005.03.014
– volume: 65
  start-page: 514
  year: 2018
  ident: D1NP00038A/cit89/1
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1649
– volume: 11
  start-page: 1225
  year: 2018
  ident: D1NP00038A/cit26/1
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.09.001
– volume: 477
  start-page: 2791
  year: 2020
  ident: D1NP00038A/cit38a/1
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20200477
– volume: 100
  start-page: 4269
  year: 2016
  ident: D1NP00038A/cit96/1
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7465-0
– volume: 102
  start-page: 1779
  year: 2005
  ident: D1NP00038A/cit40/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0409233102
– volume: 63
  start-page: 2799
  year: 2012
  ident: D1NP00038A/cit41a/1
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers001
– volume: 11
  start-page: 1810
  year: 2021
  ident: D1NP00038A/cit65/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04171
– volume: 16
  start-page: 565
  year: 1999
  ident: D1NP00038A/cit77/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/a709175c
– volume: 47
  start-page: 2695
  year: 2006
  ident: D1NP00038A/cit122e/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.02.082
– volume: 33
  start-page: 735
  year: 2021
  ident: D1NP00038A/cit155a/1
  publication-title: Plant Cell
  doi: 10.1093/plcell/koaa045
– volume: 41
  start-page: 875
  year: 2005
  ident: D1NP00038A/cit114c/1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02344.x
– volume: 12
  start-page: 455
  year: 2007
  ident: D1NP00038A/cit90/1
  publication-title: Molecules
  doi: 10.3390/12030455
– volume: 82
  start-page: 248
  year: 2017
  ident: D1NP00038A/cit88c/1
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.13598
– volume: 8
  start-page: 984
  year: 2017
  ident: D1NP00038A/cit121b/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00984
– volume: 107
  start-page: 20352
  year: 2010
  ident: D1NP00038A/cit157b/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1012999107
– volume: 42
  start-page: 1352
  year: 2018
  ident: D1NP00038A/cit23b/1
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13479
– volume: 283
  start-page: 15724
  year: 2008
  ident: D1NP00038A/cit130/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801983200
– volume: 73
  start-page: 305
  year: 2016
  ident: D1NP00038A/cit157a/1
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-2066-0
– volume: 238
  start-page: 683
  year: 2013
  ident: D1NP00038A/cit38b/1
  publication-title: Planta
  doi: 10.1007/s00425-013-1922-0
– volume: 58
  start-page: 11513
  year: 2019
  ident: D1NP00038A/cit72/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201905505
– volume: 116
  start-page: 13131
  year: 2019
  ident: D1NP00038A/cit71/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1902104116
– volume: 279
  start-page: 38683
  year: 2004
  ident: D1NP00038A/cit52b/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M402925200
– volume: 76
  start-page: 521
  year: 2020
  ident: D1NP00038A/cit67/1
  publication-title: Acta Crystallogr., Sect. D: Struct. Biol.
  doi: 10.1107/S2059798320005306
– volume: 184
  start-page: 1744
  year: 2020
  ident: D1NP00038A/cit45/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00953
– volume: 370
  start-page: 951
  year: 2007
  ident: D1NP00038A/cit61/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.036
– volume: 99
  start-page: 784
  year: 2013
  ident: D1NP00038A/cit152/1
  publication-title: Biopolymers
  doi: 10.1002/bip.22297
– volume: 25
  start-page: 1396
  year: 2006
  ident: D1NP00038A/cit32/1
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600970
– volume: 4
  start-page: 9367
  year: 2019
  ident: D1NP00038A/cit98/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00535
– volume: 8
  start-page: 389
  year: 2017
  ident: D1NP00038A/cit37/1
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 46629
  year: 2017
  ident: D1NP00038A/cit54/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep46629
– volume: 281
  start-page: 34441
  year: 2006
  ident: D1NP00038A/cit136/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605767200
– volume: 29
  start-page: 765
  year: 2019
  ident: D1NP00038A/cit38c/1
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwz056
– volume: 2
  start-page: 100081
  year: 2021
  ident: D1NP00038A/cit48/1
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2020.100081
– volume: 8
  start-page: 15
  year: 2021
  ident: D1NP00038A/cit34b/1
  publication-title: CBEN
  doi: 10.1002/cben.202000009
– volume: 94
  start-page: 119
  year: 2002
  ident: D1NP00038A/cit92a/1
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(02)80130-X
– volume: 8
  start-page: 1875
  year: 2018
  ident: D1NP00038A/cit36c/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19535-3
– volume: 44
  start-page: 7591
  year: 2015
  ident: D1NP00038A/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00426D
– volume: 127
  start-page: 12869
  year: 2015
  ident: D1NP00038A/cit143/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201506505
– volume: 9
  start-page: 734
  year: 2019
  ident: D1NP00038A/cit86/1
  publication-title: Catalysis
– volume: 55
  start-page: 2177
  year: 2014
  ident: D1NP00038A/cit116/1
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu147
– volume: 16
  start-page: 1013
  year: 2016
  ident: D1NP00038A/cit1/1
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/138955751612160727164559
– volume: 56
  start-page: 6585
  year: 2017
  ident: D1NP00038A/cit63a/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b01007
– volume: 21
  start-page: 1556
  year: 2009
  ident: D1NP00038A/cit140/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.063826
– volume: 66
  start-page: 1
  year: 2015
  ident: D1NP00038A/cit88a/1
  publication-title: Am. J. Enol. Vitic.
  doi: 10.5344/ajev.2014.14104
– volume: 14
  start-page: 1093
  year: 2002
  ident: D1NP00038A/cit50/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.010436
– start-page: 105
  volume-title: Comprehensive Foodomics
  year: 2021
  ident: D1NP00038A/cit76/1
  doi: 10.1016/B978-0-08-100596-5.22781-9
– volume: 80
  start-page: 317
  year: 2014
  ident: D1NP00038A/cit101/1
  publication-title: Plant J.
  doi: 10.1111/tpj.12634
– volume: 69
  start-page: 1030
  year: 2012
  ident: D1NP00038A/cit11/1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04853.x
– volume: 16
  start-page: 99
  year: 2020
  ident: D1NP00038A/cit151/1
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00641-1
– volume: 18
  start-page: 67
  year: 2018
  ident: D1NP00038A/cit42a/1
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1286-5
– volume: 48
  start-page: 1583
  year: 2020
  ident: D1NP00038A/cit156a/1
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20191140
– volume: 10
  start-page: 3214
  year: 2019
  ident: D1NP00038A/cit69/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11154-4
– volume: 30
  start-page: 1864
  year: 2018
  ident: D1NP00038A/cit43/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00406
– volume: 57
  start-page: 225
  year: 2005
  ident: D1NP00038A/cit113/1
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-004-7204-2
– volume: 15
  start-page: 207
  year: 2016
  ident: D1NP00038A/cit135/1
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-016-0609-1
– volume: 142
  start-page: 3506
  year: 2020
  ident: D1NP00038A/cit58/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12211
– volume: 233
  start-page: 49
  year: 2016
  ident: D1NP00038A/cit146/1
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2016.06.034
– volume: 184
  start-page: 39
  year: 2020
  ident: D1NP00038A/cit2/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00433
– volume: 38
  start-page: 432
  year: 2021
  ident: D1NP00038A/cit142/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/D0NP00040J
– volume: 20
  start-page: 894
  year: 2013
  ident: D1NP00038A/cit56/1
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049513020712
– volume: 174
  start-page: 112347
  year: 2020
  ident: D1NP00038A/cit5/1
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2020.112347
– start-page: 11
  year: 2019
  ident: D1NP00038A/cit19/1
  publication-title: Cold Spring Harbor Perspect. Biol.
– volume: 75
  start-page: 387
  year: 2009
  ident: D1NP00038A/cit122a/1
  publication-title: Planta Med.
  doi: 10.1055/s-0028-1112217
– volume: 26
  start-page: 258
  year: 2016
  ident: D1NP00038A/cit134/1
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.111
– volume: 30
  start-page: 3038
  year: 2018
  ident: D1NP00038A/cit141/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00641
– volume: 93
  start-page: 125
  year: 2017
  ident: D1NP00038A/cit147/1
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.93.008
– volume: 48
  start-page: 891
  year: 2020
  ident: D1NP00038A/cit35/1
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20190651
– volume: 17
  start-page: 3141
  year: 2005
  ident: D1NP00038A/cit60/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035055
– volume: 584
  start-page: 2258
  year: 2010
  ident: D1NP00038A/cit115/1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.03.037
– volume: 104
  start-page: 20238
  year: 2007
  ident: D1NP00038A/cit53/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0706421104
– volume: 55
  start-page: 6175
  year: 2016
  ident: D1NP00038A/cit63b/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00709
– volume: 70
  start-page: 325
  year: 2009
  ident: D1NP00038A/cit13/1
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2008.12.009
– volume: 219–220
  start-page: 1
  year: 2014
  ident: D1NP00038A/cit121c/1
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2013.12.013
– volume: 21
  start-page: 794
  year: 2020
  ident: D1NP00038A/cit36a/1
  publication-title: BMC Genom.
  doi: 10.1186/s12864-020-07195-5
– volume: 89
  start-page: 138
  year: 2000
  ident: D1NP00038A/cit92b/1
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(00)88727-7
– volume: 148
  start-page: 1295
  year: 2008
  ident: D1NP00038A/cit100/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.128256
– volume: 54
  start-page: 712
  year: 2008
  ident: D1NP00038A/cit74/1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03446.x
– volume: 17
  start-page: 1037
  year: 2019
  ident: D1NP00038A/cit97/1
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13035
– volume: 4
  start-page: 237
  year: 2005
  ident: D1NP00038A/cit17/1
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-005-1422-3
– volume: 276
  start-page: 4338
  year: 2001
  ident: D1NP00038A/cit31/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M007447200
– volume: 66
  start-page: 189
  year: 2015
  ident: D1NP00038A/cit121a/1
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru410
– volume: 85
  start-page: 436
  year: 1998
  ident: D1NP00038A/cit93b/1
  publication-title: J. Ferment. Bioeng.
  doi: 10.1016/S0922-338X(98)80090-1
– volume: 224
  start-page: 725
  year: 2019
  ident: D1NP00038A/cit120/1
  publication-title: New Phytol.
  doi: 10.1111/nph.16079
– volume: 10
  start-page: 542
  year: 2005
  ident: D1NP00038A/cit12/1
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2005.09.007
– volume: 13
  start-page: 1857
  year: 2017
  ident: D1NP00038A/cit9/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.13.180
– volume: 55
  start-page: 2147
  year: 1991
  ident: D1NP00038A/cit94a/1
  publication-title: Agric. Biol. Chem.
– volume: 226
  start-page: 417
  year: 2007
  ident: D1NP00038A/cit125/1
  publication-title: Planta
  doi: 10.1007/s00425-007-0492-4
– volume: 99
  start-page: 165
  year: 2015
  ident: D1NP00038A/cit29/1
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6229-y
– volume: 49
  start-page: 439
  year: 2014
  ident: D1NP00038A/cit18/1
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2014.953628
– volume: 113
  start-page: E7619
  year: 2016
  ident: D1NP00038A/cit44/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1604828113
– volume: 10
  start-page: 1376
  year: 2019
  ident: D1NP00038A/cit106/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01376
– volume: 8
  start-page: 69
  year: 1991
  ident: D1NP00038A/cit84a/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/np9910800069
– volume: 6
  start-page: 191121
  year: 2019
  ident: D1NP00038A/cit124/1
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.191121
– volume: 18
  start-page: 10786
  year: 2012
  ident: D1NP00038A/cit126/1
  publication-title: Chemistry
  doi: 10.1002/chem.201103069
– volume: 66
  start-page: 182
  year: 2011
  ident: D1NP00038A/cit10/1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04493.x
– volume: 19
  start-page: 603
  year: 2019
  ident: D1NP00038A/cit99c/1
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2212-1
– volume: 55
  start-page: 1811
  year: 1991
  ident: D1NP00038A/cit91b/1
  publication-title: Agric. Biol. Chem.
– volume: 77
  start-page: 521
  year: 2008
  ident: D1NP00038A/cit28/1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.061005.092322
– volume: 63
  start-page: 10591
  year: 2015
  ident: D1NP00038A/cit75/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b04398
– volume: 168
  start-page: 464
  year: 2015
  ident: D1NP00038A/cit105/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00403
– volume: 59
  start-page: 2611
  year: 2008
  ident: D1NP00038A/cit46/1
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern117
– volume: 160
  start-page: 1881
  year: 2012
  ident: D1NP00038A/cit112/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.202747
– start-page: 9
  volume-title: Springer Handbook of Odor
  year: 2017
  ident: D1NP00038A/cit80/1
  doi: 10.1007/978-3-319-26932-0_2
– volume: 12
  start-page: 899
  year: 2019
  ident: D1NP00038A/cit6/1
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.06.001
– volume: 19
  start-page: 449
  year: 2001
  ident: D1NP00038A/cit16b/1
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(01)01765-6
– volume: 9
  start-page: 425
  year: 2010
  ident: D1NP00038A/cit87a/1
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-010-9183-z
– volume: 56
  start-page: 6389
  year: 2017
  ident: D1NP00038A/cit128/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00946
– volume: 166
  start-page: 23
  year: 2014
  ident: D1NP00038A/cit22/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.242578
– volume: 8
  start-page: 743
  year: 2009
  ident: D1NP00038A/cit52a/1
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800808m
– volume: 62
  start-page: 1332
  year: 1998
  ident: D1NP00038A/cit93a/1
  publication-title: Biosci., Biotechnol., Biochem.
  doi: 10.1271/bbb.62.1332
– volume: 286
  start-page: 32866
  year: 2011
  ident: D1NP00038A/cit102/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.242586
– volume: 111
  start-page: 7144
  year: 2014
  ident: D1NP00038A/cit149b/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1320660111
– volume: 24
  start-page: 2123
  year: 2012
  ident: D1NP00038A/cit139/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.095174
– volume: 41
  start-page: 56
  year: 2005
  ident: D1NP00038A/cit109/1
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02275.x
– year: 2020
  ident: D1NP00038A/cit117b/1
  publication-title: J. Exp. Bot.
– volume: 12
  start-page: 327
  year: 2013
  ident: D1NP00038A/cit84b/1
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-013-9301-9
– volume: 10
  start-page: 835
  year: 2019
  ident: D1NP00038A/cit3/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00835
– volume: 67
  start-page: 322
  year: 2005
  ident: D1NP00038A/cit88b/1
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1806-0
– volume: 117
  start-page: 296
  year: 2015
  ident: D1NP00038A/cit122b/1
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2015.06.017
– volume: 59
  start-page: 857
  year: 2018
  ident: D1NP00038A/cit144/1
  publication-title: Plant Cell Physiol.
– volume: 14
  start-page: 256
  year: 2018
  ident: D1NP00038A/cit64/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2552
– volume: 13
  start-page: 55
  year: 2015
  ident: D1NP00038A/cit16a/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB02106A
– volume: 8
  start-page: 6283
  year: 2018
  ident: D1NP00038A/cit127/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00710
– volume: 56
  start-page: 2478
  year: 2015
  ident: D1NP00038A/cit24/1
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv151
– volume: 321
  start-page: 331
  year: 1985
  ident: D1NP00038A/cit91c/1
  publication-title: Z. Anal. Chem.
  doi: 10.1007/BF00469377
– volume: 13
  start-page: e0207212
  year: 2018
  ident: D1NP00038A/cit149a/1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0207212
– volume: 34
  start-page: 714
  year: 2016
  ident: D1NP00038A/cit8/1
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.03.006
– volume: 282
  start-page: 14932
  year: 2007
  ident: D1NP00038A/cit49b/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611498200
– volume: 89
  start-page: 85
  year: 2017
  ident: D1NP00038A/cit99b/1
  publication-title: Plant J.
  doi: 10.1111/tpj.13324
– volume: 2
  start-page: 3004.1
  year: 2001
  ident: D1NP00038A/cit14/1
  publication-title: Genome Biol.
  doi: 10.1186/gb-2001-2-2-reviews3004
– volume: 79
  start-page: 517
  year: 2014
  ident: D1NP00038A/cit30/1
  publication-title: Plant J.
  doi: 10.1111/tpj.12577
– volume: 15
  start-page: 1075
  year: 2016
  ident: D1NP00038A/cit34a/1
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-016-9460-6
– volume: 59
  start-page: 2551
  year: 2020
  ident: D1NP00038A/cit66/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.0c00224
– volume: 99
  start-page: 257
  year: 2019
  ident: D1NP00038A/cit55/1
  publication-title: Plant J.
  doi: 10.1111/tpj.14321
– start-page: 685
  volume-title: Carbohydrate-Based Drug Discovery
  year: 2003
  ident: D1NP00038A/cit27b/1
  doi: 10.1002/3527602437.ch25
– volume: 10
  start-page: 3629
  year: 2020
  ident: D1NP00038A/cit39/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05232
– volume: 579
  start-page: 4454
  year: 2005
  ident: D1NP00038A/cit117a/1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.06.084
– year: 2021
  ident: D1NP00038A/cit154/1
  publication-title: Nature
– volume: 70
  start-page: 473
  year: 2009
  ident: D1NP00038A/cit129/1
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.01.013
– volume: 22
  start-page: 2856
  year: 2010
  ident: D1NP00038A/cit138/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.074625
– volume: 544
  start-page: 105
  year: 2014
  ident: D1NP00038A/cit81/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2013.10.005
– volume: 399
  start-page: 196
  year: 2010
  ident: D1NP00038A/cit157c/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.03.059
– volume: 69
  start-page: 1128
  year: 2008
  ident: D1NP00038A/cit150/1
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.12.010
– volume: 117
  start-page: 30816
  year: 2020
  ident: D1NP00038A/cit59/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2012745117
– volume: 14
  start-page: 1109
  year: 2018
  ident: D1NP00038A/cit47/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0154-9
– volume: 135
  start-page: 1893
  year: 2004
  ident: D1NP00038A/cit73/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.049981
– volume: 30
  start-page: 1843
  year: 1991
  ident: D1NP00038A/cit122d/1
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(91)85025-U
– volume: 15
  start-page: 219
  year: 2007
  ident: D1NP00038A/cit27a/1
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2007.03.004
– volume: 25
  start-page: 4123
  year: 2013
  ident: D1NP00038A/cit103/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.115154
– volume: 57
  start-page: 567
  year: 2006
  ident: D1NP00038A/cit7/1
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105429
– volume: 17
  start-page: 2281
  year: 2005
  ident: D1NP00038A/cit49a/1
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.031542
SSID ssj0011766
Score 2.5892117
SecondaryResourceType review_article
Snippet Covering: up to 2021 Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by...
Covering: up to 2021
Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by...
Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 389
SubjectTerms Crystal structure
diterpenoids
Enantiomers
enantioselectivity
Glycosylation
Glycosyltransferase
glycosyltransferases
Physicochemical properties
Polarity
solubility
structure-activity relationships
Structure-function relationships
Substrates
Terpenes
Title Structure-function relationship of terpenoid glycosyltransferases from plants
URI https://www.ncbi.nlm.nih.gov/pubmed/34486004
https://www.proquest.com/docview/2631960278
https://www.proquest.com/docview/2569617189
https://www.proquest.com/docview/2661042585
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZge4AXNC5jYQMFwQuaMpI4F_uxlI4BpUMilfoWpckJVKqSKMketif-A_-QX8JxbKeZVqHBS1TZjhX5Oz6Xnhshr7mLIEPOLcpZbnlh4FvMTZmVJ25C89DmadYFyM6Cs7n3aeEvNmHNXXZJuzxJr7bmlfwPqjiGuIos2X9Att8UB_A34otPRBift8L4W1f89aIGHbJAhZjqEK11kJsIxhJxAFBXUJSr7Pj7-jItm8t126msUKMYa2SWSbVOVGEnra7OElmWo5J1YbWHYeD_uQIVHNbo4DDJ44UD_t24UflAbftjlfSvTVeJ9PesYJCJ9iX9IIpng_Trf05UBJL6RwKNWZHhTQdM1AtshN2_xmVlySJFTe5xdYKaEhqvfMA8qWwmpOSwmrvB4m0qKqRmTlF1bs2BINPO-9l5fDqfTuNosojukl0XDQjkgLujSfRx2nuYRGFMmXkmv1WXrqX87Wbv68rKDQsE9ZFa94np9JFojzxQhoQ5klTxkNyB4hG5N9b9-x6T8546fv_8penCHNKFWeZmTxfmNrowBV2Yki6ekPnpJBqfWap9hpXS0G6t3OFZRvGGOkvUqpcBAwARhgsUmOPkacBRe0b-69tJiEeUpZzhbJBxzwc_R9Ngn-wUZQEHxGSMho6bQ8ZyNJ8zzvAtilc8BD9zbbAN8kafU5yq2vKixck67mIcKI_fO7Ov3ZmODPKqX1vJiipbVx3p447VjWtiNxACQ_jKDfKyn8ZjFU6upIDyAtf4AUet3GH8L2tQKRXCivkGeSqh7D-FeqItm-0ZZB-x7Yc3NPHsFtsekvubi3FEdhBveI7Ka7t8oejwD_-fnPU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93function+relationship+of+terpenoid+glycosyltransferases+from+plants&rft.jtitle=Natural+product+reports&rft.au=Kurze%2C+Elisabeth&rft.au=W%C3%BCst%2C+Matthias&rft.au=Liao%2C+Jieren&rft.au=McGraphery%2C+Kate&rft.date=2022-02-23&rft.issn=1460-4752&rft.volume=39&rft.issue=2+p.389-409&rft.spage=389&rft.epage=409&rft_id=info:doi/10.1039%2Fd1np00038a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-0568&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-0568&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-0568&client=summon