System architecture optimization strategies: dealing with expensive hierarchical problems
Abstract Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investi...
Saved in:
Published in | Journal of global optimization Vol. 91; no. 4; pp. 851 - 895 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2025
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt . |
---|---|
AbstractList | Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt. Abstract Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt . Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving System Architecture Optimization (SAO) problems: expensive, blackbox, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: Multi-Objective Evolutionary Algorithms (MOEA) such as NSGA-II, and Bayesian Optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt. Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt . |
Author | Lefebvre, Thierry Lafage, Rémi Saves, Paul Bussemaker, Jasper H Bartoli, Nathalie |
Author_xml | – sequence: 1 givenname: Jasper H surname: Bussemaker fullname: Bussemaker, Jasper H – sequence: 2 givenname: Paul surname: Saves fullname: Saves, Paul – sequence: 3 givenname: Nathalie surname: Bartoli fullname: Bartoli, Nathalie – sequence: 4 givenname: Thierry surname: Lefebvre fullname: Lefebvre, Thierry – sequence: 5 givenname: Rémi surname: Lafage fullname: Lafage, Rémi |
BackLink | https://hal.science/hal-04462829$$DView record in HAL |
BookMark | eNp9kMFLwzAYxYNMcE7_AUEoePJQ_ZJ0beptDHXCwIN68BTS9OuW0TUzyabzr7dbRT15eh8fv_d4vGPSa2yDhJxRuKIA2bWnIHIRA0tioEnCY3FA-nSY8ZjlNO39uY_IsfcLAMjFkPXJ69PWB1xGyum5CajD2mFkV8EszacKxjaRD04FnBn0N1GJqjbNLHo3YR7hxwobbzYYzQ26fYBWdbRytqhx6U_IYaVqj6ffOiAvd7fP40k8fbx_GI-mseYZhBhTzChPeVGBpljoHBKhaMWUzoUuSka5KpnCoeBJwRBoyTJVCgasAFHltOIDctnlzlUtV84sldtKq4ycjKZy94MkSZlg-Ya27EXHtiXf1uiDXNi1a9p6klPBGE1zzlqKdZR21nuH1U8sBbmbW3Zzy3ZuuZ9bitbEO5Nv4WaG7jf6X9d550JtG-PlTnywTrY1uAD-BU9Lj3w |
Cites_doi | 10.1007/s00158-015-1395-9 10.1109/icse.2019.00112 10.2514/6.2023-4448 10.1007/s10898-018-0715-1 10.1016/j.mbs.2021.108593 10.1016/j.neucom.2023.126472 10.48550/ARXIV.2401.03880 10.2514/1.C031667 10.1016/j.is.2010.01.001 10.2514/6.2023-2366 10.1177/1063293x12469216 10.1007/b101874 10.1109/ijcnn.2017.7965867 10.1002/9781118897072 10.1007/s11081-020-09520-z 10.1109/AERO.2012.6187439 10.1007/s00158-024-03785-z 10.1613/jair.1.13188 10.1007/s00158-019-02211-z 10.1145/3512290.3528827 10.1108/EC-02-2014-0033 10.48550/ARXIV.2012.03826 10.48550/ARXIV.2306.09803 10.1007/s10957-012-0122-6 10.1109/4235.996017 10.1002/iis2.12935 10.2514/6.2022-3870 10.1007/s10898-020-00952-6 10.1017/9781108348973 10.2514/6.2008-149 10.1007/978-3-642-25566-3_40 10.1007/978-3-031-07472-1_10 10.3390/aerospace6080087 10.1613/jair.1.13225 10.1016/j.advengsoft.2023.103571 10.21105/joss.05564 10.48550/ARXIV.2302.08436 10.1080/03155986.2020.1730677 10.1007/978-3-030-27486-3_36-1 10.1016/j.ast.2019.03.041 10.1145/2739480.2754658 10.1002/9781119136378 10.1007/978-3-642-10701-6_6 10.2514/6.2022-0082 10.1080/21693277.2023.2279709 10.1115/detc2020-22774 10.2514/6.2024-4647 10.2514/6.2022-3899 10.1016/j.infsof.2015.01.008 10.1109/access.2020.2966228 10.1016/j.cor.2019.104869 10.2514/1.i010272 10.13009/EUCASS2023-544 10.2514/6.2024-4401 10.1109/TEVC.2005.851274 10.1609/aaai.v29i1.9375 10.1007/978-3-030-05318-5_1 10.1016/j.asoc.2017.07.060 10.1145/3097983.3098043 10.48550/arXiv.1310.5738 10.1098/rspa.2005.1608 10.2514/6.2021-3078 10.2514/6.2022-0126 10.1016/j.ast.2020.105980 10.1007/s00500-017-2965-0 10.2514/6.2021-3095 10.2514/6.2016-0215 10.1016/j.engappai.2023.105941 10.1214/lnms/1215456182 10.1016/j.neucom.2019.11.004 10.2514/6.2008-8928 10.2514/6.2005-1020 10.1016/j.neucom.2020.07.061 10.1115/detc2021-71399 10.1007/978-3-319-99259-4_32 10.1145/2110147.2110167 10.1080/0305215x.2012.687731 10.1023/A:1008306431147 10.1007/s11081-018-9373-x 10.1109/icsmc.1992.271617 10.2514/6.2024-1530 10.1145/3447548.3467061 10.1007/s11081-023-09839-3 10.1016/j.cosrev.2009.07.001 10.1287/ijoc.2018.0864 10.1080/0305215x.2017.1419344 10.1002/9781118600153.ch14 10.1137/130917661 10.1145/3321707.3321765 10.1109/access.2020.2990567 10.2514/6.2016-0414 10.1007/s00158-021-03134-4 10.1002/widm.1484 10.1002/9781119051930 10.1016/j.advengsoft.2019.03.005 10.1198/TECH.2009.07097 10.48550/ARXIV.2210.10199 10.1109/syscon48628.2021.9447140 10.1007/978-1-4020-4399-4 10.2139/ssrn.4939834 10.2514/6.2024-4402 10.1016/j.ejco.2021.100012 10.1115/1.4063659 10.1007/978-1-4615-5563-6 10.1145/3071178.3071276 10.1002/j.2334-5837.2020.00721.x 10.48550/ARXIV.1908.06756 10.1109/ijcnn.2016.7727626 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Apr 2025 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Apr 2025 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | OT2 C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1007/s10898-024-01443-8 |
DatabaseName | EconStor Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Mathematics Computer Science Physics |
EISSN | 1573-2916 |
EndPage | 895 |
ExternalDocumentID | oai_HAL_hal_04462829v1 10_1007_s10898_024_01443_8 323380 |
GrantInformation_xml | – fundername: HORIZON EUROPE Framework Programme grantid: 101097120 funderid: http://dx.doi.org/10.13039/100018693 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OT2 OVD P19 P2P P62 P9M PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ZY4 ~EX AAYOK ABTAH C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c370t-e6e71363bf0c1ebc9048a1f2ac98cbd213ad2ae5834b2e01d27ad8202b08f91f3 |
IEDL.DBID | C6C |
ISSN | 1573-2916 0925-5001 |
IngestDate | Fri May 09 12:17:07 EDT 2025 Sat Aug 16 19:52:01 EDT 2025 Tue Jul 01 05:19:28 EDT 2025 Fri Mar 28 01:25:10 EDT 2025 Fri Aug 29 12:25:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Hierarchical Hidden constraints Multi-objective Architecture optimization Bayesian optimization Mixed-discrete optimisation bayésienne optimisation architecture hidden constraint hiérarchique mixed-discrete hierarchical mixte-discret contrainte cachée bayesian optimization multi-objective multi-objectif |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-e6e71363bf0c1ebc9048a1f2ac98cbd213ad2ae5834b2e01d27ad8202b08f91f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5889-2302 0000-0002-5421-6419 0009-0004-6800-2448 0000-0002-6451-2203 0000-0001-5479-2961 |
OpenAccessLink | https://doi.org/10.1007/s10898-024-01443-8 |
PQID | 3182216932 |
PQPubID | 29930 |
PageCount | 45 |
ParticipantIDs | hal_primary_oai_HAL_hal_04462829v1 proquest_journals_3182216932 crossref_primary_10_1007_s10898_024_01443_8 springer_journals_10_1007_s10898_024_01443_8 econis_econstor_323380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | 1443_CR101 1443_CR102 P Saves (1443_CR86) 2024 1443_CR100 1443_CR103 1443_CR109 1443_CR107 1443_CR108 1443_CR87 J Pelamatti (1443_CR30) 2020 1443_CR85 CP Frank (1443_CR66) 2018; 19 1443_CR82 RG Regis (1443_CR68) 2013; 45 1443_CR81 MA Bouhlel (1443_CR84) 2018; 50 1443_CR112 1443_CR113 K Deb (1443_CR60) 2002; 6 1443_CR111 1443_CR116 1443_CR117 1443_CR114 DR Jones (1443_CR55) 2020; 79 K Eggensperger (1443_CR90) 2015 EC Garrido-Merchán (1443_CR75) 2020; 380 1443_CR119 1443_CR76 RE Lopez-Herrejon (1443_CR63) 2015; 61 S Le Digabel (1443_CR41) 2023 1443_CR79 AIJ Forrester (1443_CR51) 2006; 462 1443_CR72 1443_CR71 1443_CR120 MM Zuniga (1443_CR78) 2020; 58 1443_CR121 1443_CR122 Y Hung (1443_CR115) 2009; 51 G Donelli (1443_CR126) 2023 1443_CR1 1443_CR64 1443_CR2 1443_CR3 J Müller (1443_CR52) 2019; 31 J Blank (1443_CR106) 2020; 8 1443_CR9 1443_CR4 P Saves (1443_CR28) 2023; 550 1443_CR6 1443_CR7 HM Nyew (1443_CR61) 2015; 12 O Abdelkhalik (1443_CR36) 2012; 156 1443_CR59 M Sohst (1443_CR104) 2021 J Knowles (1443_CR73) 2006; 10 1443_CR53 C Audet (1443_CR80) 2023; 4 ES Hendricks (1443_CR125) 2019; 6 S Rojas-Gonzalez (1443_CR74) 2019; 116 S Bagheri (1443_CR69) 2017; 61 MA Bouhlel (1443_CR97) 2019; 135 1443_CR49 A Sirico (1443_CR128) 2023 1443_CR48 JS Gray (1443_CR124) 2019; 59 Y Ozaki (1443_CR89) 2022; 73 R Garnett (1443_CR70) 2023 1443_CR42 J Gamot (1443_CR91) 2023; 121 1443_CR40 1443_CR46 1443_CR44 M Lindauer (1443_CR88) 2022; 23 DR Jones (1443_CR47) 1998; 13 P Saves (1443_CR83) 2024; 188 1443_CR39 1443_CR38 1443_CR37 1443_CR32 1443_CR31 D Benavides (1443_CR45) 2010; 35 G Nikolentzos (1443_CR127) 2021; 72 JH Bussemaker (1443_CR105) 2023; 8 F Glover (1443_CR57) 2003; 57 DJ Pate (1443_CR65) 2012; 49 1443_CR35 1443_CR34 1443_CR33 A Petrowski (1443_CR58) 2017 N Bartoli (1443_CR110) 2019; 90 M Locatelli (1443_CR56) 2021; 9 S Greenhill (1443_CR92) 2020; 8 MA Bouhlel (1443_CR94) 2016; 53 1443_CR29 R Priem (1443_CR50) 2020; 105 1443_CR27 S Gedell (1443_CR8) 2012; 21 1443_CR26 M Renardy (1443_CR118) 2021; 337 1443_CR21 1443_CR20 1443_CR25 1443_CR24 1443_CR23 1443_CR22 DM Judt (1443_CR5) 2016; 33 J Pelamatti (1443_CR77) 2019; 73 S Gratton (1443_CR62) 2014; 24 1443_CR18 L Yang (1443_CR54) 2020; 415 1443_CR17 1443_CR16 1443_CR15 1443_CR19 T Chugh (1443_CR67) 2019; 23 1443_CR10 1443_CR98 1443_CR96 1443_CR95 1443_CR14 1443_CR13 1443_CR12 1443_CR11 1443_CR99 T Elsken (1443_CR123) 2019; 20 S Salcedo-Sanz (1443_CR43) 2009; 3 1443_CR93 |
References_xml | – volume: 53 start-page: 935 issue: 5 year: 2016 ident: 1443_CR94 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1395-9 – ident: 1443_CR98 – ident: 1443_CR119 doi: 10.1109/icse.2019.00112 – ident: 1443_CR112 – ident: 1443_CR85 doi: 10.2514/6.2023-4448 – volume: 73 start-page: 583 issue: 3 year: 2019 ident: 1443_CR77 publication-title: J. Global Optim. doi: 10.1007/s10898-018-0715-1 – volume: 337 start-page: 108593 year: 2021 ident: 1443_CR118 publication-title: Math. Biosci. doi: 10.1016/j.mbs.2021.108593 – volume: 550 start-page: 126472 year: 2023 ident: 1443_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126472 – ident: 1443_CR37 doi: 10.48550/ARXIV.2401.03880 – ident: 1443_CR34 – volume: 49 start-page: 1988 issue: 6 year: 2012 ident: 1443_CR65 publication-title: J. Aircr. doi: 10.2514/1.C031667 – volume: 35 start-page: 615 issue: 6 year: 2010 ident: 1443_CR45 publication-title: Inf. Syst. doi: 10.1016/j.is.2010.01.001 – ident: 1443_CR96 doi: 10.2514/6.2023-2366 – volume: 21 start-page: 39 issue: 1 year: 2012 ident: 1443_CR8 publication-title: Concurr. Eng. doi: 10.1177/1063293x12469216 – volume: 57 start-page: 457 year: 2003 ident: 1443_CR57 publication-title: Handbook of Metaheuristics doi: 10.1007/b101874 – ident: 1443_CR38 doi: 10.1109/ijcnn.2017.7965867 – ident: 1443_CR72 – ident: 1443_CR14 doi: 10.1002/9781118897072 – year: 2020 ident: 1443_CR30 publication-title: Optim. Eng. doi: 10.1007/s11081-020-09520-z – ident: 1443_CR39 doi: 10.1109/AERO.2012.6187439 – year: 2024 ident: 1443_CR86 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-024-03785-z – volume: 73 start-page: 1209 year: 2022 ident: 1443_CR89 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.13188 – volume: 59 start-page: 1075 issue: 4 year: 2019 ident: 1443_CR124 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02211-z – ident: 1443_CR59 doi: 10.1145/3512290.3528827 – volume: 33 start-page: 1327 issue: 5 year: 2016 ident: 1443_CR5 publication-title: Eng. Comput. doi: 10.1108/EC-02-2014-0033 – ident: 1443_CR99 doi: 10.48550/ARXIV.2012.03826 – ident: 1443_CR79 doi: 10.48550/ARXIV.2306.09803 – volume: 156 start-page: 450 issue: 2 year: 2012 ident: 1443_CR36 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0122-6 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 1443_CR60 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: 1443_CR17 doi: 10.1002/iis2.12935 – ident: 1443_CR117 doi: 10.2514/6.2022-3870 – volume: 79 start-page: 521 issue: 3 year: 2020 ident: 1443_CR55 publication-title: J. Global Optim. doi: 10.1007/s10898-020-00952-6 – volume-title: Bayesian Optimization year: 2023 ident: 1443_CR70 doi: 10.1017/9781108348973 – ident: 1443_CR9 doi: 10.2514/6.2008-149 – ident: 1443_CR87 doi: 10.1007/978-3-642-25566-3_40 – ident: 1443_CR35 – ident: 1443_CR108 – ident: 1443_CR2 doi: 10.1007/978-3-031-07472-1_10 – volume: 6 start-page: 87 issue: 8 year: 2019 ident: 1443_CR125 publication-title: Aerospace doi: 10.3390/aerospace6080087 – volume: 72 start-page: 943 year: 2021 ident: 1443_CR127 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.13225 – volume: 188 start-page: 103571 year: 2024 ident: 1443_CR83 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2023.103571 – volume: 8 start-page: 5564 issue: 89 year: 2023 ident: 1443_CR105 publication-title: J. Open Sour. Soft. doi: 10.21105/joss.05564 – ident: 1443_CR109 doi: 10.48550/ARXIV.2302.08436 – ident: 1443_CR49 – volume: 58 start-page: 310 issue: 2 year: 2020 ident: 1443_CR78 publication-title: INFOR Inf. Syst. Oper. Res doi: 10.1080/03155986.2020.1730677 – ident: 1443_CR29 doi: 10.1007/978-3-030-27486-3_36-1 – volume: 90 start-page: 85 year: 2019 ident: 1443_CR110 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.03.041 – ident: 1443_CR26 – ident: 1443_CR114 – ident: 1443_CR44 doi: 10.1145/2739480.2754658 – start-page: 256 volume-title: Evolutionary Algorithms year: 2017 ident: 1443_CR58 doi: 10.1002/9781119136378 – ident: 1443_CR100 doi: 10.1007/978-3-642-10701-6_6 – ident: 1443_CR95 doi: 10.2514/6.2022-0082 – year: 2023 ident: 1443_CR126 publication-title: Prod. Manuf. Res. doi: 10.1080/21693277.2023.2279709 – ident: 1443_CR12 doi: 10.1115/detc2020-22774 – ident: 1443_CR13 doi: 10.2514/6.2024-4647 – volume: 4 start-page: 1 year: 2023 ident: 1443_CR80 publication-title: Oper. Res. – ident: 1443_CR111 doi: 10.2514/6.2022-3899 – volume: 61 start-page: 33 year: 2015 ident: 1443_CR63 publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2015.01.008 – volume: 8 start-page: 13937 year: 2020 ident: 1443_CR92 publication-title: IEEE Access doi: 10.1109/access.2020.2966228 – volume: 116 start-page: 104869 year: 2019 ident: 1443_CR74 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2019.104869 – volume: 12 start-page: 314 issue: 3 year: 2015 ident: 1443_CR61 publication-title: J. Aerosp. Inf. Syst. doi: 10.2514/1.i010272 – ident: 1443_CR18 doi: 10.13009/EUCASS2023-544 – ident: 1443_CR23 doi: 10.2514/6.2024-4401 – volume: 10 start-page: 50 issue: 1 year: 2006 ident: 1443_CR73 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851274 – year: 2015 ident: 1443_CR90 publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v29i1.9375 – ident: 1443_CR24 doi: 10.1007/978-3-030-05318-5_1 – volume: 61 start-page: 377 year: 2017 ident: 1443_CR69 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.060 – ident: 1443_CR116 doi: 10.1145/3097983.3098043 – ident: 1443_CR33 doi: 10.48550/arXiv.1310.5738 – volume: 462 start-page: 935 issue: 2067 year: 2006 ident: 1443_CR51 publication-title: Proc. R. Soc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.2005.1608 – ident: 1443_CR46 doi: 10.2514/6.2021-3078 – ident: 1443_CR53 doi: 10.2514/6.2022-0126 – ident: 1443_CR102 – volume: 105 start-page: 105980 year: 2020 ident: 1443_CR50 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105980 – volume: 23 start-page: 3137 issue: 9 year: 2019 ident: 1443_CR67 publication-title: Soft. Comput. doi: 10.1007/s00500-017-2965-0 – ident: 1443_CR6 doi: 10.2514/6.2021-3095 – ident: 1443_CR10 doi: 10.2514/6.2016-0215 – ident: 1443_CR3 – volume: 121 year: 2023 ident: 1443_CR91 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105941 – ident: 1443_CR71 doi: 10.1214/lnms/1215456182 – volume: 380 start-page: 20 year: 2020 ident: 1443_CR75 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.004 – ident: 1443_CR31 doi: 10.2514/6.2008-8928 – ident: 1443_CR64 doi: 10.2514/6.2005-1020 – volume: 415 start-page: 295 year: 2020 ident: 1443_CR54 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – ident: 1443_CR22 doi: 10.1115/detc2021-71399 – ident: 1443_CR122 – ident: 1443_CR32 doi: 10.1007/978-3-319-99259-4_32 – ident: 1443_CR7 doi: 10.1145/2110147.2110167 – volume: 45 start-page: 529 issue: 5 year: 2013 ident: 1443_CR68 publication-title: Eng. Optim. doi: 10.1080/0305215x.2012.687731 – volume: 13 start-page: 455 year: 1998 ident: 1443_CR47 publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 19 start-page: 359 issue: 2 year: 2018 ident: 1443_CR66 publication-title: Optim. Eng. doi: 10.1007/s11081-018-9373-x – ident: 1443_CR101 doi: 10.1109/icsmc.1992.271617 – ident: 1443_CR19 doi: 10.2514/6.2024-1530 – ident: 1443_CR82 – ident: 1443_CR121 doi: 10.1145/3447548.3467061 – volume: 20 start-page: 1 issue: 55 year: 2019 ident: 1443_CR123 publication-title: J. Mach. Learn. Res. – year: 2023 ident: 1443_CR41 publication-title: Optim. Eng. doi: 10.1007/s11081-023-09839-3 – volume: 3 start-page: 175 issue: 3 year: 2009 ident: 1443_CR43 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.07.001 – volume: 31 start-page: 689 issue: 4 year: 2019 ident: 1443_CR52 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2018.0864 – volume: 23 start-page: 1 issue: 54 year: 2022 ident: 1443_CR88 publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 2038 issue: 12 year: 2018 ident: 1443_CR84 publication-title: Eng. Optim. doi: 10.1080/0305215x.2017.1419344 – ident: 1443_CR120 doi: 10.1002/9781118600153.ch14 – volume: 24 start-page: 1980 issue: 4 year: 2014 ident: 1443_CR62 publication-title: SIAM J. Optim. doi: 10.1137/130917661 – ident: 1443_CR81 doi: 10.1145/3321707.3321765 – volume: 8 start-page: 89497 year: 2020 ident: 1443_CR106 publication-title: IEEE Access doi: 10.1109/access.2020.2990567 – ident: 1443_CR21 doi: 10.2514/6.2016-0414 – ident: 1443_CR16 – year: 2021 ident: 1443_CR104 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-03134-4 – ident: 1443_CR25 doi: 10.1002/widm.1484 – ident: 1443_CR40 doi: 10.1002/9781119051930 – volume: 135 start-page: 102662 year: 2019 ident: 1443_CR97 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2019.03.005 – volume: 51 start-page: 354 issue: 4 year: 2009 ident: 1443_CR115 publication-title: Technometrics doi: 10.1198/TECH.2009.07097 – ident: 1443_CR27 doi: 10.2514/6.2022-0082 – ident: 1443_CR76 doi: 10.48550/ARXIV.2210.10199 – ident: 1443_CR11 – ident: 1443_CR15 doi: 10.1109/syscon48628.2021.9447140 – ident: 1443_CR1 doi: 10.1007/978-1-4020-4399-4 – ident: 1443_CR113 doi: 10.2139/ssrn.4939834 – ident: 1443_CR20 doi: 10.2514/6.2024-4402 – ident: 1443_CR42 – volume: 9 start-page: 100012 year: 2021 ident: 1443_CR56 publication-title: EURO J. Comput. Optim. doi: 10.1016/j.ejco.2021.100012 – year: 2023 ident: 1443_CR128 publication-title: J. Mech. Des. doi: 10.1115/1.4063659 – ident: 1443_CR48 doi: 10.1007/978-1-4615-5563-6 – ident: 1443_CR103 doi: 10.1145/3071178.3071276 – ident: 1443_CR4 doi: 10.1002/j.2334-5837.2020.00721.x – ident: 1443_CR107 doi: 10.48550/ARXIV.1908.06756 – ident: 1443_CR93 doi: 10.1109/ijcnn.2016.7727626 |
SSID | ssj0009852 |
Score | 2.4332275 |
Snippet | Abstract
Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of... Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the... |
SourceID | hal proquest crossref springer econis |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 851 |
SubjectTerms | Architecture optimization Bayesian optimization Computer Science Engineering Sciences Evolutionary algorithms Gaussian process Hidden constraints Hierarchical Jet engines Mathematics Mathematics and Statistics Mixed-discrete Modelling Multi-objective Multiple objective analysis Operations Research/Decision Theory Optimization Optimization algorithms Physics Python Real Functions |
Title | System architecture optimization strategies: dealing with expensive hierarchical problems |
URI | https://www.econstor.eu/handle/10419/323380 https://link.springer.com/article/10.1007/s10898-024-01443-8 https://www.proquest.com/docview/3182216932 https://hal.science/hal-04462829 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BywEOQBcqAqWyEAcQRIrHceJw2666rID2xErtybJjR3Bgi8jC72cm63SXCg5cYuVDo8gv9sxkZt4AvJQl1jIol4emDXmpWpMbsjtyrFQdTa1803FE9-y8WizLDxf6ItHkcC3Mjfg9l7gZLgJDzpUoS5Wb27Cvpaq5TcOsmm0Jds3QXadoUOea9t5UIPN3GX8ooTvseX7tSbl84VzIHUPzRmx0UDnzh3A_2YpiugH3AG7F1QQejH0YRFqWE7i3QypIZ2fXTKz9BA7SU714lRimXz-Cyw1PudiNIogr2jy-papM0a9HCol3IpAtSZIF_7IV3BFgSHkX3ER7EEAoi9SXpn8My_np59kiTz0W8pbmcJ3HKpKbWinfFa2Mvm1oRTvZoWsb0_qAUrmALmqjSo-xkAFrF8hqQF-YrpGdOoS91dUqPgHhUGPhPGHT6TJq7xrdkvYnD0kFp6LO4M046fb7hkrDbkmTGSJLENkBImsyONzgYnngTFGrkPzpIoMXhNO1BKbHXkw_Wb7GwWmODP-SGRyNMNq0KHtL2xcik89gBm9HaLe3__0uT__v8WdwF7lL8JDfcwR76x8_43MyXdb-GPan85OTcx7fX348PR6-YToucfoblrPmjQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB3BggQcgC2sCCxgIQ4gsBSP48bhViFWBdo9baXlZNmxIzjQRaTw-5lJnW1BcOAU5UOjKM8eP2dm3gA8VxXWKmovY9NGWenWSku8Q-JU18nWOjQdR3SXp9P5qvpwbs5zUVg_ZruPIcnBU-8Vu1kuB0POmqgqLe1VuEZkwPJYXuFsJ7Vrhz47ZYNGGvLCuVTm7zZ-W46u8x70S0_LzGfOityjnH9ESYfF5-Qu3M6sUcy2MB_ClbSewJ2xI4PIE3QCt_bkBelseanJ2k_gMD_VixdZa_rlPfi0VSwX-_EEcUFu5GuuzxT9ZhSTeCMisUqyLPjnreDeAEPyu-B22oMBwlvkDjX9fVidvDt7O5e524JsdV1uZJom2rBOdejKVqXQNjS3verQt41tQ0SlfUSfjNVVwFSqiLWPxB8wlLZrVKeP4GB9sU4PQHg0WPqgdN2ZKpngG9MSD6C9ko5eJ1PAq_Gju29bUQ23k09miBxB5AaInC3gaIuL4wPnjDqNtLMuC3hGOF1aYKHs-Wzh-BqHqTlG_FMVcDzC6PL07B05MkSWocECXo_Q7m7_-10e_t_jT-HG_Gy5cIv3px8fwU3k3sFD1s8xHGy-_0iPidBswpNh_P4CeU3pqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1BQQgOQBeqBgpYiAOIRo3tOHF6qxZWC7QVByqVk2XHjuDQbUUC389M4nRTVA49RUmsUZQX2zOZmfcA3vBclNxLm_qq9mkua51q9DtSUcgy6FK6qqGM7tFxsTzJP5-q00kXf1_tPqYkh54GYmladXsXvtmbNL5pag0TVEGR5zLVt-EORiqcwq95MV_T7upecyerhEoVrsixbeZ6G1e2prsUj_5sccv5QRWSE_fzn4xpvxEtHsPD6EGygwHyTbgVVjN4NKozsDhZZ_BgQjWIZ0eX_KztDDbjqJa9jbzT757A94G9nE1zC-wcl5Sz2KvJ2m4klthnHj1MtMzoRy4jnYC-EJ6RtHZvALFnUa2mfQoni4_f5ss0Ki-ktSyzLg1FwOC1kK7Jah5cXeE8t7wRtq507bzg0nphg9IydyJk3IvSevQlhMt0U_FGbsHG6nwVtoFZoURmHZdlo_KgnK1UjT4Bxk3SWxlUAu_Hl24uBoINs6ZSJogMQmR6iIxOYGvAxdCB6keNFBhlZwm8RpwuLRBp9vLg0NA1SllTvvgPT2BnhNHEqdoaXNSEIEoakcDuCO369v-f5dnNhr-Ce18_LMzhp-Mvz-G-IBnhvgBoBza6X7_DC_RtOvey_3z_Auxv7dE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+architecture+optimization+strategies%3A+dealing+with+expensive+hierarchical+problems&rft.jtitle=Journal+of+global+optimization&rft.au=Bussemaker%2C+Jasper+H.&rft.au=Saves%2C+Paul&rft.au=Bartoli%2C+Nathalie&rft.au=Lefebvre%2C+Thierry&rft.date=2025-04-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=91&rft.issue=4&rft.spage=851&rft.epage=895&rft_id=info:doi/10.1007%2Fs10898-024-01443-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_024_01443_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2916&client=summon |