System architecture optimization strategies: dealing with expensive hierarchical problems

Abstract Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investi...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 91; no. 4; pp. 851 - 895
Main Authors Bussemaker, Jasper H, Saves, Paul, Bartoli, Nathalie, Lefebvre, Thierry, Lafage, Rémi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt .
AbstractList Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt.
Abstract Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt .
Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving System Architecture Optimization (SAO) problems: expensive, blackbox, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: Multi-Objective Evolutionary Algorithms (MOEA) such as NSGA-II, and Bayesian Optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt.
Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt .
Author Lefebvre, Thierry
Lafage, Rémi
Saves, Paul
Bussemaker, Jasper H
Bartoli, Nathalie
Author_xml – sequence: 1
  givenname: Jasper H
  surname: Bussemaker
  fullname: Bussemaker, Jasper H
– sequence: 2
  givenname: Paul
  surname: Saves
  fullname: Saves, Paul
– sequence: 3
  givenname: Nathalie
  surname: Bartoli
  fullname: Bartoli, Nathalie
– sequence: 4
  givenname: Thierry
  surname: Lefebvre
  fullname: Lefebvre, Thierry
– sequence: 5
  givenname: Rémi
  surname: Lafage
  fullname: Lafage, Rémi
BackLink https://hal.science/hal-04462829$$DView record in HAL
BookMark eNp9kMFLwzAYxYNMcE7_AUEoePJQ_ZJ0beptDHXCwIN68BTS9OuW0TUzyabzr7dbRT15eh8fv_d4vGPSa2yDhJxRuKIA2bWnIHIRA0tioEnCY3FA-nSY8ZjlNO39uY_IsfcLAMjFkPXJ69PWB1xGyum5CajD2mFkV8EszacKxjaRD04FnBn0N1GJqjbNLHo3YR7hxwobbzYYzQ26fYBWdbRytqhx6U_IYaVqj6ffOiAvd7fP40k8fbx_GI-mseYZhBhTzChPeVGBpljoHBKhaMWUzoUuSka5KpnCoeBJwRBoyTJVCgasAFHltOIDctnlzlUtV84sldtKq4ycjKZy94MkSZlg-Ya27EXHtiXf1uiDXNi1a9p6klPBGE1zzlqKdZR21nuH1U8sBbmbW3Zzy3ZuuZ9bitbEO5Nv4WaG7jf6X9d550JtG-PlTnywTrY1uAD-BU9Lj3w
Cites_doi 10.1007/s00158-015-1395-9
10.1109/icse.2019.00112
10.2514/6.2023-4448
10.1007/s10898-018-0715-1
10.1016/j.mbs.2021.108593
10.1016/j.neucom.2023.126472
10.48550/ARXIV.2401.03880
10.2514/1.C031667
10.1016/j.is.2010.01.001
10.2514/6.2023-2366
10.1177/1063293x12469216
10.1007/b101874
10.1109/ijcnn.2017.7965867
10.1002/9781118897072
10.1007/s11081-020-09520-z
10.1109/AERO.2012.6187439
10.1007/s00158-024-03785-z
10.1613/jair.1.13188
10.1007/s00158-019-02211-z
10.1145/3512290.3528827
10.1108/EC-02-2014-0033
10.48550/ARXIV.2012.03826
10.48550/ARXIV.2306.09803
10.1007/s10957-012-0122-6
10.1109/4235.996017
10.1002/iis2.12935
10.2514/6.2022-3870
10.1007/s10898-020-00952-6
10.1017/9781108348973
10.2514/6.2008-149
10.1007/978-3-642-25566-3_40
10.1007/978-3-031-07472-1_10
10.3390/aerospace6080087
10.1613/jair.1.13225
10.1016/j.advengsoft.2023.103571
10.21105/joss.05564
10.48550/ARXIV.2302.08436
10.1080/03155986.2020.1730677
10.1007/978-3-030-27486-3_36-1
10.1016/j.ast.2019.03.041
10.1145/2739480.2754658
10.1002/9781119136378
10.1007/978-3-642-10701-6_6
10.2514/6.2022-0082
10.1080/21693277.2023.2279709
10.1115/detc2020-22774
10.2514/6.2024-4647
10.2514/6.2022-3899
10.1016/j.infsof.2015.01.008
10.1109/access.2020.2966228
10.1016/j.cor.2019.104869
10.2514/1.i010272
10.13009/EUCASS2023-544
10.2514/6.2024-4401
10.1109/TEVC.2005.851274
10.1609/aaai.v29i1.9375
10.1007/978-3-030-05318-5_1
10.1016/j.asoc.2017.07.060
10.1145/3097983.3098043
10.48550/arXiv.1310.5738
10.1098/rspa.2005.1608
10.2514/6.2021-3078
10.2514/6.2022-0126
10.1016/j.ast.2020.105980
10.1007/s00500-017-2965-0
10.2514/6.2021-3095
10.2514/6.2016-0215
10.1016/j.engappai.2023.105941
10.1214/lnms/1215456182
10.1016/j.neucom.2019.11.004
10.2514/6.2008-8928
10.2514/6.2005-1020
10.1016/j.neucom.2020.07.061
10.1115/detc2021-71399
10.1007/978-3-319-99259-4_32
10.1145/2110147.2110167
10.1080/0305215x.2012.687731
10.1023/A:1008306431147
10.1007/s11081-018-9373-x
10.1109/icsmc.1992.271617
10.2514/6.2024-1530
10.1145/3447548.3467061
10.1007/s11081-023-09839-3
10.1016/j.cosrev.2009.07.001
10.1287/ijoc.2018.0864
10.1080/0305215x.2017.1419344
10.1002/9781118600153.ch14
10.1137/130917661
10.1145/3321707.3321765
10.1109/access.2020.2990567
10.2514/6.2016-0414
10.1007/s00158-021-03134-4
10.1002/widm.1484
10.1002/9781119051930
10.1016/j.advengsoft.2019.03.005
10.1198/TECH.2009.07097
10.48550/ARXIV.2210.10199
10.1109/syscon48628.2021.9447140
10.1007/978-1-4020-4399-4
10.2139/ssrn.4939834
10.2514/6.2024-4402
10.1016/j.ejco.2021.100012
10.1115/1.4063659
10.1007/978-1-4615-5563-6
10.1145/3071178.3071276
10.1002/j.2334-5837.2020.00721.x
10.48550/ARXIV.1908.06756
10.1109/ijcnn.2016.7727626
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Apr 2025
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Apr 2025
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID OT2
C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1007/s10898-024-01443-8
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Mathematics
Computer Science
Physics
EISSN 1573-2916
EndPage 895
ExternalDocumentID oai_HAL_hal_04462829v1
10_1007_s10898_024_01443_8
323380
GrantInformation_xml – fundername: HORIZON EUROPE Framework Programme
  grantid: 101097120
  funderid: http://dx.doi.org/10.13039/100018693
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OT2
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~EX
AAYOK
ABTAH
C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c370t-e6e71363bf0c1ebc9048a1f2ac98cbd213ad2ae5834b2e01d27ad8202b08f91f3
IEDL.DBID C6C
ISSN 1573-2916
0925-5001
IngestDate Fri May 09 12:17:07 EDT 2025
Sat Aug 16 19:52:01 EDT 2025
Tue Jul 01 05:19:28 EDT 2025
Fri Mar 28 01:25:10 EDT 2025
Fri Aug 29 12:25:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hierarchical
Hidden constraints
Multi-objective
Architecture optimization
Bayesian optimization
Mixed-discrete
optimisation bayésienne
optimisation architecture
hidden constraint
hiérarchique
mixed-discrete
hierarchical
mixte-discret
contrainte cachée
bayesian optimization
multi-objective
multi-objectif
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-e6e71363bf0c1ebc9048a1f2ac98cbd213ad2ae5834b2e01d27ad8202b08f91f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5889-2302
0000-0002-5421-6419
0009-0004-6800-2448
0000-0002-6451-2203
0000-0001-5479-2961
OpenAccessLink https://doi.org/10.1007/s10898-024-01443-8
PQID 3182216932
PQPubID 29930
PageCount 45
ParticipantIDs hal_primary_oai_HAL_hal_04462829v1
proquest_journals_3182216932
crossref_primary_10_1007_s10898_024_01443_8
springer_journals_10_1007_s10898_024_01443_8
econis_econstor_323380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References 1443_CR101
1443_CR102
P Saves (1443_CR86) 2024
1443_CR100
1443_CR103
1443_CR109
1443_CR107
1443_CR108
1443_CR87
J Pelamatti (1443_CR30) 2020
1443_CR85
CP Frank (1443_CR66) 2018; 19
1443_CR82
RG Regis (1443_CR68) 2013; 45
1443_CR81
MA Bouhlel (1443_CR84) 2018; 50
1443_CR112
1443_CR113
K Deb (1443_CR60) 2002; 6
1443_CR111
1443_CR116
1443_CR117
1443_CR114
DR Jones (1443_CR55) 2020; 79
K Eggensperger (1443_CR90) 2015
EC Garrido-Merchán (1443_CR75) 2020; 380
1443_CR119
1443_CR76
RE Lopez-Herrejon (1443_CR63) 2015; 61
S Le Digabel (1443_CR41) 2023
1443_CR79
AIJ Forrester (1443_CR51) 2006; 462
1443_CR72
1443_CR71
1443_CR120
MM Zuniga (1443_CR78) 2020; 58
1443_CR121
1443_CR122
Y Hung (1443_CR115) 2009; 51
G Donelli (1443_CR126) 2023
1443_CR1
1443_CR64
1443_CR2
1443_CR3
J Müller (1443_CR52) 2019; 31
J Blank (1443_CR106) 2020; 8
1443_CR9
1443_CR4
P Saves (1443_CR28) 2023; 550
1443_CR6
1443_CR7
HM Nyew (1443_CR61) 2015; 12
O Abdelkhalik (1443_CR36) 2012; 156
1443_CR59
M Sohst (1443_CR104) 2021
J Knowles (1443_CR73) 2006; 10
1443_CR53
C Audet (1443_CR80) 2023; 4
ES Hendricks (1443_CR125) 2019; 6
S Rojas-Gonzalez (1443_CR74) 2019; 116
S Bagheri (1443_CR69) 2017; 61
MA Bouhlel (1443_CR97) 2019; 135
1443_CR49
A Sirico (1443_CR128) 2023
1443_CR48
JS Gray (1443_CR124) 2019; 59
Y Ozaki (1443_CR89) 2022; 73
R Garnett (1443_CR70) 2023
1443_CR42
J Gamot (1443_CR91) 2023; 121
1443_CR40
1443_CR46
1443_CR44
M Lindauer (1443_CR88) 2022; 23
DR Jones (1443_CR47) 1998; 13
P Saves (1443_CR83) 2024; 188
1443_CR39
1443_CR38
1443_CR37
1443_CR32
1443_CR31
D Benavides (1443_CR45) 2010; 35
G Nikolentzos (1443_CR127) 2021; 72
JH Bussemaker (1443_CR105) 2023; 8
F Glover (1443_CR57) 2003; 57
DJ Pate (1443_CR65) 2012; 49
1443_CR35
1443_CR34
1443_CR33
A Petrowski (1443_CR58) 2017
N Bartoli (1443_CR110) 2019; 90
M Locatelli (1443_CR56) 2021; 9
S Greenhill (1443_CR92) 2020; 8
MA Bouhlel (1443_CR94) 2016; 53
1443_CR29
R Priem (1443_CR50) 2020; 105
1443_CR27
S Gedell (1443_CR8) 2012; 21
1443_CR26
M Renardy (1443_CR118) 2021; 337
1443_CR21
1443_CR20
1443_CR25
1443_CR24
1443_CR23
1443_CR22
DM Judt (1443_CR5) 2016; 33
J Pelamatti (1443_CR77) 2019; 73
S Gratton (1443_CR62) 2014; 24
1443_CR18
L Yang (1443_CR54) 2020; 415
1443_CR17
1443_CR16
1443_CR15
1443_CR19
T Chugh (1443_CR67) 2019; 23
1443_CR10
1443_CR98
1443_CR96
1443_CR95
1443_CR14
1443_CR13
1443_CR12
1443_CR11
1443_CR99
T Elsken (1443_CR123) 2019; 20
S Salcedo-Sanz (1443_CR43) 2009; 3
1443_CR93
References_xml – volume: 53
  start-page: 935
  issue: 5
  year: 2016
  ident: 1443_CR94
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1395-9
– ident: 1443_CR98
– ident: 1443_CR119
  doi: 10.1109/icse.2019.00112
– ident: 1443_CR112
– ident: 1443_CR85
  doi: 10.2514/6.2023-4448
– volume: 73
  start-page: 583
  issue: 3
  year: 2019
  ident: 1443_CR77
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0715-1
– volume: 337
  start-page: 108593
  year: 2021
  ident: 1443_CR118
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2021.108593
– volume: 550
  start-page: 126472
  year: 2023
  ident: 1443_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126472
– ident: 1443_CR37
  doi: 10.48550/ARXIV.2401.03880
– ident: 1443_CR34
– volume: 49
  start-page: 1988
  issue: 6
  year: 2012
  ident: 1443_CR65
  publication-title: J. Aircr.
  doi: 10.2514/1.C031667
– volume: 35
  start-page: 615
  issue: 6
  year: 2010
  ident: 1443_CR45
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2010.01.001
– ident: 1443_CR96
  doi: 10.2514/6.2023-2366
– volume: 21
  start-page: 39
  issue: 1
  year: 2012
  ident: 1443_CR8
  publication-title: Concurr. Eng.
  doi: 10.1177/1063293x12469216
– volume: 57
  start-page: 457
  year: 2003
  ident: 1443_CR57
  publication-title: Handbook of Metaheuristics
  doi: 10.1007/b101874
– ident: 1443_CR38
  doi: 10.1109/ijcnn.2017.7965867
– ident: 1443_CR72
– ident: 1443_CR14
  doi: 10.1002/9781118897072
– year: 2020
  ident: 1443_CR30
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-020-09520-z
– ident: 1443_CR39
  doi: 10.1109/AERO.2012.6187439
– year: 2024
  ident: 1443_CR86
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-024-03785-z
– volume: 73
  start-page: 1209
  year: 2022
  ident: 1443_CR89
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.13188
– volume: 59
  start-page: 1075
  issue: 4
  year: 2019
  ident: 1443_CR124
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02211-z
– ident: 1443_CR59
  doi: 10.1145/3512290.3528827
– volume: 33
  start-page: 1327
  issue: 5
  year: 2016
  ident: 1443_CR5
  publication-title: Eng. Comput.
  doi: 10.1108/EC-02-2014-0033
– ident: 1443_CR99
  doi: 10.48550/ARXIV.2012.03826
– ident: 1443_CR79
  doi: 10.48550/ARXIV.2306.09803
– volume: 156
  start-page: 450
  issue: 2
  year: 2012
  ident: 1443_CR36
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0122-6
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 1443_CR60
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 1443_CR17
  doi: 10.1002/iis2.12935
– ident: 1443_CR117
  doi: 10.2514/6.2022-3870
– volume: 79
  start-page: 521
  issue: 3
  year: 2020
  ident: 1443_CR55
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00952-6
– volume-title: Bayesian Optimization
  year: 2023
  ident: 1443_CR70
  doi: 10.1017/9781108348973
– ident: 1443_CR9
  doi: 10.2514/6.2008-149
– ident: 1443_CR87
  doi: 10.1007/978-3-642-25566-3_40
– ident: 1443_CR35
– ident: 1443_CR108
– ident: 1443_CR2
  doi: 10.1007/978-3-031-07472-1_10
– volume: 6
  start-page: 87
  issue: 8
  year: 2019
  ident: 1443_CR125
  publication-title: Aerospace
  doi: 10.3390/aerospace6080087
– volume: 72
  start-page: 943
  year: 2021
  ident: 1443_CR127
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.13225
– volume: 188
  start-page: 103571
  year: 2024
  ident: 1443_CR83
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2023.103571
– volume: 8
  start-page: 5564
  issue: 89
  year: 2023
  ident: 1443_CR105
  publication-title: J. Open Sour. Soft.
  doi: 10.21105/joss.05564
– ident: 1443_CR109
  doi: 10.48550/ARXIV.2302.08436
– ident: 1443_CR49
– volume: 58
  start-page: 310
  issue: 2
  year: 2020
  ident: 1443_CR78
  publication-title: INFOR Inf. Syst. Oper. Res
  doi: 10.1080/03155986.2020.1730677
– ident: 1443_CR29
  doi: 10.1007/978-3-030-27486-3_36-1
– volume: 90
  start-page: 85
  year: 2019
  ident: 1443_CR110
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.03.041
– ident: 1443_CR26
– ident: 1443_CR114
– ident: 1443_CR44
  doi: 10.1145/2739480.2754658
– start-page: 256
  volume-title: Evolutionary Algorithms
  year: 2017
  ident: 1443_CR58
  doi: 10.1002/9781119136378
– ident: 1443_CR100
  doi: 10.1007/978-3-642-10701-6_6
– ident: 1443_CR95
  doi: 10.2514/6.2022-0082
– year: 2023
  ident: 1443_CR126
  publication-title: Prod. Manuf. Res.
  doi: 10.1080/21693277.2023.2279709
– ident: 1443_CR12
  doi: 10.1115/detc2020-22774
– ident: 1443_CR13
  doi: 10.2514/6.2024-4647
– volume: 4
  start-page: 1
  year: 2023
  ident: 1443_CR80
  publication-title: Oper. Res.
– ident: 1443_CR111
  doi: 10.2514/6.2022-3899
– volume: 61
  start-page: 33
  year: 2015
  ident: 1443_CR63
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2015.01.008
– volume: 8
  start-page: 13937
  year: 2020
  ident: 1443_CR92
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2966228
– volume: 116
  start-page: 104869
  year: 2019
  ident: 1443_CR74
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.104869
– volume: 12
  start-page: 314
  issue: 3
  year: 2015
  ident: 1443_CR61
  publication-title: J. Aerosp. Inf. Syst.
  doi: 10.2514/1.i010272
– ident: 1443_CR18
  doi: 10.13009/EUCASS2023-544
– ident: 1443_CR23
  doi: 10.2514/6.2024-4401
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 1443_CR73
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– year: 2015
  ident: 1443_CR90
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v29i1.9375
– ident: 1443_CR24
  doi: 10.1007/978-3-030-05318-5_1
– volume: 61
  start-page: 377
  year: 2017
  ident: 1443_CR69
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.060
– ident: 1443_CR116
  doi: 10.1145/3097983.3098043
– ident: 1443_CR33
  doi: 10.48550/arXiv.1310.5738
– volume: 462
  start-page: 935
  issue: 2067
  year: 2006
  ident: 1443_CR51
  publication-title: Proc. R. Soc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2005.1608
– ident: 1443_CR46
  doi: 10.2514/6.2021-3078
– ident: 1443_CR53
  doi: 10.2514/6.2022-0126
– ident: 1443_CR102
– volume: 105
  start-page: 105980
  year: 2020
  ident: 1443_CR50
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105980
– volume: 23
  start-page: 3137
  issue: 9
  year: 2019
  ident: 1443_CR67
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-017-2965-0
– ident: 1443_CR6
  doi: 10.2514/6.2021-3095
– ident: 1443_CR10
  doi: 10.2514/6.2016-0215
– ident: 1443_CR3
– volume: 121
  year: 2023
  ident: 1443_CR91
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105941
– ident: 1443_CR71
  doi: 10.1214/lnms/1215456182
– volume: 380
  start-page: 20
  year: 2020
  ident: 1443_CR75
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.004
– ident: 1443_CR31
  doi: 10.2514/6.2008-8928
– ident: 1443_CR64
  doi: 10.2514/6.2005-1020
– volume: 415
  start-page: 295
  year: 2020
  ident: 1443_CR54
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– ident: 1443_CR22
  doi: 10.1115/detc2021-71399
– ident: 1443_CR122
– ident: 1443_CR32
  doi: 10.1007/978-3-319-99259-4_32
– ident: 1443_CR7
  doi: 10.1145/2110147.2110167
– volume: 45
  start-page: 529
  issue: 5
  year: 2013
  ident: 1443_CR68
  publication-title: Eng. Optim.
  doi: 10.1080/0305215x.2012.687731
– volume: 13
  start-page: 455
  year: 1998
  ident: 1443_CR47
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 19
  start-page: 359
  issue: 2
  year: 2018
  ident: 1443_CR66
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-018-9373-x
– ident: 1443_CR101
  doi: 10.1109/icsmc.1992.271617
– ident: 1443_CR19
  doi: 10.2514/6.2024-1530
– ident: 1443_CR82
– ident: 1443_CR121
  doi: 10.1145/3447548.3467061
– volume: 20
  start-page: 1
  issue: 55
  year: 2019
  ident: 1443_CR123
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: 1443_CR41
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-023-09839-3
– volume: 3
  start-page: 175
  issue: 3
  year: 2009
  ident: 1443_CR43
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.07.001
– volume: 31
  start-page: 689
  issue: 4
  year: 2019
  ident: 1443_CR52
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2018.0864
– volume: 23
  start-page: 1
  issue: 54
  year: 2022
  ident: 1443_CR88
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 2038
  issue: 12
  year: 2018
  ident: 1443_CR84
  publication-title: Eng. Optim.
  doi: 10.1080/0305215x.2017.1419344
– ident: 1443_CR120
  doi: 10.1002/9781118600153.ch14
– volume: 24
  start-page: 1980
  issue: 4
  year: 2014
  ident: 1443_CR62
  publication-title: SIAM J. Optim.
  doi: 10.1137/130917661
– ident: 1443_CR81
  doi: 10.1145/3321707.3321765
– volume: 8
  start-page: 89497
  year: 2020
  ident: 1443_CR106
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2990567
– ident: 1443_CR21
  doi: 10.2514/6.2016-0414
– ident: 1443_CR16
– year: 2021
  ident: 1443_CR104
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-03134-4
– ident: 1443_CR25
  doi: 10.1002/widm.1484
– ident: 1443_CR40
  doi: 10.1002/9781119051930
– volume: 135
  start-page: 102662
  year: 2019
  ident: 1443_CR97
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2019.03.005
– volume: 51
  start-page: 354
  issue: 4
  year: 2009
  ident: 1443_CR115
  publication-title: Technometrics
  doi: 10.1198/TECH.2009.07097
– ident: 1443_CR27
  doi: 10.2514/6.2022-0082
– ident: 1443_CR76
  doi: 10.48550/ARXIV.2210.10199
– ident: 1443_CR11
– ident: 1443_CR15
  doi: 10.1109/syscon48628.2021.9447140
– ident: 1443_CR1
  doi: 10.1007/978-1-4020-4399-4
– ident: 1443_CR113
  doi: 10.2139/ssrn.4939834
– ident: 1443_CR20
  doi: 10.2514/6.2024-4402
– ident: 1443_CR42
– volume: 9
  start-page: 100012
  year: 2021
  ident: 1443_CR56
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2021.100012
– year: 2023
  ident: 1443_CR128
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4063659
– ident: 1443_CR48
  doi: 10.1007/978-1-4615-5563-6
– ident: 1443_CR103
  doi: 10.1145/3071178.3071276
– ident: 1443_CR4
  doi: 10.1002/j.2334-5837.2020.00721.x
– ident: 1443_CR107
  doi: 10.48550/ARXIV.1908.06756
– ident: 1443_CR93
  doi: 10.1109/ijcnn.2016.7727626
SSID ssj0009852
Score 2.4332275
Snippet Abstract Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of...
Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the...
SourceID hal
proquest
crossref
springer
econis
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 851
SubjectTerms Architecture optimization
Bayesian optimization
Computer Science
Engineering Sciences
Evolutionary algorithms
Gaussian process
Hidden constraints
Hierarchical
Jet engines
Mathematics
Mathematics and Statistics
Mixed-discrete
Modelling
Multi-objective
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Optimization algorithms
Physics
Python
Real Functions
Title System architecture optimization strategies: dealing with expensive hierarchical problems
URI https://www.econstor.eu/handle/10419/323380
https://link.springer.com/article/10.1007/s10898-024-01443-8
https://www.proquest.com/docview/3182216932
https://hal.science/hal-04462829
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BywEOQBcqAqWyEAcQRIrHceJw2666rID2xErtybJjR3Bgi8jC72cm63SXCg5cYuVDo8gv9sxkZt4AvJQl1jIol4emDXmpWpMbsjtyrFQdTa1803FE9-y8WizLDxf6ItHkcC3Mjfg9l7gZLgJDzpUoS5Wb27Cvpaq5TcOsmm0Jds3QXadoUOea9t5UIPN3GX8ooTvseX7tSbl84VzIHUPzRmx0UDnzh3A_2YpiugH3AG7F1QQejH0YRFqWE7i3QypIZ2fXTKz9BA7SU714lRimXz-Cyw1PudiNIogr2jy-papM0a9HCol3IpAtSZIF_7IV3BFgSHkX3ER7EEAoi9SXpn8My_np59kiTz0W8pbmcJ3HKpKbWinfFa2Mvm1oRTvZoWsb0_qAUrmALmqjSo-xkAFrF8hqQF-YrpGdOoS91dUqPgHhUGPhPGHT6TJq7xrdkvYnD0kFp6LO4M046fb7hkrDbkmTGSJLENkBImsyONzgYnngTFGrkPzpIoMXhNO1BKbHXkw_Wb7GwWmODP-SGRyNMNq0KHtL2xcik89gBm9HaLe3__0uT__v8WdwF7lL8JDfcwR76x8_43MyXdb-GPan85OTcx7fX348PR6-YToucfoblrPmjQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB3BggQcgC2sCCxgIQ4gsBSP48bhViFWBdo9baXlZNmxIzjQRaTw-5lJnW1BcOAU5UOjKM8eP2dm3gA8VxXWKmovY9NGWenWSku8Q-JU18nWOjQdR3SXp9P5qvpwbs5zUVg_ZruPIcnBU-8Vu1kuB0POmqgqLe1VuEZkwPJYXuFsJ7Vrhz47ZYNGGvLCuVTm7zZ-W46u8x70S0_LzGfOityjnH9ESYfF5-Qu3M6sUcy2MB_ClbSewJ2xI4PIE3QCt_bkBelseanJ2k_gMD_VixdZa_rlPfi0VSwX-_EEcUFu5GuuzxT9ZhSTeCMisUqyLPjnreDeAEPyu-B22oMBwlvkDjX9fVidvDt7O5e524JsdV1uZJom2rBOdejKVqXQNjS3verQt41tQ0SlfUSfjNVVwFSqiLWPxB8wlLZrVKeP4GB9sU4PQHg0WPqgdN2ZKpngG9MSD6C9ko5eJ1PAq_Gju29bUQ23k09miBxB5AaInC3gaIuL4wPnjDqNtLMuC3hGOF1aYKHs-Wzh-BqHqTlG_FMVcDzC6PL07B05MkSWocECXo_Q7m7_-10e_t_jT-HG_Gy5cIv3px8fwU3k3sFD1s8xHGy-_0iPidBswpNh_P4CeU3pqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1BQQgOQBeqBgpYiAOIRo3tOHF6qxZWC7QVByqVk2XHjuDQbUUC389M4nRTVA49RUmsUZQX2zOZmfcA3vBclNxLm_qq9mkua51q9DtSUcgy6FK6qqGM7tFxsTzJP5-q00kXf1_tPqYkh54GYmladXsXvtmbNL5pag0TVEGR5zLVt-EORiqcwq95MV_T7upecyerhEoVrsixbeZ6G1e2prsUj_5sccv5QRWSE_fzn4xpvxEtHsPD6EGygwHyTbgVVjN4NKozsDhZZ_BgQjWIZ0eX_KztDDbjqJa9jbzT757A94G9nE1zC-wcl5Sz2KvJ2m4klthnHj1MtMzoRy4jnYC-EJ6RtHZvALFnUa2mfQoni4_f5ss0Ki-ktSyzLg1FwOC1kK7Jah5cXeE8t7wRtq507bzg0nphg9IydyJk3IvSevQlhMt0U_FGbsHG6nwVtoFZoURmHZdlo_KgnK1UjT4Bxk3SWxlUAu_Hl24uBoINs6ZSJogMQmR6iIxOYGvAxdCB6keNFBhlZwm8RpwuLRBp9vLg0NA1SllTvvgPT2BnhNHEqdoaXNSEIEoakcDuCO369v-f5dnNhr-Ce18_LMzhp-Mvz-G-IBnhvgBoBza6X7_DC_RtOvey_3z_Auxv7dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+architecture+optimization+strategies%3A+dealing+with+expensive+hierarchical+problems&rft.jtitle=Journal+of+global+optimization&rft.au=Bussemaker%2C+Jasper+H.&rft.au=Saves%2C+Paul&rft.au=Bartoli%2C+Nathalie&rft.au=Lefebvre%2C+Thierry&rft.date=2025-04-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=91&rft.issue=4&rft.spage=851&rft.epage=895&rft_id=info:doi/10.1007%2Fs10898-024-01443-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_024_01443_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2916&client=summon