Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height
This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can...
Saved in:
Published in | IEEE sensors journal Vol. 22; no. 2; pp. 1738 - 1745 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection. |
---|---|
AbstractList | This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection. This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average leadtime of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection. |
Author | Escriba, Christophe Avina Bravo, Eli Gabriel Brossa, Vincent Fourniols, Jean-Yves Rossi, Carole Ferreira de Sousa, Felipe Augusto Sodre |
Author_xml | – sequence: 1 givenname: Felipe Augusto Sodre orcidid: 0000-0003-2764-5776 surname: Ferreira de Sousa fullname: Ferreira de Sousa, Felipe Augusto Sodre email: fasodrefer@laas.fr organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France – sequence: 2 givenname: Christophe surname: Escriba fullname: Escriba, Christophe email: cescriba@laas.fr organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France – sequence: 3 givenname: Eli Gabriel surname: Avina Bravo fullname: Avina Bravo, Eli Gabriel email: egavinabra@laas.fr organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France – sequence: 4 givenname: Vincent surname: Brossa fullname: Brossa, Vincent email: vbrossa@laas.fr organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France – sequence: 5 givenname: Jean-Yves surname: Fourniols fullname: Fourniols, Jean-Yves email: fourniol@laas.fr organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France – sequence: 6 givenname: Carole orcidid: 0000-0003-3864-7574 surname: Rossi fullname: Rossi, Carole email: rossi@laas.fr organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France |
BackLink | https://laas.hal.science/hal-03452563$$DView record in HAL |
BookMark | eNp9kE1LAzEQhoMoqNUfIF4CHsTD1nxtPo71o1YpKlTRW8hmp7plu1uTVPDfu0vFgwdPmQzPOzM8-2i7aRtA6IiSIaXEnN_Nru-HjDA65JRTwtUW2qN5rjOqhN7ua04ywdXrLtqPcUEINSpXe-j1BVxwRQ34MUB2u1w5n_DY1TW-ggQ-VW2DZ18xwRJfuAgl7v78Co-8hxpCu-yggF1T4tm6WHT8acQTqN7e0wHambs6wuHPO0DP4-uny0k2fbi5vRxNM88VSRnkTEhJVWEg1yUIAkJr7YxyxCgtGAdnirK73lNXAtdSGiG0Kci8pIUnkg_Q2Wbuu6vtKlRLF75s6yo7GU1t3yNc5CyX_JN27MmGXYX2Yw0x2UW7Dk13nmWSGsI4y0VH0Q3lQxtjgPnvWEpsL9v2sm0v2_7I7jLqT8ZXyfX2UnBV_W_yeJOsAOB3k5FMSU34N8IXi2Y |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1007_s00521_023_08863_9 crossref_primary_10_1016_j_engappai_2023_105993 crossref_primary_10_1109_JSEN_2023_3276891 crossref_primary_10_1016_j_measurement_2022_111785 crossref_primary_10_3390_s23229194 crossref_primary_10_1007_s11517_023_02999_5 crossref_primary_10_1109_JIOT_2023_3290421 crossref_primary_10_1109_JSEN_2022_3213814 crossref_primary_10_1109_JIOT_2023_3280060 crossref_primary_10_1109_JSEN_2024_3408426 crossref_primary_10_1109_JIOT_2024_3421336 crossref_primary_10_1016_j_bspc_2024_106412 crossref_primary_10_1109_JSEN_2023_3279858 crossref_primary_10_1109_JSEN_2024_3407835 crossref_primary_10_1109_JSEN_2024_3364249 crossref_primary_10_3390_electronics12204257 crossref_primary_10_2139_ssrn_4132951 crossref_primary_10_1149_2162_8777_acd65f crossref_primary_10_1109_COMST_2023_3256323 crossref_primary_10_1007_s00339_025_08305_4 |
Cites_doi | 10.1111/j.1532-5415.1995.tb07396.x 10.1016/j.eswa.2018.06.019 10.1016/j.ssci.2013.11.010 10.1080/10255842.2011.627329 10.1109/TNSRE.2015.2460373 10.1093/geronj/46.5.M164 10.1109/JSEN.2008.2012212 10.1111/exsy.12743 10.1109/IEMBS.2008.4649792 10.1109/TBME.2014.2315784 10.1109/IROS.2006.282019 10.1007/bf02351026 10.1016/j.measurement.2019.04.002 10.1016/j.ssci.2014.09.018 10.1115/1.4043449 10.1109/PERCOMW.2010.5470652 10.1016/j.pmr.2017.06.006 10.1109/CCWC.2017.7868363 10.1109/CCIS.2012.6664577 10.1016/j.medengphy.2005.11.008 10.1016/j.robot.2015.02.009 10.1016/j.medengphy.2006.12.001 10.1371/journal.pone.0037062 10.1109/EMBC.2013.6609833 10.1109/TITB.2009.2033673 10.1016/j.eswa.2012.09.004 10.1109/ICASERT.2019.8934463 10.1146/annurev.pu.13.050192.002421 10.2105/AJPH.82.9.1263 10.3390/s17010198 10.1016/j.jbiomech.2008.08.009 10.3390/s20174750 10.1155/2018/6564158 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M 1XC VOOES |
DOI | 10.1109/JSEN.2021.3131037 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Physics |
EISSN | 1558-1748 |
EndPage | 1745 |
ExternalDocumentID | oai_HAL_hal_03452563v1 10_1109_JSEN_2021_3131037 9627680 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Research Council (H2020 Excellent Science) Researcher Award through PyroSafe grantid: 832889 funderid: 10.13039/501100000781 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M 1XC 5VS AETIX AGSQL AIBXA EJD H~9 RIG VOOES ZY4 |
ID | FETCH-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Wed Jun 25 06:41:53 EDT 2025 Mon Jun 30 10:25:15 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Tue Jul 01 04:26:44 EDT 2025 Wed Aug 27 03:03:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Threshold-based Pre-impact detection Wearable systems Customizable algorithm Fall Detection System |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2764-5776 0000-0003-3864-7574 0000-0002-8054-714X 0000-0002-5900-3973 |
OpenAccessLink | https://laas.hal.science/hal-03452563 |
PQID | 2619023254 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9627680 proquest_journals_2619023254 crossref_primary_10_1109_JSEN_2021_3131037 hal_primary_oai_HAL_hal_03452563v1 crossref_citationtrail_10_1109_JSEN_2021_3131037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-15 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref35 (ref6) 2008 ref12 ref34 ref15 ref14 Luštrek (ref24) 2009; 33 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
References_xml | – ident: ref4 doi: 10.1111/j.1532-5415.1995.tb07396.x – ident: ref30 doi: 10.1016/j.eswa.2018.06.019 – volume: 33 start-page: 205 issue: 2 year: 2009 ident: ref24 article-title: Fall detection and activity recognition with machine learning publication-title: Informatica – ident: ref16 doi: 10.1016/j.ssci.2013.11.010 – ident: ref21 doi: 10.1080/10255842.2011.627329 – ident: ref27 doi: 10.1109/TNSRE.2015.2460373 – ident: ref1 doi: 10.1093/geronj/46.5.M164 – ident: ref12 doi: 10.1109/JSEN.2008.2012212 – ident: ref26 doi: 10.1111/exsy.12743 – ident: ref13 doi: 10.1109/IEMBS.2008.4649792 – ident: ref20 doi: 10.1109/TBME.2014.2315784 – ident: ref29 doi: 10.1109/IROS.2006.282019 – ident: ref17 doi: 10.1007/bf02351026 – ident: ref35 doi: 10.1016/j.measurement.2019.04.002 – ident: ref15 doi: 10.1016/j.ssci.2014.09.018 – ident: ref23 doi: 10.1115/1.4043449 – ident: ref10 doi: 10.1109/PERCOMW.2010.5470652 – ident: ref5 doi: 10.1016/j.pmr.2017.06.006 – ident: ref8 doi: 10.1109/CCWC.2017.7868363 – ident: ref7 doi: 10.1109/CCIS.2012.6664577 – ident: ref18 doi: 10.1016/j.medengphy.2005.11.008 – ident: ref31 doi: 10.1016/j.robot.2015.02.009 – ident: ref14 doi: 10.1016/j.medengphy.2006.12.001 – ident: ref33 doi: 10.1371/journal.pone.0037062 – ident: ref9 doi: 10.1109/EMBC.2013.6609833 – ident: ref11 doi: 10.1109/TITB.2009.2033673 – ident: ref25 doi: 10.1016/j.eswa.2012.09.004 – ident: ref32 doi: 10.1109/ICASERT.2019.8934463 – ident: ref2 doi: 10.1146/annurev.pu.13.050192.002421 – volume-title: WHO Global Report on Falls Prevention in Older Age year: 2008 ident: ref6 – ident: ref3 doi: 10.2105/AJPH.82.9.1263 – ident: ref34 doi: 10.3390/s17010198 – ident: ref19 doi: 10.1016/j.jbiomech.2008.08.009 – ident: ref22 doi: 10.3390/s20174750 – ident: ref28 doi: 10.1155/2018/6564158 |
SSID | ssj0019757 |
Score | 2.479669 |
Snippet | This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1738 |
SubjectTerms | Accelerometers Air bags Algorithms Biomedical monitoring Classification algorithms Customizable algorithm Electronics Engineering Sciences Fall detection fall detection system False alarms Injuries Instrumentation and Detectors Lead time Physics pre-impact detection Senior citizens Sensitivity Signal and Image processing threshold-based wearable systems Wearable technology |
Title | Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height |
URI | https://ieeexplore.ieee.org/document/9627680 https://www.proquest.com/docview/2619023254 https://laas.hal.science/hal-03452563 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_avqgPfrSKV6ssIghirrvJJpt9PNseZ7FF0OK9hc3uHAWPVNpcof3rndnkgloR35KwC0t-szvz2_kCeGMtWi8VIYDS8NVNndTG-sTIdEH2AJrccaLwyWkxO9PH83y-Ae-HXBhEjMFnOObH6MsPF37FV2X73CimKImgbxJx63K1Bo-BNbGqJ21gmejMzHsPppJ2__jL0SkxwVQRQeW2WuY3HbR5zhGQsbXKnfM4KpnpIzhZL6-LLfk-XrX12N_-Ubnxf9f_GB721qaYdOLxBDaw2YYHv9Qg3IZ7fRv085sdmH8juedcKvH5EpOPMYFSTN1yKQ6xjTFbjehKnIsPpP2CoPfsUEy8J-XFdQ8IJOGaIOg44vudt1diFq9en8LZ9OjrwSzpWy8kPjOyTTBPNWluU1vMy4BaIm300lnjOO-DTDB0tg70s71yAbOyKCzxPFvLRVC1J7PnGWw1Fw0-B-FzqRe5Sx0WQTunrQ_KB80OTu2zMh-BXINR-b4uObfHWFaRn0hbMX4V41f1-I3g3TDlR1eU41-DXxPCwzgupz2bfKr4m8zYq1tk12oEOwzXMKpHagR7a4Go-r19VTHnJEuHmPXu32e9gPspJ0lIlah8D7bayxW-JNOlrV9Fmf0JJTLmYQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U-lB98NIqbq06iCCI2c7kNpnH1XbZ1t1FsMV9C5OZsxRc0tJmBf31njPJBm-Ib0mYgSTfzJz7dwBeGYPGSUUIoNTsuqmiShsXaRkvSR9AnVkuFJ7N88l5errIFlvwtq-FQcSQfIZDvgyxfH_p1uwqO-RGMXlBBvptkvuZaqu1-piB0YHXk7awjNJEL7oYppLm8PTT8ZxswViRicqNtfQvUujWBedAhuYqf5zIQcyM78Ns84JtdsmX4bqphu77b9yN__sFD-Bep2-KUbtAHsIW1rtw9ycWwl3Y6RqhX3zbg8VnWvlcTSU-XmN0EkooxdiuVuIIm5C1VYuW5Fy8I_nnBd0nR2LkHIkvZj4gmIStvaADiT08r2_EJDhfH8H5-Pjs_STqmi9ELtGyiTCLU5LdujKYFR5TibTVC2u05coPUsLQmsrTz3bKekyKPDdk6ZlKLr2qHCk-j2G7vqzxCQiXyXSZ2dhi7lNrU-O8cj7lEGfqkiIbgNyAUbqOmZwbZKzKYKFIUzJ-JeNXdvgN4E0_5aql5fjX4JeEcD-OCbUno2nJz2TCcd08-aoGsMdw9aM6pAZwsFkQZbe7b0q2OknXIdt6_--zXsDO5Gw2Lacn8w9P4U7MJRNSRSo7gO3meo3PSJFpqudh_f4AVB7pqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Pre-Impact+Fall+Detection+System+Based+on+3D+Accelerometer+and+Subject%E2%80%99s+Height&rft.jtitle=IEEE+sensors+journal&rft.au=Felipe+Augusto+Sodre+Ferreira+de+Sousa&rft.au=Escriba%2C+Christophe&rft.au=Eli+Gabriel+Avina+Bravo&rft.au=Brossa%2C+Vincent&rft.date=2022-01-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=2&rft.spage=1738&rft_id=info:doi/10.1109%2FJSEN.2021.3131037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |