Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height

This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 2; pp. 1738 - 1745
Main Authors Ferreira de Sousa, Felipe Augusto Sodre, Escriba, Christophe, Avina Bravo, Eli Gabriel, Brossa, Vincent, Fourniols, Jean-Yves, Rossi, Carole
Format Journal Article
LanguageEnglish
Published New York IEEE 15.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.
AbstractList This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average lead-time of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.
This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data (acceleration) and height of the subject. The system can detect a fall in all directions with an average consumption of 5.91 mA; i.e., it can monitor the activity of daily living (ADL), whether or not a fall occurs. The entire detection system uses a single wearable tri-axis accelerometer placed on the waist for the comfort of the wearer during a long-term application. The algorithm is based on the following hypothesis: "A region defined as balanced boundary circle, based on the user's height, is characterized by the fact the chance that an actual fall happening is minimal. When an activity is classified outside this circle, an acceleration analysis is performed to determine an impending fall condition". Our threshold-based algorithm was validated experimentally, first with 9 young healthy volunteers performing both normal ADL and fall activities and then using 10 ADL and 5 falls from public SisFall dataset. The results show that falls could be detected with an average leadtime of 259 ms before the impact occurs, with minimal false alarms (97.7% specificity) and a sensitivity of 92.6%. This is a good lead-time achieved thus far in pre-impact fall detection, permitting the integration of our detection system in a wearable inflatable airbag for hip protection.
Author Escriba, Christophe
Avina Bravo, Eli Gabriel
Brossa, Vincent
Fourniols, Jean-Yves
Rossi, Carole
Ferreira de Sousa, Felipe Augusto Sodre
Author_xml – sequence: 1
  givenname: Felipe Augusto Sodre
  orcidid: 0000-0003-2764-5776
  surname: Ferreira de Sousa
  fullname: Ferreira de Sousa, Felipe Augusto Sodre
  email: fasodrefer@laas.fr
  organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France
– sequence: 2
  givenname: Christophe
  surname: Escriba
  fullname: Escriba, Christophe
  email: cescriba@laas.fr
  organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France
– sequence: 3
  givenname: Eli Gabriel
  surname: Avina Bravo
  fullname: Avina Bravo, Eli Gabriel
  email: egavinabra@laas.fr
  organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France
– sequence: 4
  givenname: Vincent
  surname: Brossa
  fullname: Brossa, Vincent
  email: vbrossa@laas.fr
  organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France
– sequence: 5
  givenname: Jean-Yves
  surname: Fourniols
  fullname: Fourniols, Jean-Yves
  email: fourniol@laas.fr
  organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France
– sequence: 6
  givenname: Carole
  orcidid: 0000-0003-3864-7574
  surname: Rossi
  fullname: Rossi, Carole
  email: rossi@laas.fr
  organization: Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), University of Toulouse, Toulouse, France
BackLink https://laas.hal.science/hal-03452563$$DView record in HAL
BookMark eNp9kE1LAzEQhoMoqNUfIF4CHsTD1nxtPo71o1YpKlTRW8hmp7plu1uTVPDfu0vFgwdPmQzPOzM8-2i7aRtA6IiSIaXEnN_Nru-HjDA65JRTwtUW2qN5rjOqhN7ua04ywdXrLtqPcUEINSpXe-j1BVxwRQ34MUB2u1w5n_DY1TW-ggQ-VW2DZ18xwRJfuAgl7v78Co-8hxpCu-yggF1T4tm6WHT8acQTqN7e0wHambs6wuHPO0DP4-uny0k2fbi5vRxNM88VSRnkTEhJVWEg1yUIAkJr7YxyxCgtGAdnirK73lNXAtdSGiG0Kci8pIUnkg_Q2Wbuu6vtKlRLF75s6yo7GU1t3yNc5CyX_JN27MmGXYX2Yw0x2UW7Dk13nmWSGsI4y0VH0Q3lQxtjgPnvWEpsL9v2sm0v2_7I7jLqT8ZXyfX2UnBV_W_yeJOsAOB3k5FMSU34N8IXi2Y
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s00521_023_08863_9
crossref_primary_10_1016_j_engappai_2023_105993
crossref_primary_10_1109_JSEN_2023_3276891
crossref_primary_10_1016_j_measurement_2022_111785
crossref_primary_10_3390_s23229194
crossref_primary_10_1007_s11517_023_02999_5
crossref_primary_10_1109_JIOT_2023_3290421
crossref_primary_10_1109_JSEN_2022_3213814
crossref_primary_10_1109_JIOT_2023_3280060
crossref_primary_10_1109_JSEN_2024_3408426
crossref_primary_10_1109_JIOT_2024_3421336
crossref_primary_10_1016_j_bspc_2024_106412
crossref_primary_10_1109_JSEN_2023_3279858
crossref_primary_10_1109_JSEN_2024_3407835
crossref_primary_10_1109_JSEN_2024_3364249
crossref_primary_10_3390_electronics12204257
crossref_primary_10_2139_ssrn_4132951
crossref_primary_10_1149_2162_8777_acd65f
crossref_primary_10_1109_COMST_2023_3256323
crossref_primary_10_1007_s00339_025_08305_4
Cites_doi 10.1111/j.1532-5415.1995.tb07396.x
10.1016/j.eswa.2018.06.019
10.1016/j.ssci.2013.11.010
10.1080/10255842.2011.627329
10.1109/TNSRE.2015.2460373
10.1093/geronj/46.5.M164
10.1109/JSEN.2008.2012212
10.1111/exsy.12743
10.1109/IEMBS.2008.4649792
10.1109/TBME.2014.2315784
10.1109/IROS.2006.282019
10.1007/bf02351026
10.1016/j.measurement.2019.04.002
10.1016/j.ssci.2014.09.018
10.1115/1.4043449
10.1109/PERCOMW.2010.5470652
10.1016/j.pmr.2017.06.006
10.1109/CCWC.2017.7868363
10.1109/CCIS.2012.6664577
10.1016/j.medengphy.2005.11.008
10.1016/j.robot.2015.02.009
10.1016/j.medengphy.2006.12.001
10.1371/journal.pone.0037062
10.1109/EMBC.2013.6609833
10.1109/TITB.2009.2033673
10.1016/j.eswa.2012.09.004
10.1109/ICASERT.2019.8934463
10.1146/annurev.pu.13.050192.002421
10.2105/AJPH.82.9.1263
10.3390/s17010198
10.1016/j.jbiomech.2008.08.009
10.3390/s20174750
10.1155/2018/6564158
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
1XC
VOOES
DOI 10.1109/JSEN.2021.3131037
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Physics
EISSN 1558-1748
EndPage 1745
ExternalDocumentID oai_HAL_hal_03452563v1
10_1109_JSEN_2021_3131037
9627680
Genre orig-research
GrantInformation_xml – fundername: European Research Council (H2020 Excellent Science) Researcher Award through PyroSafe
  grantid: 832889
  funderid: 10.13039/501100000781
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
1XC
5VS
AETIX
AGSQL
AIBXA
EJD
H~9
RIG
VOOES
ZY4
ID FETCH-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Wed Jun 25 06:41:53 EDT 2025
Mon Jun 30 10:25:15 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Tue Jul 01 04:26:44 EDT 2025
Wed Aug 27 03:03:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Threshold-based
Pre-impact detection
Wearable systems
Customizable algorithm
Fall Detection System
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-e5246617b9e58de40e4888a97a0978423ea9bd153c1ade386694489b0fd1bc063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2764-5776
0000-0003-3864-7574
0000-0002-8054-714X
0000-0002-5900-3973
OpenAccessLink https://laas.hal.science/hal-03452563
PQID 2619023254
PQPubID 75733
PageCount 8
ParticipantIDs ieee_primary_9627680
proquest_journals_2619023254
crossref_primary_10_1109_JSEN_2021_3131037
hal_primary_oai_HAL_hal_03452563v1
crossref_citationtrail_10_1109_JSEN_2021_3131037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref35
(ref6) 2008
ref12
ref34
ref15
ref14
Luštrek (ref24) 2009; 33
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref4
  doi: 10.1111/j.1532-5415.1995.tb07396.x
– ident: ref30
  doi: 10.1016/j.eswa.2018.06.019
– volume: 33
  start-page: 205
  issue: 2
  year: 2009
  ident: ref24
  article-title: Fall detection and activity recognition with machine learning
  publication-title: Informatica
– ident: ref16
  doi: 10.1016/j.ssci.2013.11.010
– ident: ref21
  doi: 10.1080/10255842.2011.627329
– ident: ref27
  doi: 10.1109/TNSRE.2015.2460373
– ident: ref1
  doi: 10.1093/geronj/46.5.M164
– ident: ref12
  doi: 10.1109/JSEN.2008.2012212
– ident: ref26
  doi: 10.1111/exsy.12743
– ident: ref13
  doi: 10.1109/IEMBS.2008.4649792
– ident: ref20
  doi: 10.1109/TBME.2014.2315784
– ident: ref29
  doi: 10.1109/IROS.2006.282019
– ident: ref17
  doi: 10.1007/bf02351026
– ident: ref35
  doi: 10.1016/j.measurement.2019.04.002
– ident: ref15
  doi: 10.1016/j.ssci.2014.09.018
– ident: ref23
  doi: 10.1115/1.4043449
– ident: ref10
  doi: 10.1109/PERCOMW.2010.5470652
– ident: ref5
  doi: 10.1016/j.pmr.2017.06.006
– ident: ref8
  doi: 10.1109/CCWC.2017.7868363
– ident: ref7
  doi: 10.1109/CCIS.2012.6664577
– ident: ref18
  doi: 10.1016/j.medengphy.2005.11.008
– ident: ref31
  doi: 10.1016/j.robot.2015.02.009
– ident: ref14
  doi: 10.1016/j.medengphy.2006.12.001
– ident: ref33
  doi: 10.1371/journal.pone.0037062
– ident: ref9
  doi: 10.1109/EMBC.2013.6609833
– ident: ref11
  doi: 10.1109/TITB.2009.2033673
– ident: ref25
  doi: 10.1016/j.eswa.2012.09.004
– ident: ref32
  doi: 10.1109/ICASERT.2019.8934463
– ident: ref2
  doi: 10.1146/annurev.pu.13.050192.002421
– volume-title: WHO Global Report on Falls Prevention in Older Age
  year: 2008
  ident: ref6
– ident: ref3
  doi: 10.2105/AJPH.82.9.1263
– ident: ref34
  doi: 10.3390/s17010198
– ident: ref19
  doi: 10.1016/j.jbiomech.2008.08.009
– ident: ref22
  doi: 10.3390/s20174750
– ident: ref28
  doi: 10.1155/2018/6564158
SSID ssj0019757
Score 2.479669
Snippet This study presents a low-power wearable system able to predict a fall by detecting a pre-impact condition, performed through a simple analysis of motion data...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1738
SubjectTerms Accelerometers
Air bags
Algorithms
Biomedical monitoring
Classification algorithms
Customizable algorithm
Electronics
Engineering Sciences
Fall detection
fall detection system
False alarms
Injuries
Instrumentation and Detectors
Lead time
Physics
pre-impact detection
Senior citizens
Sensitivity
Signal and Image processing
threshold-based
wearable systems
Wearable technology
Title Wearable Pre-Impact Fall Detection System Based on 3D Accelerometer and Subject's Height
URI https://ieeexplore.ieee.org/document/9627680
https://www.proquest.com/docview/2619023254
https://laas.hal.science/hal-03452563
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_avqgPfrSKV6ssIghirrvJJpt9PNseZ7FF0OK9hc3uHAWPVNpcof3rndnkgloR35KwC0t-szvz2_kCeGMtWi8VIYDS8NVNndTG-sTIdEH2AJrccaLwyWkxO9PH83y-Ae-HXBhEjMFnOObH6MsPF37FV2X73CimKImgbxJx63K1Bo-BNbGqJ21gmejMzHsPppJ2__jL0SkxwVQRQeW2WuY3HbR5zhGQsbXKnfM4KpnpIzhZL6-LLfk-XrX12N_-Ubnxf9f_GB721qaYdOLxBDaw2YYHv9Qg3IZ7fRv085sdmH8juedcKvH5EpOPMYFSTN1yKQ6xjTFbjehKnIsPpP2CoPfsUEy8J-XFdQ8IJOGaIOg44vudt1diFq9en8LZ9OjrwSzpWy8kPjOyTTBPNWluU1vMy4BaIm300lnjOO-DTDB0tg70s71yAbOyKCzxPFvLRVC1J7PnGWw1Fw0-B-FzqRe5Sx0WQTunrQ_KB80OTu2zMh-BXINR-b4uObfHWFaRn0hbMX4V41f1-I3g3TDlR1eU41-DXxPCwzgupz2bfKr4m8zYq1tk12oEOwzXMKpHagR7a4Go-r19VTHnJEuHmPXu32e9gPspJ0lIlah8D7bayxW-JNOlrV9Fmf0JJTLmYQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U-lB98NIqbq06iCCI2c7kNpnH1XbZ1t1FsMV9C5OZsxRc0tJmBf31njPJBm-Ib0mYgSTfzJz7dwBeGYPGSUUIoNTsuqmiShsXaRkvSR9AnVkuFJ7N88l5errIFlvwtq-FQcSQfIZDvgyxfH_p1uwqO-RGMXlBBvptkvuZaqu1-piB0YHXk7awjNJEL7oYppLm8PTT8ZxswViRicqNtfQvUujWBedAhuYqf5zIQcyM78Ns84JtdsmX4bqphu77b9yN__sFD-Bep2-KUbtAHsIW1rtw9ycWwl3Y6RqhX3zbg8VnWvlcTSU-XmN0EkooxdiuVuIIm5C1VYuW5Fy8I_nnBd0nR2LkHIkvZj4gmIStvaADiT08r2_EJDhfH8H5-Pjs_STqmi9ELtGyiTCLU5LdujKYFR5TibTVC2u05coPUsLQmsrTz3bKekyKPDdk6ZlKLr2qHCk-j2G7vqzxCQiXyXSZ2dhi7lNrU-O8cj7lEGfqkiIbgNyAUbqOmZwbZKzKYKFIUzJ-JeNXdvgN4E0_5aql5fjX4JeEcD-OCbUno2nJz2TCcd08-aoGsMdw9aM6pAZwsFkQZbe7b0q2OknXIdt6_--zXsDO5Gw2Lacn8w9P4U7MJRNSRSo7gO3meo3PSJFpqudh_f4AVB7pqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Pre-Impact+Fall+Detection+System+Based+on+3D+Accelerometer+and+Subject%E2%80%99s+Height&rft.jtitle=IEEE+sensors+journal&rft.au=Felipe+Augusto+Sodre+Ferreira+de+Sousa&rft.au=Escriba%2C+Christophe&rft.au=Eli+Gabriel+Avina+Bravo&rft.au=Brossa%2C+Vincent&rft.date=2022-01-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=2&rft.spage=1738&rft_id=info:doi/10.1109%2FJSEN.2021.3131037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon