Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors
Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried o...
Saved in:
Published in | Nanotechnology Vol. 28; no. 17; p. 175708 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
28.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O2, NO, SO2, NH3, H2O, NO2, CO2, H2S, CO, and N2, and address their effects on the electronic properties of the material. Our calculations show that O2 is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors. |
---|---|
AbstractList | Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O
, NO, SO
, NH
, H
O, NO
, CO
, H
S, CO, and N
, and address their effects on the electronic properties of the material. Our calculations show that O
is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors. Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O2, NO, SO2, NH3, H2O, NO2, CO2, H2S, CO, and N2, and address their effects on the electronic properties of the material. Our calculations show that O2 is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors. |
Author | Liu, Nanshu Zhou, Si |
Author_xml | – sequence: 1 givenname: Nanshu surname: Liu fullname: Liu, Nanshu organization: Dalian University of Technology Key Laboratory of Materials Modification by Laser, Ion and Electron Beams , Ministry of Education, Dalian 116024, People's Republic of China – sequence: 2 givenname: Si orcidid: 0000-0002-0842-1075 surname: Zhou fullname: Zhou, Si email: sizhou@dlut.edu.cn organization: Dalian University of Technology Key Laboratory of Materials Modification by Laser, Ion and Electron Beams , Ministry of Education, Dalian 116024, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28282298$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEFr3DAQRkVJaDZp7z0VHVuIE8mW7dneSmjSQqCX5CxG1rhVkCVXsgP776vtpjmUEjRCIN73MbxTdhRiIMbeSXEhBcClbDpZdW0Nl4hdJ9Urtnn-OmIbsW37SilQJ-w05wchpIRavmYnNZRTb2HD6AYzR5tjmhcXAy8zxRA97ihx41fi88-Yy01r_sTdNHs34J7MfIyJU3h0KYaJwoKe5wWN827ZcQyW_yjNmUKpzm_Y8Yg-09un94zdX3-5u_pa3X6_-Xb1-bYaml4slbU1qXFUqlXGICKAsmVlaZStoTfQQitaahsFnVAjAdmtGXtDNQ0Doe2aM_bh0Dun-GulvOjJ5YG8x0BxzVpC36mt6gEK-v4JXc1EVs_JTZh2-q-aAogDMKSYc6LxGZFC7-3rvWq9V60P9kuk-ycyuOWPrSWh8y8Fzw9BF2f9ENcUiqWX8I__wQOGWNbXsi_T9gL0bMfmNyTypqw |
CODEN | NNOTER |
CitedBy_id | crossref_primary_10_1007_s10853_021_06300_7 crossref_primary_10_3390_coatings10121160 crossref_primary_10_1016_j_mseb_2023_116333 crossref_primary_10_3390_s19061295 crossref_primary_10_1088_1361_648X_acb5d9 crossref_primary_10_1021_acs_chemmater_9b02871 crossref_primary_10_1039_C8TC00338F crossref_primary_10_1016_j_apsusc_2020_147039 crossref_primary_10_1021_acs_jpcc_7b02286 crossref_primary_10_1039_C8TC02626B crossref_primary_10_1016_j_physe_2019_113838 crossref_primary_10_1016_j_physe_2021_115109 crossref_primary_10_1016_j_mtcomm_2023_106513 crossref_primary_10_1021_acs_jpcc_8b05125 crossref_primary_10_1021_acs_jpcc_7b12408 crossref_primary_10_1186_s11671_018_2687_y crossref_primary_10_1680_jsuin_18_00013 crossref_primary_10_1016_j_susc_2018_10_019 crossref_primary_10_1016_j_vacuum_2023_111845 crossref_primary_10_1016_j_apsusc_2022_153511 crossref_primary_10_1088_1361_648X_abef9c crossref_primary_10_1038_s41598_019_47764_7 crossref_primary_10_1063_5_0051394 crossref_primary_10_1002_pssb_202000120 crossref_primary_10_1016_j_cplett_2024_141306 crossref_primary_10_1016_j_apsusc_2019_06_212 crossref_primary_10_3390_s20113326 crossref_primary_10_1002_smll_201903495 crossref_primary_10_1002_qua_26075 crossref_primary_10_1111_jace_20363 crossref_primary_10_1039_D0TA08553G crossref_primary_10_1039_D3DT02401F crossref_primary_10_1007_s10825_020_01565_8 crossref_primary_10_1016_j_vacuum_2019_03_020 crossref_primary_10_1007_s10825_018_1159_z crossref_primary_10_1016_j_jhazmat_2020_123340 crossref_primary_10_1088_1402_4896_ad733b crossref_primary_10_1016_j_diamond_2019_107575 crossref_primary_10_1039_C8CP07680D crossref_primary_10_1016_j_cplett_2018_06_041 crossref_primary_10_1021_acs_jpcc_7b04209 crossref_primary_10_1063_1_5006407 crossref_primary_10_1088_1361_648X_ac2331 crossref_primary_10_33108_visnyk_tntu2023_02_075 crossref_primary_10_1016_j_physe_2019_113938 crossref_primary_10_1007_s13320_019_0533_1 crossref_primary_10_1021_acsnano_9b04835 crossref_primary_10_1021_acsomega_1c01898 crossref_primary_10_1021_acsomega_1c06027 crossref_primary_10_1021_acsomega_1c06860 crossref_primary_10_1039_C9TC03219C crossref_primary_10_1002_wcms_1361 crossref_primary_10_1002_slct_201903002 crossref_primary_10_1002_smm2_1055 crossref_primary_10_1088_1361_648X_abcdae crossref_primary_10_1007_s00339_020_04249_z crossref_primary_10_33108_visnyk_tntu2023_02_068 crossref_primary_10_1016_j_comptc_2019_01_013 crossref_primary_10_1016_j_apsusc_2022_153450 crossref_primary_10_3390_ma12040676 crossref_primary_10_1016_j_apsusc_2018_09_048 crossref_primary_10_1016_j_cplett_2024_141327 crossref_primary_10_1039_D2NR02657K crossref_primary_10_1080_00268976_2019_1699184 crossref_primary_10_1016_j_renene_2022_07_113 crossref_primary_10_1039_D0CP01607A crossref_primary_10_1364_AO_58_004518 crossref_primary_10_1139_cjp_2020_0433 crossref_primary_10_1002_cphc_201801070 crossref_primary_10_1021_acs_jpcc_7b07921 crossref_primary_10_1088_1361_648X_ac1c2f crossref_primary_10_1016_j_mtcomm_2021_102123 crossref_primary_10_1021_acsanm_4c01746 crossref_primary_10_1007_s00894_021_04772_7 crossref_primary_10_1039_D3TA02163G crossref_primary_10_1016_j_susc_2021_121860 crossref_primary_10_1021_acsomega_7b01992 crossref_primary_10_1039_D2NJ05553H crossref_primary_10_1063_1_5081931 crossref_primary_10_1021_acs_jpcc_7b03808 crossref_primary_10_5488_CMP_24_13401 |
Cites_doi | 10.1021/jz501188k 10.1103/PhysRevB.59.1758 10.1038/srep09961 10.1039/c3nr02826g 10.1021/nn501226z 10.1103/PhysRevLett.113.046804 10.1038/nature02817 10.1021/jp510863p 10.1038/srep08501 10.1088/2053-1583/2/1/011002 10.1038/nnano.2014.35 10.1021/acsnano.5b01961 10.1021/jp5116564 10.1039/C4RA17320A 10.1039/C4CP03292F 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.91.115433 10.1038/natrevmats.2016.61 10.1021/acs.nanolett.6b03208 10.1021/acs.nanolett.6b01459 10.1103/PhysRev.80.72 10.1021/acs.jpcc.6b07651 10.1063/1.4868132 10.1103/PhysRevLett.77.3865 10.1039/C5NR08810K 10.1021/jp5114152 10.1088/0957-4484/13/2/312 10.1038/srep23151 10.1021/acsami.5b07712 10.1103/PhysRevLett.112.176802 10.1088/0957-4484/26/9/095201 10.1063/1.1329672 10.1038/ncomms5458 10.1103/PhysRevB.89.235319 10.1039/C6CP05983J 10.1063/1.4893589 10.1016/j.commatsci.2014.02.025 10.1021/acs.nanolett.5b05068 10.1016/j.pmatsci.2016.04.001 10.1063/1.3382344 10.1021/acs.jpcc.5b06077 10.1021/acs.jpclett.5b01094 10.1103/PhysRevB.91.085407 10.1002/anie.201505015 10.1080/10408436.2016.1182469 10.1007/s10825-016-0846-x 10.1021/jp907062n 10.1103/PhysRevLett.114.046801 10.1039/C4NR05384B 10.1038/ncomms5475 10.1021/nl500935z 10.1016/j.apsusc.2015.08.125 10.1088/2053-1583/3/2/025002 10.1016/j.apsusc.2015.08.009 10.1016/j.commatsci.2005.04.010 10.1038/ncomms9632 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1361-6528/aa6614 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors |
EISSN | 1361-6528 |
EndPage | 175708 |
ExternalDocumentID | 28282298 10_1088_1361_6528_aa6614 nanoaa6614 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China grantid: DUT15RC(3)014; DUT16-LAB01 – fundername: The National Natural Science Foundation of China grantid: 11504041; 11574040 – fundername: China Postdoctoral Science Foundation grantid: 2015M570243; 2016T90216 funderid: https://doi.org/10.13039/501100002858 – fundername: Scientific Research Fund of Department of Education of Liaoning Province grantid: L2015124 |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c370t-dd2e4ff4454bbaaa884d1181b4d287b858505e5348604fe8ed9bf7be2eccead63 |
IEDL.DBID | IOP |
ISSN | 0957-4484 |
IngestDate | Fri Jul 11 09:11:56 EDT 2025 Thu Apr 03 07:01:10 EDT 2025 Thu Apr 24 22:52:47 EDT 2025 Tue Jul 01 00:49:17 EDT 2025 Thu Jan 07 13:48:41 EST 2021 Wed Aug 21 03:34:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-dd2e4ff4454bbaaa884d1181b4d287b858505e5348604fe8ed9bf7be2eccead63 |
Notes | NANO-112812.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0842-1075 |
PMID | 28282298 |
PQID | 1876494788 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1088_1361_6528_aa6614 iop_journals_10_1088_1361_6528_aa6614 proquest_miscellaneous_1876494788 pubmed_primary_28282298 crossref_citationtrail_10_1088_1361_6528_aa6614 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-28 |
PublicationDateYYYYMMDD | 2017-04-28 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanotechnology |
PublicationTitleAbbrev | NANO |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 46 47 48 49 Liu H (59) 2016; 3 50 52 53 10 11 55 12 56 57 58 15 17 18 19 Zhang J (34) 2016; 3 1 2 3 4 5 6 7 8 9 60 61 62 20 Donarelli M (22) 2016; 3 Castellanos-Gomez A (13) 2014; 1 21 Jing Y (16) 2015; 26 23 24 25 26 27 28 29 Li Y (40) 2014; 1 Zhao J (54) 2002; 13 30 31 32 33 35 36 37 38 39 Guo Y (51) 2016; 3 Island J O (14) 2015; 2 41 42 43 Wang G (45) 2016; 3 |
References_xml | – ident: 18 doi: 10.1021/jz501188k – ident: 47 doi: 10.1103/PhysRevB.59.1758 – ident: 31 doi: 10.1038/srep09961 – ident: 61 doi: 10.1039/c3nr02826g – ident: 1 doi: 10.1021/nn501226z – ident: 26 doi: 10.1103/PhysRevLett.113.046804 – ident: 58 doi: 10.1038/nature02817 – ident: 19 doi: 10.1021/jp510863p – ident: 33 doi: 10.1038/srep08501 – volume: 3 issn: 2053-1583 year: 2016 ident: 59 publication-title: 2D Mater. – volume: 2 issn: 2053-1583 year: 2015 ident: 14 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/1/011002 – ident: 9 doi: 10.1038/nnano.2014.35 – ident: 21 doi: 10.1021/acsnano.5b01961 – ident: 17 doi: 10.1021/jp5116564 – ident: 57 doi: 10.1039/C4RA17320A – volume: 3 issn: 2053-1583 year: 2016 ident: 51 publication-title: 2D Mater. – ident: 43 doi: 10.1039/C4CP03292F – volume: 3 issn: 2053-1583 year: 2016 ident: 45 publication-title: 2D Mater. – ident: 46 doi: 10.1103/PhysRevB.54.11169 – ident: 38 doi: 10.1103/PhysRevB.91.115433 – ident: 2 doi: 10.1038/natrevmats.2016.61 – ident: 41 doi: 10.1021/acs.nanolett.6b03208 – volume: 3 issn: 2053-1583 year: 2016 ident: 34 publication-title: 2D Mater. – ident: 29 doi: 10.1021/acs.nanolett.6b01459 – ident: 56 doi: 10.1103/PhysRev.80.72 – volume: 1 issn: 2053-1583 year: 2014 ident: 13 publication-title: 2D Mater. – ident: 53 doi: 10.1021/acs.jpcc.6b07651 – ident: 6 doi: 10.1063/1.4868132 – ident: 48 doi: 10.1103/PhysRevLett.77.3865 – ident: 55 doi: 10.1039/C5NR08810K – ident: 37 doi: 10.1021/jp5114152 – volume: 13 start-page: 195 issn: 0957-4484 year: 2002 ident: 54 publication-title: Nanotechnology doi: 10.1088/0957-4484/13/2/312 – ident: 27 doi: 10.1038/srep23151 – ident: 23 doi: 10.1021/acsami.5b07712 – ident: 25 doi: 10.1103/PhysRevLett.112.176802 – volume: 1 issn: 2053-1583 year: 2014 ident: 40 publication-title: 2D Mater. – volume: 26 issn: 0957-4484 year: 2015 ident: 16 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/9/095201 – ident: 50 doi: 10.1063/1.1329672 – ident: 4 doi: 10.1038/ncomms5458 – ident: 7 doi: 10.1103/PhysRevB.89.235319 – ident: 36 doi: 10.1039/C6CP05983J – ident: 42 doi: 10.1063/1.4893589 – ident: 44 doi: 10.1016/j.commatsci.2014.02.025 – ident: 28 doi: 10.1021/acs.nanolett.5b05068 – ident: 30 doi: 10.1016/j.pmatsci.2016.04.001 – ident: 49 doi: 10.1063/1.3382344 – ident: 62 doi: 10.1021/acs.jpcc.5b06077 – ident: 8 doi: 10.1021/acs.jpclett.5b01094 – ident: 11 doi: 10.1103/PhysRevB.91.085407 – ident: 24 doi: 10.1002/anie.201505015 – ident: 15 doi: 10.1080/10408436.2016.1182469 – ident: 32 doi: 10.1007/s10825-016-0846-x – ident: 60 doi: 10.1021/jp907062n – ident: 10 doi: 10.1103/PhysRevLett.114.046801 – ident: 12 doi: 10.1039/C4NR05384B – ident: 3 doi: 10.1038/ncomms5475 – ident: 5 doi: 10.1021/nl500935z – ident: 39 doi: 10.1016/j.apsusc.2015.08.125 – volume: 3 issn: 2053-1583 year: 2016 ident: 22 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/025002 – ident: 35 doi: 10.1016/j.apsusc.2015.08.009 – ident: 52 doi: 10.1016/j.commatsci.2005.04.010 – ident: 20 doi: 10.1038/ncomms9632 |
SSID | ssj0011821 |
Score | 2.5165753 |
Snippet | Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 175708 |
SubjectTerms | band gap blue phosphorus effective mass gas sensor work function |
Title | Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors |
URI | https://iopscience.iop.org/article/10.1088/1361-6528/aa6614 https://www.ncbi.nlm.nih.gov/pubmed/28282298 https://www.proquest.com/docview/1876494788 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFH-oy4IeXNePdXZXiaIHD5lp0rTNrKdF1lVB14OCByEkTaqL0g7T6WH96_el7QyjqIjQQqFpkr685P0e7wtgR0ZBmhrJqOP9jArOLJWaMYqyQVqPV9M6Fub0LD66FCdX0dUM7E9iYYpBe_R38bFJFNyQsHWIkz0WxozGEZc9rb10mYUPoYxjX77g-M_5xISAwJk1ifYSijqIaG2Uz_XwSCbN4rgvw81a7Bx-guvxhBtvk7tuNTLd9OFJLsd3_tESLLZwlPxsmn6GGZcvw8JUksJl-Fg7iablCrjfuiTalsWwPmcIXsjEqBsjbCfmvnJkcFuUeA-r8gf5O-WrThAak6mYOhwSUWntl_uP6NySG-y5RI26GJarcHn46-LgiLZlGmgaJsGIWsudyDIhImGM1lpKYX04qxEW1THjDY9B5KLQl7sSmZPO9k2WGMeRe5CP43AN5vIid-tAMs6NYVZaEaB0TbjG88TgaWxcIEwYZB3ojRdKpW0Oc19K417VtnQplSel8qRUDSk7sDf5YtDk73il7S6ukGo3cflKu-1H7XKdFwrfsgSvKAmkGlic6taYhRTuWG-G0bkrKuwWBZDo-7IFHfjS8NZkal4B5rwvv75xKt9gnnucEQjK5XeYGw0rt4EoaWQ2693wH0n0CIQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEKg9lFcf2wc1CA4cvBs7TuLtraLd8oYDSNxcO3baqihZbTaH9td3nGRXCwKEVCmRImViO-Ox5xvNeAZgR0ZBmhrJqOP9jArOLJWaMYq6QVqPV9P6LMzpWXxwJY6uo-u2zml9FqYYtlt_Fx-bRMENC9uAONljYcxoHHHZ09prl97QZvOwGIVx6JPnH55fTN0ICJ5Zk2wvoWiHiNZPeV8rt_TSPPb9MOSsVc9gBb5PBt1EnPzuVmPTTf_eyef4H3-1Ci9aWEo-N-RrMOfydXg-k6xwHZbqYNG03AD3TZdE27IY1fsNwQuFGW1khO_E3FSODH8WJd6jqvxEfs3ErBOEyGTmbB12iei0js_9Q3RuyQ9suUTLuhiVL-Fq8PVy_4C25RpoGibBmFrLncgyISJhjNZaSmH9sVYjLJplxjsgg8hFoS97JTInne2bLDGOoxShPMfhK1jIi9y9AZJxbgyz0ooAtWzCNe4rBndl4wJhwiDrQG8yWSptc5n7kho3qvapS6k8O5Vnp2rY2YG96RfDJo_HI7S7OEuqXczlI3Tbt-hynRcK37IErygJpMI57MDWRIwUrlzvjtG5KypsFhWR6PvyBR143cjXdGjeEOa8L98-cSgfYfniy0CdHJ4dv4Nn3EOPQFAu38PCeFS5DwicxmazXhz_AGCdDeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+adsorption+on+monolayer+blue+phosphorus%3A+implications+for+environmental+stability+and+gas+sensors&rft.jtitle=Nanotechnology&rft.au=Liu%2C+Nanshu&rft.au=Zhou%2C+Si&rft.date=2017-04-28&rft.eissn=1361-6528&rft.volume=28&rft.issue=17&rft.spage=175708&rft_id=info:doi/10.1088%2F1361-6528%2Faa6614&rft_id=info%3Apmid%2F28282298&rft.externalDocID=28282298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |