Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors

Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried o...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 28; no. 17; p. 175708
Main Authors Liu, Nanshu, Zhou, Si
Format Journal Article
LanguageEnglish
Published England IOP Publishing 28.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O2, NO, SO2, NH3, H2O, NO2, CO2, H2S, CO, and N2, and address their effects on the electronic properties of the material. Our calculations show that O2 is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors.
AbstractList Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O , NO, SO , NH , H O, NO , CO , H S, CO, and N , and address their effects on the electronic properties of the material. Our calculations show that O is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors.
Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase of phosphorus with phosphorene as to both fundamental properties and application prospects. Here, first-principles calculations are carried out to explore the adsorption behaviors of environmental gas molecules on monolayer blue phosphorus, including O2, NO, SO2, NH3, H2O, NO2, CO2, H2S, CO, and N2, and address their effects on the electronic properties of the material. Our calculations show that O2 is prone to dissociate and tends to chemisorb on the blue phosphorus sheet, phenomena which has also been observed in phosphorene. The other gas molecules can stably physisorb on monolayer blue phosphorus, showing different interaction strengths with the monolayer. These molecules induce distinct modifications to the band gap, carrier effective mass, and work function, which also depends on the molecular coverage. The responses of the electronic properties are subject to the charge transfer as well as alignment of the frontier molecular orbital levels of the gaseous molecules and band edges of the parent sheet. These results suggest that monolayer blue phosphorus is a promising candidate for novel gas sensors.
Author Liu, Nanshu
Zhou, Si
Author_xml – sequence: 1
  givenname: Nanshu
  surname: Liu
  fullname: Liu, Nanshu
  organization: Dalian University of Technology Key Laboratory of Materials Modification by Laser, Ion and Electron Beams , Ministry of Education, Dalian 116024, People's Republic of China
– sequence: 2
  givenname: Si
  orcidid: 0000-0002-0842-1075
  surname: Zhou
  fullname: Zhou, Si
  email: sizhou@dlut.edu.cn
  organization: Dalian University of Technology Key Laboratory of Materials Modification by Laser, Ion and Electron Beams , Ministry of Education, Dalian 116024, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28282298$$D View this record in MEDLINE/PubMed
BookMark eNp9kEFr3DAQRkVJaDZp7z0VHVuIE8mW7dneSmjSQqCX5CxG1rhVkCVXsgP776vtpjmUEjRCIN73MbxTdhRiIMbeSXEhBcClbDpZdW0Nl4hdJ9Urtnn-OmIbsW37SilQJ-w05wchpIRavmYnNZRTb2HD6AYzR5tjmhcXAy8zxRA97ihx41fi88-Yy01r_sTdNHs34J7MfIyJU3h0KYaJwoKe5wWN827ZcQyW_yjNmUKpzm_Y8Yg-09un94zdX3-5u_pa3X6_-Xb1-bYaml4slbU1qXFUqlXGICKAsmVlaZStoTfQQitaahsFnVAjAdmtGXtDNQ0Doe2aM_bh0Dun-GulvOjJ5YG8x0BxzVpC36mt6gEK-v4JXc1EVs_JTZh2-q-aAogDMKSYc6LxGZFC7-3rvWq9V60P9kuk-ycyuOWPrSWh8y8Fzw9BF2f9ENcUiqWX8I__wQOGWNbXsi_T9gL0bMfmNyTypqw
CODEN NNOTER
CitedBy_id crossref_primary_10_1007_s10853_021_06300_7
crossref_primary_10_3390_coatings10121160
crossref_primary_10_1016_j_mseb_2023_116333
crossref_primary_10_3390_s19061295
crossref_primary_10_1088_1361_648X_acb5d9
crossref_primary_10_1021_acs_chemmater_9b02871
crossref_primary_10_1039_C8TC00338F
crossref_primary_10_1016_j_apsusc_2020_147039
crossref_primary_10_1021_acs_jpcc_7b02286
crossref_primary_10_1039_C8TC02626B
crossref_primary_10_1016_j_physe_2019_113838
crossref_primary_10_1016_j_physe_2021_115109
crossref_primary_10_1016_j_mtcomm_2023_106513
crossref_primary_10_1021_acs_jpcc_8b05125
crossref_primary_10_1021_acs_jpcc_7b12408
crossref_primary_10_1186_s11671_018_2687_y
crossref_primary_10_1680_jsuin_18_00013
crossref_primary_10_1016_j_susc_2018_10_019
crossref_primary_10_1016_j_vacuum_2023_111845
crossref_primary_10_1016_j_apsusc_2022_153511
crossref_primary_10_1088_1361_648X_abef9c
crossref_primary_10_1038_s41598_019_47764_7
crossref_primary_10_1063_5_0051394
crossref_primary_10_1002_pssb_202000120
crossref_primary_10_1016_j_cplett_2024_141306
crossref_primary_10_1016_j_apsusc_2019_06_212
crossref_primary_10_3390_s20113326
crossref_primary_10_1002_smll_201903495
crossref_primary_10_1002_qua_26075
crossref_primary_10_1111_jace_20363
crossref_primary_10_1039_D0TA08553G
crossref_primary_10_1039_D3DT02401F
crossref_primary_10_1007_s10825_020_01565_8
crossref_primary_10_1016_j_vacuum_2019_03_020
crossref_primary_10_1007_s10825_018_1159_z
crossref_primary_10_1016_j_jhazmat_2020_123340
crossref_primary_10_1088_1402_4896_ad733b
crossref_primary_10_1016_j_diamond_2019_107575
crossref_primary_10_1039_C8CP07680D
crossref_primary_10_1016_j_cplett_2018_06_041
crossref_primary_10_1021_acs_jpcc_7b04209
crossref_primary_10_1063_1_5006407
crossref_primary_10_1088_1361_648X_ac2331
crossref_primary_10_33108_visnyk_tntu2023_02_075
crossref_primary_10_1016_j_physe_2019_113938
crossref_primary_10_1007_s13320_019_0533_1
crossref_primary_10_1021_acsnano_9b04835
crossref_primary_10_1021_acsomega_1c01898
crossref_primary_10_1021_acsomega_1c06027
crossref_primary_10_1021_acsomega_1c06860
crossref_primary_10_1039_C9TC03219C
crossref_primary_10_1002_wcms_1361
crossref_primary_10_1002_slct_201903002
crossref_primary_10_1002_smm2_1055
crossref_primary_10_1088_1361_648X_abcdae
crossref_primary_10_1007_s00339_020_04249_z
crossref_primary_10_33108_visnyk_tntu2023_02_068
crossref_primary_10_1016_j_comptc_2019_01_013
crossref_primary_10_1016_j_apsusc_2022_153450
crossref_primary_10_3390_ma12040676
crossref_primary_10_1016_j_apsusc_2018_09_048
crossref_primary_10_1016_j_cplett_2024_141327
crossref_primary_10_1039_D2NR02657K
crossref_primary_10_1080_00268976_2019_1699184
crossref_primary_10_1016_j_renene_2022_07_113
crossref_primary_10_1039_D0CP01607A
crossref_primary_10_1364_AO_58_004518
crossref_primary_10_1139_cjp_2020_0433
crossref_primary_10_1002_cphc_201801070
crossref_primary_10_1021_acs_jpcc_7b07921
crossref_primary_10_1088_1361_648X_ac1c2f
crossref_primary_10_1016_j_mtcomm_2021_102123
crossref_primary_10_1021_acsanm_4c01746
crossref_primary_10_1007_s00894_021_04772_7
crossref_primary_10_1039_D3TA02163G
crossref_primary_10_1016_j_susc_2021_121860
crossref_primary_10_1021_acsomega_7b01992
crossref_primary_10_1039_D2NJ05553H
crossref_primary_10_1063_1_5081931
crossref_primary_10_1021_acs_jpcc_7b03808
crossref_primary_10_5488_CMP_24_13401
Cites_doi 10.1021/jz501188k
10.1103/PhysRevB.59.1758
10.1038/srep09961
10.1039/c3nr02826g
10.1021/nn501226z
10.1103/PhysRevLett.113.046804
10.1038/nature02817
10.1021/jp510863p
10.1038/srep08501
10.1088/2053-1583/2/1/011002
10.1038/nnano.2014.35
10.1021/acsnano.5b01961
10.1021/jp5116564
10.1039/C4RA17320A
10.1039/C4CP03292F
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.91.115433
10.1038/natrevmats.2016.61
10.1021/acs.nanolett.6b03208
10.1021/acs.nanolett.6b01459
10.1103/PhysRev.80.72
10.1021/acs.jpcc.6b07651
10.1063/1.4868132
10.1103/PhysRevLett.77.3865
10.1039/C5NR08810K
10.1021/jp5114152
10.1088/0957-4484/13/2/312
10.1038/srep23151
10.1021/acsami.5b07712
10.1103/PhysRevLett.112.176802
10.1088/0957-4484/26/9/095201
10.1063/1.1329672
10.1038/ncomms5458
10.1103/PhysRevB.89.235319
10.1039/C6CP05983J
10.1063/1.4893589
10.1016/j.commatsci.2014.02.025
10.1021/acs.nanolett.5b05068
10.1016/j.pmatsci.2016.04.001
10.1063/1.3382344
10.1021/acs.jpcc.5b06077
10.1021/acs.jpclett.5b01094
10.1103/PhysRevB.91.085407
10.1002/anie.201505015
10.1080/10408436.2016.1182469
10.1007/s10825-016-0846-x
10.1021/jp907062n
10.1103/PhysRevLett.114.046801
10.1039/C4NR05384B
10.1038/ncomms5475
10.1021/nl500935z
10.1016/j.apsusc.2015.08.125
10.1088/2053-1583/3/2/025002
10.1016/j.apsusc.2015.08.009
10.1016/j.commatsci.2005.04.010
10.1038/ncomms9632
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-6528/aa6614
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors
EISSN 1361-6528
EndPage 175708
ExternalDocumentID 28282298
10_1088_1361_6528_aa6614
nanoaa6614
Genre Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of China
  grantid: DUT15RC(3)014; DUT16-LAB01
– fundername: The National Natural Science Foundation of China
  grantid: 11504041; 11574040
– fundername: China Postdoctoral Science Foundation
  grantid: 2015M570243; 2016T90216
  funderid: https://doi.org/10.13039/501100002858
– fundername: Scientific Research Fund of Department of Education of Liaoning Province
  grantid: L2015124
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c370t-dd2e4ff4454bbaaa884d1181b4d287b858505e5348604fe8ed9bf7be2eccead63
IEDL.DBID IOP
ISSN 0957-4484
IngestDate Fri Jul 11 09:11:56 EDT 2025
Thu Apr 03 07:01:10 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
Tue Jul 01 00:49:17 EDT 2025
Thu Jan 07 13:48:41 EST 2021
Wed Aug 21 03:34:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-dd2e4ff4454bbaaa884d1181b4d287b858505e5348604fe8ed9bf7be2eccead63
Notes NANO-112812.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0842-1075
PMID 28282298
PQID 1876494788
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1088_1361_6528_aa6614
iop_journals_10_1088_1361_6528_aa6614
proquest_miscellaneous_1876494788
pubmed_primary_28282298
crossref_citationtrail_10_1088_1361_6528_aa6614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-28
PublicationDateYYYYMMDD 2017-04-28
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev NANO
PublicationTitleAlternate Nanotechnology
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
46
47
48
49
Liu H (59) 2016; 3
50
52
53
10
11
55
12
56
57
58
15
17
18
19
Zhang J (34) 2016; 3
1
2
3
4
5
6
7
8
9
60
61
62
20
Donarelli M (22) 2016; 3
Castellanos-Gomez A (13) 2014; 1
21
Jing Y (16) 2015; 26
23
24
25
26
27
28
29
Li Y (40) 2014; 1
Zhao J (54) 2002; 13
30
31
32
33
35
36
37
38
39
Guo Y (51) 2016; 3
Island J O (14) 2015; 2
41
42
43
Wang G (45) 2016; 3
References_xml – ident: 18
  doi: 10.1021/jz501188k
– ident: 47
  doi: 10.1103/PhysRevB.59.1758
– ident: 31
  doi: 10.1038/srep09961
– ident: 61
  doi: 10.1039/c3nr02826g
– ident: 1
  doi: 10.1021/nn501226z
– ident: 26
  doi: 10.1103/PhysRevLett.113.046804
– ident: 58
  doi: 10.1038/nature02817
– ident: 19
  doi: 10.1021/jp510863p
– ident: 33
  doi: 10.1038/srep08501
– volume: 3
  issn: 2053-1583
  year: 2016
  ident: 59
  publication-title: 2D Mater.
– volume: 2
  issn: 2053-1583
  year: 2015
  ident: 14
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/1/011002
– ident: 9
  doi: 10.1038/nnano.2014.35
– ident: 21
  doi: 10.1021/acsnano.5b01961
– ident: 17
  doi: 10.1021/jp5116564
– ident: 57
  doi: 10.1039/C4RA17320A
– volume: 3
  issn: 2053-1583
  year: 2016
  ident: 51
  publication-title: 2D Mater.
– ident: 43
  doi: 10.1039/C4CP03292F
– volume: 3
  issn: 2053-1583
  year: 2016
  ident: 45
  publication-title: 2D Mater.
– ident: 46
  doi: 10.1103/PhysRevB.54.11169
– ident: 38
  doi: 10.1103/PhysRevB.91.115433
– ident: 2
  doi: 10.1038/natrevmats.2016.61
– ident: 41
  doi: 10.1021/acs.nanolett.6b03208
– volume: 3
  issn: 2053-1583
  year: 2016
  ident: 34
  publication-title: 2D Mater.
– ident: 29
  doi: 10.1021/acs.nanolett.6b01459
– ident: 56
  doi: 10.1103/PhysRev.80.72
– volume: 1
  issn: 2053-1583
  year: 2014
  ident: 13
  publication-title: 2D Mater.
– ident: 53
  doi: 10.1021/acs.jpcc.6b07651
– ident: 6
  doi: 10.1063/1.4868132
– ident: 48
  doi: 10.1103/PhysRevLett.77.3865
– ident: 55
  doi: 10.1039/C5NR08810K
– ident: 37
  doi: 10.1021/jp5114152
– volume: 13
  start-page: 195
  issn: 0957-4484
  year: 2002
  ident: 54
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/13/2/312
– ident: 27
  doi: 10.1038/srep23151
– ident: 23
  doi: 10.1021/acsami.5b07712
– ident: 25
  doi: 10.1103/PhysRevLett.112.176802
– volume: 1
  issn: 2053-1583
  year: 2014
  ident: 40
  publication-title: 2D Mater.
– volume: 26
  issn: 0957-4484
  year: 2015
  ident: 16
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/9/095201
– ident: 50
  doi: 10.1063/1.1329672
– ident: 4
  doi: 10.1038/ncomms5458
– ident: 7
  doi: 10.1103/PhysRevB.89.235319
– ident: 36
  doi: 10.1039/C6CP05983J
– ident: 42
  doi: 10.1063/1.4893589
– ident: 44
  doi: 10.1016/j.commatsci.2014.02.025
– ident: 28
  doi: 10.1021/acs.nanolett.5b05068
– ident: 30
  doi: 10.1016/j.pmatsci.2016.04.001
– ident: 49
  doi: 10.1063/1.3382344
– ident: 62
  doi: 10.1021/acs.jpcc.5b06077
– ident: 8
  doi: 10.1021/acs.jpclett.5b01094
– ident: 11
  doi: 10.1103/PhysRevB.91.085407
– ident: 24
  doi: 10.1002/anie.201505015
– ident: 15
  doi: 10.1080/10408436.2016.1182469
– ident: 32
  doi: 10.1007/s10825-016-0846-x
– ident: 60
  doi: 10.1021/jp907062n
– ident: 10
  doi: 10.1103/PhysRevLett.114.046801
– ident: 12
  doi: 10.1039/C4NR05384B
– ident: 3
  doi: 10.1038/ncomms5475
– ident: 5
  doi: 10.1021/nl500935z
– ident: 39
  doi: 10.1016/j.apsusc.2015.08.125
– volume: 3
  issn: 2053-1583
  year: 2016
  ident: 22
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025002
– ident: 35
  doi: 10.1016/j.apsusc.2015.08.009
– ident: 52
  doi: 10.1016/j.commatsci.2005.04.010
– ident: 20
  doi: 10.1038/ncomms9632
SSID ssj0011821
Score 2.5165753
Snippet Monolayer blue phosphorus has recently been synthesized by molecular beam epitaxial growth on Au(111) substrate. It is intriguing to compare this new 2D phase...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 175708
SubjectTerms band gap
blue phosphorus
effective mass
gas sensor
work function
Title Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors
URI https://iopscience.iop.org/article/10.1088/1361-6528/aa6614
https://www.ncbi.nlm.nih.gov/pubmed/28282298
https://www.proquest.com/docview/1876494788
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFH-oy4IeXNePdXZXiaIHD5lp0rTNrKdF1lVB14OCByEkTaqL0g7T6WH96_el7QyjqIjQQqFpkr685P0e7wtgR0ZBmhrJqOP9jArOLJWaMYqyQVqPV9M6Fub0LD66FCdX0dUM7E9iYYpBe_R38bFJFNyQsHWIkz0WxozGEZc9rb10mYUPoYxjX77g-M_5xISAwJk1ifYSijqIaG2Uz_XwSCbN4rgvw81a7Bx-guvxhBtvk7tuNTLd9OFJLsd3_tESLLZwlPxsmn6GGZcvw8JUksJl-Fg7iablCrjfuiTalsWwPmcIXsjEqBsjbCfmvnJkcFuUeA-r8gf5O-WrThAak6mYOhwSUWntl_uP6NySG-y5RI26GJarcHn46-LgiLZlGmgaJsGIWsudyDIhImGM1lpKYX04qxEW1THjDY9B5KLQl7sSmZPO9k2WGMeRe5CP43AN5vIid-tAMs6NYVZaEaB0TbjG88TgaWxcIEwYZB3ojRdKpW0Oc19K417VtnQplSel8qRUDSk7sDf5YtDk73il7S6ukGo3cflKu-1H7XKdFwrfsgSvKAmkGlic6taYhRTuWG-G0bkrKuwWBZDo-7IFHfjS8NZkal4B5rwvv75xKt9gnnucEQjK5XeYGw0rt4EoaWQ2693wH0n0CIQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEKg9lFcf2wc1CA4cvBs7TuLtraLd8oYDSNxcO3baqihZbTaH9td3nGRXCwKEVCmRImViO-Ox5xvNeAZgR0ZBmhrJqOP9jArOLJWaMYq6QVqPV9P6LMzpWXxwJY6uo-u2zml9FqYYtlt_Fx-bRMENC9uAONljYcxoHHHZ09prl97QZvOwGIVx6JPnH55fTN0ICJ5Zk2wvoWiHiNZPeV8rt_TSPPb9MOSsVc9gBb5PBt1EnPzuVmPTTf_eyef4H3-1Ci9aWEo-N-RrMOfydXg-k6xwHZbqYNG03AD3TZdE27IY1fsNwQuFGW1khO_E3FSODH8WJd6jqvxEfs3ErBOEyGTmbB12iei0js_9Q3RuyQ9suUTLuhiVL-Fq8PVy_4C25RpoGibBmFrLncgyISJhjNZaSmH9sVYjLJplxjsgg8hFoS97JTInne2bLDGOoxShPMfhK1jIi9y9AZJxbgyz0ooAtWzCNe4rBndl4wJhwiDrQG8yWSptc5n7kho3qvapS6k8O5Vnp2rY2YG96RfDJo_HI7S7OEuqXczlI3Tbt-hynRcK37IErygJpMI57MDWRIwUrlzvjtG5KypsFhWR6PvyBR143cjXdGjeEOa8L98-cSgfYfniy0CdHJ4dv4Nn3EOPQFAu38PCeFS5DwicxmazXhz_AGCdDeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+adsorption+on+monolayer+blue+phosphorus%3A+implications+for+environmental+stability+and+gas+sensors&rft.jtitle=Nanotechnology&rft.au=Liu%2C+Nanshu&rft.au=Zhou%2C+Si&rft.date=2017-04-28&rft.eissn=1361-6528&rft.volume=28&rft.issue=17&rft.spage=175708&rft_id=info:doi/10.1088%2F1361-6528%2Faa6614&rft_id=info%3Apmid%2F28282298&rft.externalDocID=28282298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon