Start-up characteristics of MEMS-based micro oscillating heat pipe with and without bubble nucleation

•High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were observed.•The average evaporator temperature could be even above 140 °C for the STWBN mode.•We propounded a theoretical model to predict the a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 122; pp. 515 - 528
Main Authors Sun, Qin, Qu, Jian, Yuan, Jianping, Wang, Hai
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were observed.•The average evaporator temperature could be even above 140 °C for the STWBN mode.•We propounded a theoretical model to predict the average evaporator temperature at the STWBN mode. The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with the temperature measurement. The micro-OHP was fabricated on a silicon wafer by the MEMS technology, having trapezoidal channels with a hydraulic diameter of 357 μm. HFE-7100 was used as the working fluid with volumetric filling ratios ranging from 31% to 72%. The effects of filling ratio and heating power input on the start-up process were presented. Two different start-up behaviors, so-called start-up with and without bubble nucleation (STWBN/STWOBN), subject to different heat input levels were observed, and the underlying mechanisms were elaborately analyzed. The occurrence of STWBN or STWOBN depends mostly upon the spatial distribution of slugs/plugs in the micro-OHP. For the STWOBN mode, the fluid movement could be triggered by intense liquid film evaporation without nucleation with evaporator temperature less than 80 °C. However, the STWBN mode is sometimes indispensable to excite the two-phase oscillations in the micro-OHP due to the non-desirable slug/plug distribution, leading to much higher evaporator temperatures even greater than 140 °C to initiate the bubble generation. To predict the startup temperature at the STWBN mode, a theoretical model to describe the wall superheat required for incipient bubble nucleation in microchannels was propounded and largely agreed with the present experimental data. Micro-OHPs worked at the STWBN mode may greatly hinder their applications in electronics cooling, and artificial cavities fabricated or embedded on silicon channel wall surfaces are proposed to facilitate bubble nucleation and then the startup at low temperatures.
AbstractList The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with the temperature measurement. The micro-OHP was fabricated on a silicon wafer by the MEMS technology, having trapezoidal channels with a hydraulic diameter of 357 μm. HFE-7100 was used as the working fluid with volumetric filling ratios ranging from 31% to 72%. The effects of filling ratio and heating power input on the start-up process were presented. Two different start-up behaviors, so-called start-up with and without bubble nucleation (STWBN/STWOBN), subject to different heat input levels were observed, and the underlying mechanisms were elaborately analyzed. The occurrence of STWBN or STWOBN depends mostly upon the spatial distribution of slugs/plugs in the micro-OHP. For the STWOBN mode, the fluid movement could be triggered by intense liquid film evaporation without nucleation with evaporator temperature less than 80 °C. However, the STWBN mode is sometimes indispensable to excite the two-phase oscillations in the micro-OHP due to the non-desirable slug/plug distribution, leading to much higher evaporator temperatures even greater than 140 °C to initiate the bubble generation. To predict the startup temperature at the STWBN mode, a theoretical model to describe the wall superheat required for incipient bubble nucleation in microchannels was propounded and largely agreed with the present experimental data. Micro-OHPs worked at the STWBN mode may greatly hinder their applications in electronics cooling, and artificial cavities fabricated or embedded on silicon channel wall surfaces are proposed to facilitate bubble nucleation and then the startup at low temperatures.
•High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were observed.•The average evaporator temperature could be even above 140 °C for the STWBN mode.•We propounded a theoretical model to predict the average evaporator temperature at the STWBN mode. The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with the temperature measurement. The micro-OHP was fabricated on a silicon wafer by the MEMS technology, having trapezoidal channels with a hydraulic diameter of 357 μm. HFE-7100 was used as the working fluid with volumetric filling ratios ranging from 31% to 72%. The effects of filling ratio and heating power input on the start-up process were presented. Two different start-up behaviors, so-called start-up with and without bubble nucleation (STWBN/STWOBN), subject to different heat input levels were observed, and the underlying mechanisms were elaborately analyzed. The occurrence of STWBN or STWOBN depends mostly upon the spatial distribution of slugs/plugs in the micro-OHP. For the STWOBN mode, the fluid movement could be triggered by intense liquid film evaporation without nucleation with evaporator temperature less than 80 °C. However, the STWBN mode is sometimes indispensable to excite the two-phase oscillations in the micro-OHP due to the non-desirable slug/plug distribution, leading to much higher evaporator temperatures even greater than 140 °C to initiate the bubble generation. To predict the startup temperature at the STWBN mode, a theoretical model to describe the wall superheat required for incipient bubble nucleation in microchannels was propounded and largely agreed with the present experimental data. Micro-OHPs worked at the STWBN mode may greatly hinder their applications in electronics cooling, and artificial cavities fabricated or embedded on silicon channel wall surfaces are proposed to facilitate bubble nucleation and then the startup at low temperatures.
Author Wang, Hai
Sun, Qin
Qu, Jian
Yuan, Jianping
Author_xml – sequence: 1
  givenname: Qin
  surname: Sun
  fullname: Sun, Qin
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
– sequence: 2
  givenname: Jian
  surname: Qu
  fullname: Qu, Jian
  email: rjqu@mail.ujs.edu.cn
  organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Jianping
  surname: Yuan
  fullname: Yuan, Jianping
  organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
– sequence: 4
  givenname: Hai
  surname: Wang
  fullname: Wang, Hai
  organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
BookMark eNqVkE1P3DAQhq2KSl0-_oOlXrgkHce7cXIrQtBSgThQzpY_Jl1HWTvYDlX_fb0sp_YCJ481r56ZeY7JkQ8eCTlnUDNg7ZexduMWVd6plHJUPg0Y6wZYV0NTA_APZMU60VcN6_ojsgJgouo5g0_kOKVx_4V1uyL4kFXM1TJTs1VRmYzRpexMomGgd1d3D5VWCS3dORMDDcm4aVLZ-V90P5zObkb62-UtVd6-FGHJVC9aT0j9YqYScsGfko-DmhKevb4n5PH66ufl9-r2_tvN5cVtZbiAXFmlGrZB1jWWwQCWc8t7YcuiWmvLWiHYZgDciAH7dd_olus1mNb2a2F11xp-Qj4fuHMMTwumLMewRF9GygZEW_Rw0ZfU10OqnJRSxEHO0e1U_CMZyL1cOcr_5cq9XAmNLHIL4vofhHH55dQSd9N7QD8OICxanl3pFsXoDVoX0WRpg3s77C_FtKs9
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2023_120999
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120293
crossref_primary_10_1080_14484846_2021_2024340
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126436
crossref_primary_10_1016_j_enconman_2018_11_060
crossref_primary_10_1016_j_applthermaleng_2022_119867
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120033
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122553
crossref_primary_10_1115_1_4044825
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123281
crossref_primary_10_1080_08916152_2020_1718802
crossref_primary_10_1016_j_energy_2020_118909
crossref_primary_10_1109_TCPMT_2021_3086184
crossref_primary_10_1016_j_applthermaleng_2023_121709
crossref_primary_10_1016_j_applthermaleng_2024_123702
crossref_primary_10_1016_j_applthermaleng_2024_123949
crossref_primary_10_1007_s00231_020_02988_6
crossref_primary_10_18186_thermal_878983
crossref_primary_10_1109_TCPMT_2021_3127954
crossref_primary_10_1680_jener_20_00005
crossref_primary_10_1016_j_icheatmasstransfer_2023_107178
crossref_primary_10_1016_j_icheatmasstransfer_2023_106920
crossref_primary_10_2139_ssrn_4098519
crossref_primary_10_1016_j_applthermaleng_2022_119951
crossref_primary_10_1007_s12206_024_1239_x
crossref_primary_10_1016_j_applthermaleng_2021_117558
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122100
crossref_primary_10_1016_j_enconman_2019_112404
crossref_primary_10_3390_en13030765
crossref_primary_10_3389_fenrg_2022_947453
crossref_primary_10_1007_s00231_020_02998_4
crossref_primary_10_1016_j_ijheatfluidflow_2024_109325
crossref_primary_10_1016_j_tsep_2023_101982
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119687
crossref_primary_10_1016_j_applthermaleng_2024_124161
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126869
Cites_doi 10.1016/j.sna.2011.12.006
10.1016/j.ijthermalsci.2012.10.012
10.1016/j.ijheatmasstransfer.2006.10.043
10.1016/j.ijheatmasstransfer.2015.05.091
10.1016/j.ijheatmasstransfer.2013.12.040
10.1016/j.renene.2009.03.021
10.1016/j.expthermflusci.2005.10.001
10.2514/1.T3734
10.1080/01457630802656876
10.1109/TCAPT.2008.2001197
10.1016/j.ijthermalsci.2008.04.004
10.1016/j.applthermaleng.2010.11.009
10.1016/j.apenergy.2013.02.030
10.1016/j.ijheatmasstransfer.2016.11.076
10.1016/j.ijheatmasstransfer.2004.01.006
10.1016/S1359-4311(01)00063-1
10.1016/j.ijheatmasstransfer.2011.08.042
10.1016/j.ijheatmasstransfer.2005.02.034
10.1080/01457630701677114
10.1016/j.ijthermalsci.2016.07.002
10.1016/j.ijheatmasstransfer.2017.03.034
10.1615/JEnhHeatTransf.2012001896
10.1016/j.rser.2015.12.350
10.1016/j.ijheatmasstransfer.2014.08.002
10.1016/j.ijheatmasstransfer.2012.06.024
10.1016/j.applthermaleng.2015.03.020
10.1016/j.ijheatmasstransfer.2004.12.034
10.1016/j.applthermaleng.2007.05.007
10.1007/s11431-009-0391-y
10.1080/01457632.2012.721316
10.3390/mi5020385
10.1080/15567265.2011.645999
10.1016/j.applthermaleng.2017.06.109
10.1016/j.applthermaleng.2016.09.017
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jul 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2018
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.02.003
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 528
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_02_003
S0017931017341376
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-daa215e182d10f0d33d397d046bbbd167715f0e57fe9492b63b40c6d947db86c3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 06:51:03 EDT 2025
Tue Jul 01 02:16:56 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Fri Feb 23 02:31:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electronics cooling
Start-up behavior
Bubble nucleation
Two-phase oscillation
Oscillating heat pipe
Chip level
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-daa215e182d10f0d33d397d046bbbd167715f0e57fe9492b63b40c6d947db86c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2076201379
PQPubID 2045464
PageCount 14
ParticipantIDs proquest_journals_2076201379
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_003
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_02_003
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Qu, Wu, Cheng (b0130) 2012; 55
Thome, Dupont, Jacobi (b0165) 2004; 47
Soponpongpipat, Sakulchangsatjaati, Kammuang-Lue, Terdtoon (b0120) 2009; 30
Sun, Qu, Yuan, Wang (b0155) 2017; 124
Qu, Wu (b0125) 2010; 53
Qu, Wu, Cheng, Wang, Sun (b0015) 2017; 110
Garimella, Fleischer, Murthy, Keshavarzi, Prasher, Patel, Bhavnani, Venkatasubramanian, Mahajan, Joshi, Sammakia, Myers, Chorosinski, Baelmans, Sathyamurthy, Raad (b0005) 2008; 31
Kandlikar (b0185) 2006; 30
Zhang, Faghri (b0025) 2008; 29
Han, Wang, Zheng, Xu, Chen (b0040) 2016; 59
Patel, Mehta (b0105) 2017; 110
Qu, Li, Cui, Wang (b0080) 2017; 107
Khandekar, Gautam, Sharma (b0090) 2009; 48
Rittidech, Donmaung, Kumsombut (b0055) 2009; 34
Kwon, Kim (b0150) 2015; 89
Marcinichen, Olivier, Lamaison, Thome (b0010) 2013; 34
Hathaway, Wilson, Ma (b0060) 2012; 26
Xian, Xu, Zhang, Du, Yang (b0075) 2014; 79
Y.Q. Chen, Heat Transfer and Flow Visualization of Silicon-Based Micro Pulsating Heat Pipe, MS Thesis, Shanghai Jiao Tong University, China, 2013.
Yang, Cheng, Jeng, Chien, Shyu (b0145) 2014; 5
Wu, Cheng (b0170) 2005; 48
Lee, Kim, Kaviany, Son (b0200) 2011; 54
Xu, Zhang (b0085) 2005; 41
Yang, Cheng, Liu, Shyu (b0140) 2015; 83
Qu, Wu, Wang (b0065) 2012; 16
Lin, Wang, Chen, Huo, Hu, Zhang (b0110) 2011; 31
Charoensawan, Terdtoon (b0095) 2008; 28
Qu, Ma (b0115) 2007; 50
S.G. Kandlikar, V. Mizo, M. Cartwright, Bubble nucleation and growth characteristics in subcooled flow boiling of water, in: 32th National Heat Transfer Conference, ASME, 1997.
Qu, Wang, Sun (b0160) 2016; 110
Youn, Kim (b0135) 2012; 174
Jo, Kaviany, Kim, Kim (b0175) 2014; 71
H. Akachi, F. Polasek, P. Stulc, Pulsating heat pipe, in: Proceedings of the 5th International Heat Pipe Symposium, Australia, 1996, pp. 208–217.
Qu, Wang (b0070) 2013; 112
Tong, Wong, Ooi (b0045) 2001; 21
Khandekar, Panigrahi, Lefèvre, Bonjour (b0030) 2010; 1
Xiao, Cao (b0035) 2012; 19
Liu, Chen, Shi (b0100) 2013; 65
Xu, Li, Wong (b0050) 2005; 48
Marcinichen (10.1016/j.ijheatmasstransfer.2018.02.003_b0010) 2013; 34
10.1016/j.ijheatmasstransfer.2018.02.003_b0020
Xu (10.1016/j.ijheatmasstransfer.2018.02.003_b0050) 2005; 48
Xian (10.1016/j.ijheatmasstransfer.2018.02.003_b0075) 2014; 79
Wu (10.1016/j.ijheatmasstransfer.2018.02.003_b0170) 2005; 48
Garimella (10.1016/j.ijheatmasstransfer.2018.02.003_b0005) 2008; 31
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0070) 2013; 112
Xiao (10.1016/j.ijheatmasstransfer.2018.02.003_b0035) 2012; 19
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0125) 2010; 53
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0065) 2012; 16
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0130) 2012; 55
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0080) 2017; 107
Xu (10.1016/j.ijheatmasstransfer.2018.02.003_b0085) 2005; 41
Soponpongpipat (10.1016/j.ijheatmasstransfer.2018.02.003_b0120) 2009; 30
Youn (10.1016/j.ijheatmasstransfer.2018.02.003_b0135) 2012; 174
Patel (10.1016/j.ijheatmasstransfer.2018.02.003_b0105) 2017; 110
Liu (10.1016/j.ijheatmasstransfer.2018.02.003_b0100) 2013; 65
Yang (10.1016/j.ijheatmasstransfer.2018.02.003_b0145) 2014; 5
Zhang (10.1016/j.ijheatmasstransfer.2018.02.003_b0025) 2008; 29
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0160) 2016; 110
Yang (10.1016/j.ijheatmasstransfer.2018.02.003_b0140) 2015; 83
10.1016/j.ijheatmasstransfer.2018.02.003_b0180
Lin (10.1016/j.ijheatmasstransfer.2018.02.003_b0110) 2011; 31
Lee (10.1016/j.ijheatmasstransfer.2018.02.003_b0200) 2011; 54
Hathaway (10.1016/j.ijheatmasstransfer.2018.02.003_b0060) 2012; 26
10.1016/j.ijheatmasstransfer.2018.02.003_b0195
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0015) 2017; 110
Tong (10.1016/j.ijheatmasstransfer.2018.02.003_b0045) 2001; 21
Rittidech (10.1016/j.ijheatmasstransfer.2018.02.003_b0055) 2009; 34
Kwon (10.1016/j.ijheatmasstransfer.2018.02.003_b0150) 2015; 89
Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0115) 2007; 50
Kandlikar (10.1016/j.ijheatmasstransfer.2018.02.003_b0185) 2006; 30
Sun (10.1016/j.ijheatmasstransfer.2018.02.003_b0155) 2017; 124
Khandekar (10.1016/j.ijheatmasstransfer.2018.02.003_b0030) 2010; 1
Thome (10.1016/j.ijheatmasstransfer.2018.02.003_b0165) 2004; 47
Charoensawan (10.1016/j.ijheatmasstransfer.2018.02.003_b0095) 2008; 28
Han (10.1016/j.ijheatmasstransfer.2018.02.003_b0040) 2016; 59
Khandekar (10.1016/j.ijheatmasstransfer.2018.02.003_b0090) 2009; 48
Jo (10.1016/j.ijheatmasstransfer.2018.02.003_b0175) 2014; 71
References_xml – volume: 19
  start-page: 213
  year: 2012
  end-page: 231
  ident: b0035
  article-title: Recent advances in pulsating heat pipes and its derivatives
  publication-title: J. Enhanc. Heat Transfer
– volume: 1
  start-page: 1
  year: 2010
  end-page: 20
  ident: b0030
  article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review
  publication-title: Front. Heat Pipes
– volume: 107
  start-page: 640
  year: 2017
  end-page: 645
  ident: b0080
  article-title: Design and experimental study on a hybrid flexible oscillating heat pipe
  publication-title: Int. J. Heat Mass Transfer
– volume: 110
  start-page: 174
  year: 2016
  end-page: 185
  ident: b0160
  article-title: Lower limit of internal diameter for oscillating heat pipes: a theoretical model
  publication-title: Int. J. Therm. Sci.
– volume: 112
  start-page: 1154
  year: 2013
  end-page: 1160
  ident: b0070
  article-title: Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling
  publication-title: Appl. Energy
– volume: 110
  start-page: 294
  year: 2017
  end-page: 313
  ident: b0015
  article-title: Recent advances in MEMS-based micro heat pipes
  publication-title: Int. J. Heat Mass Transfer
– volume: 48
  start-page: 3338
  year: 2005
  end-page: 3351
  ident: b0050
  article-title: High speed flow visualization of a closed loop pulsating heat pipe
  publication-title: Int. J. Heat Mass Transfer
– reference: S.G. Kandlikar, V. Mizo, M. Cartwright, Bubble nucleation and growth characteristics in subcooled flow boiling of water, in: 32th National Heat Transfer Conference, ASME, 1997.
– volume: 31
  start-page: 880
  year: 2011
  end-page: 886
  ident: b0110
  article-title: Experimental study on effective range of miniature oscillating heat pipes
  publication-title: Appl. Therm. Eng.
– volume: 28
  start-page: 460
  year: 2008
  end-page: 466
  ident: b0095
  article-title: Thermal performance of horizontal closed-loop oscillating heat pipes
  publication-title: Appl. Therm. Eng.
– volume: 48
  start-page: 2186
  year: 2005
  end-page: 2197
  ident: b0170
  article-title: Condensation flow patterns in silicon microchannels
  publication-title: Int. J. Heat Mass Transfer
– volume: 30
  start-page: 626
  year: 2009
  end-page: 642
  ident: b0120
  article-title: Investigation of the startup condition of a closed-loop oscillating heat pipe
  publication-title: Heat Transfer Eng.
– volume: 29
  start-page: 20
  year: 2008
  end-page: 44
  ident: b0025
  article-title: Advances and unsolved issues in pulsating heat pipes
  publication-title: Heat Transfer Eng.
– volume: 124
  start-page: 1269
  year: 2017
  end-page: 1278
  ident: b0155
  article-title: Operational characteristics of an MEMS-based micro oscillating heat pipe
  publication-title: Appl. Therm. Eng.
– volume: 54
  start-page: 5139
  year: 2011
  end-page: 5148
  ident: b0200
  article-title: Bubble nucleation in microchannel flow boiling using single artificial cavity
  publication-title: Int. J. Heat Mass Transfer
– volume: 59
  start-page: 692
  year: 2016
  end-page: 709
  ident: b0040
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sust. Energy Rev.
– volume: 55
  start-page: 6109
  year: 2012
  end-page: 6120
  ident: b0130
  article-title: Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes
  publication-title: Int. J. Heat Mass Transfer
– volume: 174
  start-page: 189
  year: 2012
  end-page: 197
  ident: b0135
  article-title: Fabrication and evaluation of a silicon-based micro pulsating heat spreader
  publication-title: Sens. Actuat., A
– volume: 48
  start-page: 535
  year: 2009
  end-page: 546
  ident: b0090
  article-title: Multiple quasi-steady states in a closed loop pulsating heat pipe
  publication-title: Int. J. Therm. Sci.
– reference: Y.Q. Chen, Heat Transfer and Flow Visualization of Silicon-Based Micro Pulsating Heat Pipe, MS Thesis, Shanghai Jiao Tong University, China, 2013.
– volume: 41
  start-page: 685
  year: 2005
  end-page: 694
  ident: b0085
  article-title: Start-up and steady thermal oscillation of a pulsating heat pipe
  publication-title: J. Heat Transfer
– volume: 79
  start-page: 332
  year: 2014
  end-page: 341
  ident: b0075
  article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating
  publication-title: Int. J. Heat Mass Transfer
– volume: 21
  start-page: 1845
  year: 2001
  end-page: 1862
  ident: b0045
  article-title: Closed-loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
– reference: H. Akachi, F. Polasek, P. Stulc, Pulsating heat pipe, in: Proceedings of the 5th International Heat Pipe Symposium, Australia, 1996, pp. 208–217.
– volume: 30
  start-page: 441
  year: 2006
  end-page: 447
  ident: b0185
  article-title: Nucleation characteristics and stability considerations during flow boiling in microchannels
  publication-title: Exp. Therm. Fluid Sci.
– volume: 50
  start-page: 2309
  year: 2007
  end-page: 2316
  ident: b0115
  article-title: Theoretical analysis of startup of a pulsating heat pipe
  publication-title: Int. J. Heat Mass Transfer
– volume: 5
  start-page: 385
  year: 2014
  end-page: 395
  ident: b0145
  article-title: An experimental investigation of micro pulsating heat pipes
  publication-title: Micromachines
– volume: 34
  start-page: 2234
  year: 2009
  end-page: 2238
  ident: b0055
  article-title: Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV)
  publication-title: Renew. Energy
– volume: 16
  start-page: 37
  year: 2012
  end-page: 49
  ident: b0065
  article-title: Experimental investigation of silicon-based micro pulsating heat pipe for cooling electronics
  publication-title: Nanosca. Microsca. Thermophys. Eng.
– volume: 110
  start-page: 1568
  year: 2017
  end-page: 1577
  ident: b0105
  article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
– volume: 31
  start-page: 801
  year: 2008
  end-page: 815
  ident: b0005
  article-title: Thermal challenges in next-generation electronic systems
  publication-title: IEEE Trans. Comp. Packag. Technol.
– volume: 83
  start-page: 131
  year: 2015
  end-page: 138
  ident: b0140
  article-title: Micro pulsating heat pipes with alternate microchannel widths
  publication-title: Appl. Therm. Eng.
– volume: 65
  start-page: 224
  year: 2013
  end-page: 233
  ident: b0100
  article-title: Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs)
  publication-title: Int. J. Therm. Sci.
– volume: 53
  start-page: 984
  year: 2010
  end-page: 990
  ident: b0125
  article-title: Flow visualization of silicon-based micro pulsating heat pipes
  publication-title: Sci. China: Technol. Sci.
– volume: 47
  start-page: 3375
  year: 2004
  end-page: 3385
  ident: b0165
  article-title: Heat transfer model for evaporation in microchannels. Part I: Presentation of the model
  publication-title: Int. J. Heat Mass Transfer
– volume: 71
  start-page: 149
  year: 2014
  end-page: 157
  ident: b0175
  article-title: Heterogeneous bubble nucleation on ideally-smooth horizontal heated surface
  publication-title: Int. J. Heat. Mass Transfer
– volume: 26
  start-page: 115
  year: 2012
  end-page: 122
  ident: b0060
  article-title: Experimental investigation of uneven-turn water and acetone oscillating heat pipes
  publication-title: J. Thermophys. Heat Transfer
– volume: 34
  start-page: 434
  year: 2013
  end-page: 446
  ident: b0010
  article-title: Advances in electronics cooling
  publication-title: Heat Transfer Eng.
– volume: 89
  start-page: 817
  year: 2015
  end-page: 828
  ident: b0150
  article-title: Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel
  publication-title: Int. J. Heat Mass Transfer
– volume: 174
  start-page: 189
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0135
  article-title: Fabrication and evaluation of a silicon-based micro pulsating heat spreader
  publication-title: Sens. Actuat., A
  doi: 10.1016/j.sna.2011.12.006
– volume: 65
  start-page: 224
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0100
  article-title: Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs)
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2012.10.012
– volume: 50
  start-page: 2309
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0115
  article-title: Theoretical analysis of startup of a pulsating heat pipe
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.10.043
– volume: 89
  start-page: 817
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0150
  article-title: Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.05.091
– volume: 71
  start-page: 149
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0175
  article-title: Heterogeneous bubble nucleation on ideally-smooth horizontal heated surface
  publication-title: Int. J. Heat. Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.12.040
– volume: 34
  start-page: 2234
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0055
  article-title: Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV)
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.03.021
– volume: 30
  start-page: 441
  issue: 5
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0185
  article-title: Nucleation characteristics and stability considerations during flow boiling in microchannels
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2005.10.001
– volume: 1
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0030
  article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review
  publication-title: Front. Heat Pipes
– volume: 26
  start-page: 115
  issue: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0060
  article-title: Experimental investigation of uneven-turn water and acetone oscillating heat pipes
  publication-title: J. Thermophys. Heat Transfer
  doi: 10.2514/1.T3734
– volume: 30
  start-page: 626
  issue: 8
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0120
  article-title: Investigation of the startup condition of a closed-loop oscillating heat pipe
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630802656876
– volume: 31
  start-page: 801
  issue: 4
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0005
  article-title: Thermal challenges in next-generation electronic systems
  publication-title: IEEE Trans. Comp. Packag. Technol.
  doi: 10.1109/TCAPT.2008.2001197
– ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0020
– volume: 48
  start-page: 535
  issue: 3
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0090
  article-title: Multiple quasi-steady states in a closed loop pulsating heat pipe
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.04.004
– volume: 31
  start-page: 880
  issue: 5
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0110
  article-title: Experimental study on effective range of miniature oscillating heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.11.009
– volume: 112
  start-page: 1154
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0070
  article-title: Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.02.030
– volume: 107
  start-page: 640
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0080
  article-title: Design and experimental study on a hybrid flexible oscillating heat pipe
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.11.076
– volume: 47
  start-page: 3375
  issue: 14
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0165
  article-title: Heat transfer model for evaporation in microchannels. Part I: Presentation of the model
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.01.006
– volume: 21
  start-page: 1845
  issue: 18
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0045
  article-title: Closed-loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00063-1
– volume: 54
  start-page: 5139
  issue: 25
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0200
  article-title: Bubble nucleation in microchannel flow boiling using single artificial cavity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.08.042
– volume: 48
  start-page: 3338
  issue: 16
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0050
  article-title: High speed flow visualization of a closed loop pulsating heat pipe
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.02.034
– volume: 29
  start-page: 20
  issue: 1
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0025
  article-title: Advances and unsolved issues in pulsating heat pipes
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630701677114
– volume: 110
  start-page: 174
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0160
  article-title: Lower limit of internal diameter for oscillating heat pipes: a theoretical model
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.07.002
– volume: 110
  start-page: 294
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0015
  article-title: Recent advances in MEMS-based micro heat pipes
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.03.034
– volume: 19
  start-page: 213
  issue: 3
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0035
  article-title: Recent advances in pulsating heat pipes and its derivatives
  publication-title: J. Enhanc. Heat Transfer
  doi: 10.1615/JEnhHeatTransf.2012001896
– volume: 59
  start-page: 692
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0040
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.12.350
– volume: 41
  start-page: 685
  issue: 8
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0085
  article-title: Start-up and steady thermal oscillation of a pulsating heat pipe
  publication-title: J. Heat Transfer
– volume: 79
  start-page: 332
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0075
  article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.08.002
– volume: 55
  start-page: 6109
  issue: 21
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0130
  article-title: Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.06.024
– volume: 83
  start-page: 131
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0140
  article-title: Micro pulsating heat pipes with alternate microchannel widths
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.03.020
– volume: 48
  start-page: 2186
  issue: 11
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0170
  article-title: Condensation flow patterns in silicon microchannels
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.12.034
– ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0180
– volume: 28
  start-page: 460
  issue: 56
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0095
  article-title: Thermal performance of horizontal closed-loop oscillating heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.05.007
– volume: 53
  start-page: 984
  issue: 4
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0125
  article-title: Flow visualization of silicon-based micro pulsating heat pipes
  publication-title: Sci. China: Technol. Sci.
  doi: 10.1007/s11431-009-0391-y
– volume: 34
  start-page: 434
  issue: 5–6
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0010
  article-title: Advances in electronics cooling
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2012.721316
– volume: 5
  start-page: 385
  issue: 2
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0145
  article-title: An experimental investigation of micro pulsating heat pipes
  publication-title: Micromachines
  doi: 10.3390/mi5020385
– volume: 16
  start-page: 37
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0065
  article-title: Experimental investigation of silicon-based micro pulsating heat pipe for cooling electronics
  publication-title: Nanosca. Microsca. Thermophys. Eng.
  doi: 10.1080/15567265.2011.645999
– ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0195
– volume: 124
  start-page: 1269
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0155
  article-title: Operational characteristics of an MEMS-based micro oscillating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.06.109
– volume: 110
  start-page: 1568
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0105
  article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.017
SSID ssj0017046
Score 2.4429696
Snippet •High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were...
The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 515
SubjectTerms Bubble nucleation
Bubbles
CCD cameras
Chip level
Electronics
Electronics cooling
Evaporation
Heat pipes
Microchannels
Microelectromechanical systems
Miniaturization
Nucleation
Oscillating heat pipe
Plugs
Silicon
Silicon wafers
Slugs
Spatial distribution
Start-up behavior
Temperature measurement
Trapezoidal channels
Two-phase oscillation
Working fluids
Title Start-up characteristics of MEMS-based micro oscillating heat pipe with and without bubble nucleation
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.003
https://www.proquest.com/docview/2076201379
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4QjMaL8RlRJHvw4KWybbe77ckQIkEJHFQit6bb3RoIlAbaq7_dnT4waDyQeOp7u5mZzmPzzVeEbrkVQrXDjAAWN3QCHxiCMGUEEZMeEYyzCHqHhyPWH9PniTOpoW7VCwOwytL3Fz4999blmXYpzXYynUKPLxgXmBR4Yg6025RysPL7zw3Mw-SkaNYBbwx3H6C7b4zXdAYeb6HT1DRPExUwhJpuweJp_xWqfjjtPBL1jtFRmULiTjHLE1RT8Snaz6Gc4foMKZ0_rlIjS3C4TcaMlxEePg5fDYhcEi8AioeBy3IOeLj4A8MscTJNFIbVWRzEMt9ZZikWmRBzhWNgP851eY7Gvce3bt8of6ZghDYnqSGDQEd3pcsJaZKISNuWOhWRWjpCCGkyzk0nIsrhkfKoZwlmC0pCrTDKpXBZaF-geryM1SXC0o1cXcTqQkdZlAvqRS6VNLS1LxDMM50Geqjk5ocl0zj88GLuV5Cymf9b8j5I3icWsJU2kLcZISlYN3Z4tlupyt-yJF8HiR1GaVZa9suveq2v69ABHI3e1b-85BodwlGB_m2ierrK1I3OcVLRyo24hfY6T4P-CLaDl_fBFwz0AmE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6VIh4L4ikKBTwwsIQ6jWsnE0IVVXmUBSp1s-LYQa1KGtF05bfjywNUEAMSW5SHY92d72F99xngXLQjrHa4E-Lmhk3gQ0dRbpww5jqgigseY-_w4JH3h-xu1BnVoFv1wiCssvT9hU_PvXV5p1VKs5WOx9jji8aFJoWeWPAVWGV2-eIxBpfvnzgPV9CiWwfdMb6-DhdfIK_xBF3eq81TszxPNEgR6voFjaf3W6z65rXzUNTbhq0yhyTXxTR3oGaSXVjLsZzRfA-MTSDfMmeRkmiZjZnMYjK4GTw5GLo0eUUsHkEyyykC4pIXgrMk6Tg1BLdnSZjo_GK2yIhaKDU1JEH641yZ-zDs3Tx3-055moITeYJmjg5DG96NrSe0S2OqPU_bXERb6SiltMuFcDsxNR0Rm4AFbcU9xWhkNcaEVj6PvAOoJ7PEHALRfuzbKtZWOqbNhGJB7DPNIs86A8UDt9OAq0puMiqpxvHEi6msMGUT-VPyEiUvaRvpShsQfI6QFrQbf_i2W6lKLpmStFHiD6M0Ky3LclnP7XMbO5CkMTj6l5-cwUb_efAgH24f749hE58UUOAm1LO3hTmxCU-mTnOD_gDLrAJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Start-up+characteristics+of+MEMS-based+micro+oscillating+heat+pipe+with+and+without+bubble+nucleation&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Sun%2C+Qin&rft.au=Qu%2C+Jian&rft.au=Yuan%2C+Jianping&rft.au=Wang%2C+Hai&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=122&rft.spage=515&rft.epage=528&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.02.003&rft.externalDocID=S0017931017341376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon