Start-up characteristics of MEMS-based micro oscillating heat pipe with and without bubble nucleation
•High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were observed.•The average evaporator temperature could be even above 140 °C for the STWBN mode.•We propounded a theoretical model to predict the a...
Saved in:
Published in | International journal of heat and mass transfer Vol. 122; pp. 515 - 528 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were observed.•The average evaporator temperature could be even above 140 °C for the STWBN mode.•We propounded a theoretical model to predict the average evaporator temperature at the STWBN mode.
The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with the temperature measurement. The micro-OHP was fabricated on a silicon wafer by the MEMS technology, having trapezoidal channels with a hydraulic diameter of 357 μm. HFE-7100 was used as the working fluid with volumetric filling ratios ranging from 31% to 72%. The effects of filling ratio and heating power input on the start-up process were presented. Two different start-up behaviors, so-called start-up with and without bubble nucleation (STWBN/STWOBN), subject to different heat input levels were observed, and the underlying mechanisms were elaborately analyzed. The occurrence of STWBN or STWOBN depends mostly upon the spatial distribution of slugs/plugs in the micro-OHP. For the STWOBN mode, the fluid movement could be triggered by intense liquid film evaporation without nucleation with evaporator temperature less than 80 °C. However, the STWBN mode is sometimes indispensable to excite the two-phase oscillations in the micro-OHP due to the non-desirable slug/plug distribution, leading to much higher evaporator temperatures even greater than 140 °C to initiate the bubble generation. To predict the startup temperature at the STWBN mode, a theoretical model to describe the wall superheat required for incipient bubble nucleation in microchannels was propounded and largely agreed with the present experimental data. Micro-OHPs worked at the STWBN mode may greatly hinder their applications in electronics cooling, and artificial cavities fabricated or embedded on silicon channel wall surfaces are proposed to facilitate bubble nucleation and then the startup at low temperatures. |
---|---|
AbstractList | The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with the temperature measurement. The micro-OHP was fabricated on a silicon wafer by the MEMS technology, having trapezoidal channels with a hydraulic diameter of 357 μm. HFE-7100 was used as the working fluid with volumetric filling ratios ranging from 31% to 72%. The effects of filling ratio and heating power input on the start-up process were presented. Two different start-up behaviors, so-called start-up with and without bubble nucleation (STWBN/STWOBN), subject to different heat input levels were observed, and the underlying mechanisms were elaborately analyzed. The occurrence of STWBN or STWOBN depends mostly upon the spatial distribution of slugs/plugs in the micro-OHP. For the STWOBN mode, the fluid movement could be triggered by intense liquid film evaporation without nucleation with evaporator temperature less than 80 °C. However, the STWBN mode is sometimes indispensable to excite the two-phase oscillations in the micro-OHP due to the non-desirable slug/plug distribution, leading to much higher evaporator temperatures even greater than 140 °C to initiate the bubble generation. To predict the startup temperature at the STWBN mode, a theoretical model to describe the wall superheat required for incipient bubble nucleation in microchannels was propounded and largely agreed with the present experimental data. Micro-OHPs worked at the STWBN mode may greatly hinder their applications in electronics cooling, and artificial cavities fabricated or embedded on silicon channel wall surfaces are proposed to facilitate bubble nucleation and then the startup at low temperatures. •High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were observed.•The average evaporator temperature could be even above 140 °C for the STWBN mode.•We propounded a theoretical model to predict the average evaporator temperature at the STWBN mode. The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with the temperature measurement. The micro-OHP was fabricated on a silicon wafer by the MEMS technology, having trapezoidal channels with a hydraulic diameter of 357 μm. HFE-7100 was used as the working fluid with volumetric filling ratios ranging from 31% to 72%. The effects of filling ratio and heating power input on the start-up process were presented. Two different start-up behaviors, so-called start-up with and without bubble nucleation (STWBN/STWOBN), subject to different heat input levels were observed, and the underlying mechanisms were elaborately analyzed. The occurrence of STWBN or STWOBN depends mostly upon the spatial distribution of slugs/plugs in the micro-OHP. For the STWOBN mode, the fluid movement could be triggered by intense liquid film evaporation without nucleation with evaporator temperature less than 80 °C. However, the STWBN mode is sometimes indispensable to excite the two-phase oscillations in the micro-OHP due to the non-desirable slug/plug distribution, leading to much higher evaporator temperatures even greater than 140 °C to initiate the bubble generation. To predict the startup temperature at the STWBN mode, a theoretical model to describe the wall superheat required for incipient bubble nucleation in microchannels was propounded and largely agreed with the present experimental data. Micro-OHPs worked at the STWBN mode may greatly hinder their applications in electronics cooling, and artificial cavities fabricated or embedded on silicon channel wall surfaces are proposed to facilitate bubble nucleation and then the startup at low temperatures. |
Author | Wang, Hai Sun, Qin Qu, Jian Yuan, Jianping |
Author_xml | – sequence: 1 givenname: Qin surname: Sun fullname: Sun, Qin organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Jian surname: Qu fullname: Qu, Jian email: rjqu@mail.ujs.edu.cn organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Jianping surname: Yuan fullname: Yuan, Jianping organization: Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China – sequence: 4 givenname: Hai surname: Wang fullname: Wang, Hai organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China |
BookMark | eNqVkE1P3DAQhq2KSl0-_oOlXrgkHce7cXIrQtBSgThQzpY_Jl1HWTvYDlX_fb0sp_YCJ481r56ZeY7JkQ8eCTlnUDNg7ZexduMWVd6plHJUPg0Y6wZYV0NTA_APZMU60VcN6_ojsgJgouo5g0_kOKVx_4V1uyL4kFXM1TJTs1VRmYzRpexMomGgd1d3D5VWCS3dORMDDcm4aVLZ-V90P5zObkb62-UtVd6-FGHJVC9aT0j9YqYScsGfko-DmhKevb4n5PH66ufl9-r2_tvN5cVtZbiAXFmlGrZB1jWWwQCWc8t7YcuiWmvLWiHYZgDciAH7dd_olus1mNb2a2F11xp-Qj4fuHMMTwumLMewRF9GygZEW_Rw0ZfU10OqnJRSxEHO0e1U_CMZyL1cOcr_5cq9XAmNLHIL4vofhHH55dQSd9N7QD8OICxanl3pFsXoDVoX0WRpg3s77C_FtKs9 |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_120999 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120293 crossref_primary_10_1080_14484846_2021_2024340 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126436 crossref_primary_10_1016_j_enconman_2018_11_060 crossref_primary_10_1016_j_applthermaleng_2022_119867 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120033 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122553 crossref_primary_10_1115_1_4044825 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123281 crossref_primary_10_1080_08916152_2020_1718802 crossref_primary_10_1016_j_energy_2020_118909 crossref_primary_10_1109_TCPMT_2021_3086184 crossref_primary_10_1016_j_applthermaleng_2023_121709 crossref_primary_10_1016_j_applthermaleng_2024_123702 crossref_primary_10_1016_j_applthermaleng_2024_123949 crossref_primary_10_1007_s00231_020_02988_6 crossref_primary_10_18186_thermal_878983 crossref_primary_10_1109_TCPMT_2021_3127954 crossref_primary_10_1680_jener_20_00005 crossref_primary_10_1016_j_icheatmasstransfer_2023_107178 crossref_primary_10_1016_j_icheatmasstransfer_2023_106920 crossref_primary_10_2139_ssrn_4098519 crossref_primary_10_1016_j_applthermaleng_2022_119951 crossref_primary_10_1007_s12206_024_1239_x crossref_primary_10_1016_j_applthermaleng_2021_117558 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122100 crossref_primary_10_1016_j_enconman_2019_112404 crossref_primary_10_3390_en13030765 crossref_primary_10_3389_fenrg_2022_947453 crossref_primary_10_1007_s00231_020_02998_4 crossref_primary_10_1016_j_ijheatfluidflow_2024_109325 crossref_primary_10_1016_j_tsep_2023_101982 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119687 crossref_primary_10_1016_j_applthermaleng_2024_124161 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126869 |
Cites_doi | 10.1016/j.sna.2011.12.006 10.1016/j.ijthermalsci.2012.10.012 10.1016/j.ijheatmasstransfer.2006.10.043 10.1016/j.ijheatmasstransfer.2015.05.091 10.1016/j.ijheatmasstransfer.2013.12.040 10.1016/j.renene.2009.03.021 10.1016/j.expthermflusci.2005.10.001 10.2514/1.T3734 10.1080/01457630802656876 10.1109/TCAPT.2008.2001197 10.1016/j.ijthermalsci.2008.04.004 10.1016/j.applthermaleng.2010.11.009 10.1016/j.apenergy.2013.02.030 10.1016/j.ijheatmasstransfer.2016.11.076 10.1016/j.ijheatmasstransfer.2004.01.006 10.1016/S1359-4311(01)00063-1 10.1016/j.ijheatmasstransfer.2011.08.042 10.1016/j.ijheatmasstransfer.2005.02.034 10.1080/01457630701677114 10.1016/j.ijthermalsci.2016.07.002 10.1016/j.ijheatmasstransfer.2017.03.034 10.1615/JEnhHeatTransf.2012001896 10.1016/j.rser.2015.12.350 10.1016/j.ijheatmasstransfer.2014.08.002 10.1016/j.ijheatmasstransfer.2012.06.024 10.1016/j.applthermaleng.2015.03.020 10.1016/j.ijheatmasstransfer.2004.12.034 10.1016/j.applthermaleng.2007.05.007 10.1007/s11431-009-0391-y 10.1080/01457632.2012.721316 10.3390/mi5020385 10.1080/15567265.2011.645999 10.1016/j.applthermaleng.2017.06.109 10.1016/j.applthermaleng.2016.09.017 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jul 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2018 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2018.02.003 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 528 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2018_02_003 S0017931017341376 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-daa215e182d10f0d33d397d046bbbd167715f0e57fe9492b63b40c6d947db86c3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 06:51:03 EDT 2025 Tue Jul 01 02:16:56 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Fri Feb 23 02:31:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electronics cooling Start-up behavior Bubble nucleation Two-phase oscillation Oscillating heat pipe Chip level |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-daa215e182d10f0d33d397d046bbbd167715f0e57fe9492b63b40c6d947db86c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2076201379 |
PQPubID | 2045464 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2076201379 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_003 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_02_003 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Qu, Wu, Cheng (b0130) 2012; 55 Thome, Dupont, Jacobi (b0165) 2004; 47 Soponpongpipat, Sakulchangsatjaati, Kammuang-Lue, Terdtoon (b0120) 2009; 30 Sun, Qu, Yuan, Wang (b0155) 2017; 124 Qu, Wu (b0125) 2010; 53 Qu, Wu, Cheng, Wang, Sun (b0015) 2017; 110 Garimella, Fleischer, Murthy, Keshavarzi, Prasher, Patel, Bhavnani, Venkatasubramanian, Mahajan, Joshi, Sammakia, Myers, Chorosinski, Baelmans, Sathyamurthy, Raad (b0005) 2008; 31 Kandlikar (b0185) 2006; 30 Zhang, Faghri (b0025) 2008; 29 Han, Wang, Zheng, Xu, Chen (b0040) 2016; 59 Patel, Mehta (b0105) 2017; 110 Qu, Li, Cui, Wang (b0080) 2017; 107 Khandekar, Gautam, Sharma (b0090) 2009; 48 Rittidech, Donmaung, Kumsombut (b0055) 2009; 34 Kwon, Kim (b0150) 2015; 89 Marcinichen, Olivier, Lamaison, Thome (b0010) 2013; 34 Hathaway, Wilson, Ma (b0060) 2012; 26 Xian, Xu, Zhang, Du, Yang (b0075) 2014; 79 Y.Q. Chen, Heat Transfer and Flow Visualization of Silicon-Based Micro Pulsating Heat Pipe, MS Thesis, Shanghai Jiao Tong University, China, 2013. Yang, Cheng, Jeng, Chien, Shyu (b0145) 2014; 5 Wu, Cheng (b0170) 2005; 48 Lee, Kim, Kaviany, Son (b0200) 2011; 54 Xu, Zhang (b0085) 2005; 41 Yang, Cheng, Liu, Shyu (b0140) 2015; 83 Qu, Wu, Wang (b0065) 2012; 16 Lin, Wang, Chen, Huo, Hu, Zhang (b0110) 2011; 31 Charoensawan, Terdtoon (b0095) 2008; 28 Qu, Ma (b0115) 2007; 50 S.G. Kandlikar, V. Mizo, M. Cartwright, Bubble nucleation and growth characteristics in subcooled flow boiling of water, in: 32th National Heat Transfer Conference, ASME, 1997. Qu, Wang, Sun (b0160) 2016; 110 Youn, Kim (b0135) 2012; 174 Jo, Kaviany, Kim, Kim (b0175) 2014; 71 H. Akachi, F. Polasek, P. Stulc, Pulsating heat pipe, in: Proceedings of the 5th International Heat Pipe Symposium, Australia, 1996, pp. 208–217. Qu, Wang (b0070) 2013; 112 Tong, Wong, Ooi (b0045) 2001; 21 Khandekar, Panigrahi, Lefèvre, Bonjour (b0030) 2010; 1 Xiao, Cao (b0035) 2012; 19 Liu, Chen, Shi (b0100) 2013; 65 Xu, Li, Wong (b0050) 2005; 48 Marcinichen (10.1016/j.ijheatmasstransfer.2018.02.003_b0010) 2013; 34 10.1016/j.ijheatmasstransfer.2018.02.003_b0020 Xu (10.1016/j.ijheatmasstransfer.2018.02.003_b0050) 2005; 48 Xian (10.1016/j.ijheatmasstransfer.2018.02.003_b0075) 2014; 79 Wu (10.1016/j.ijheatmasstransfer.2018.02.003_b0170) 2005; 48 Garimella (10.1016/j.ijheatmasstransfer.2018.02.003_b0005) 2008; 31 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0070) 2013; 112 Xiao (10.1016/j.ijheatmasstransfer.2018.02.003_b0035) 2012; 19 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0125) 2010; 53 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0065) 2012; 16 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0130) 2012; 55 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0080) 2017; 107 Xu (10.1016/j.ijheatmasstransfer.2018.02.003_b0085) 2005; 41 Soponpongpipat (10.1016/j.ijheatmasstransfer.2018.02.003_b0120) 2009; 30 Youn (10.1016/j.ijheatmasstransfer.2018.02.003_b0135) 2012; 174 Patel (10.1016/j.ijheatmasstransfer.2018.02.003_b0105) 2017; 110 Liu (10.1016/j.ijheatmasstransfer.2018.02.003_b0100) 2013; 65 Yang (10.1016/j.ijheatmasstransfer.2018.02.003_b0145) 2014; 5 Zhang (10.1016/j.ijheatmasstransfer.2018.02.003_b0025) 2008; 29 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0160) 2016; 110 Yang (10.1016/j.ijheatmasstransfer.2018.02.003_b0140) 2015; 83 10.1016/j.ijheatmasstransfer.2018.02.003_b0180 Lin (10.1016/j.ijheatmasstransfer.2018.02.003_b0110) 2011; 31 Lee (10.1016/j.ijheatmasstransfer.2018.02.003_b0200) 2011; 54 Hathaway (10.1016/j.ijheatmasstransfer.2018.02.003_b0060) 2012; 26 10.1016/j.ijheatmasstransfer.2018.02.003_b0195 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0015) 2017; 110 Tong (10.1016/j.ijheatmasstransfer.2018.02.003_b0045) 2001; 21 Rittidech (10.1016/j.ijheatmasstransfer.2018.02.003_b0055) 2009; 34 Kwon (10.1016/j.ijheatmasstransfer.2018.02.003_b0150) 2015; 89 Qu (10.1016/j.ijheatmasstransfer.2018.02.003_b0115) 2007; 50 Kandlikar (10.1016/j.ijheatmasstransfer.2018.02.003_b0185) 2006; 30 Sun (10.1016/j.ijheatmasstransfer.2018.02.003_b0155) 2017; 124 Khandekar (10.1016/j.ijheatmasstransfer.2018.02.003_b0030) 2010; 1 Thome (10.1016/j.ijheatmasstransfer.2018.02.003_b0165) 2004; 47 Charoensawan (10.1016/j.ijheatmasstransfer.2018.02.003_b0095) 2008; 28 Han (10.1016/j.ijheatmasstransfer.2018.02.003_b0040) 2016; 59 Khandekar (10.1016/j.ijheatmasstransfer.2018.02.003_b0090) 2009; 48 Jo (10.1016/j.ijheatmasstransfer.2018.02.003_b0175) 2014; 71 |
References_xml | – volume: 19 start-page: 213 year: 2012 end-page: 231 ident: b0035 article-title: Recent advances in pulsating heat pipes and its derivatives publication-title: J. Enhanc. Heat Transfer – volume: 1 start-page: 1 year: 2010 end-page: 20 ident: b0030 article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review publication-title: Front. Heat Pipes – volume: 107 start-page: 640 year: 2017 end-page: 645 ident: b0080 article-title: Design and experimental study on a hybrid flexible oscillating heat pipe publication-title: Int. J. Heat Mass Transfer – volume: 110 start-page: 174 year: 2016 end-page: 185 ident: b0160 article-title: Lower limit of internal diameter for oscillating heat pipes: a theoretical model publication-title: Int. J. Therm. Sci. – volume: 112 start-page: 1154 year: 2013 end-page: 1160 ident: b0070 article-title: Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling publication-title: Appl. Energy – volume: 110 start-page: 294 year: 2017 end-page: 313 ident: b0015 article-title: Recent advances in MEMS-based micro heat pipes publication-title: Int. J. Heat Mass Transfer – volume: 48 start-page: 3338 year: 2005 end-page: 3351 ident: b0050 article-title: High speed flow visualization of a closed loop pulsating heat pipe publication-title: Int. J. Heat Mass Transfer – reference: S.G. Kandlikar, V. Mizo, M. Cartwright, Bubble nucleation and growth characteristics in subcooled flow boiling of water, in: 32th National Heat Transfer Conference, ASME, 1997. – volume: 31 start-page: 880 year: 2011 end-page: 886 ident: b0110 article-title: Experimental study on effective range of miniature oscillating heat pipes publication-title: Appl. Therm. Eng. – volume: 28 start-page: 460 year: 2008 end-page: 466 ident: b0095 article-title: Thermal performance of horizontal closed-loop oscillating heat pipes publication-title: Appl. Therm. Eng. – volume: 48 start-page: 2186 year: 2005 end-page: 2197 ident: b0170 article-title: Condensation flow patterns in silicon microchannels publication-title: Int. J. Heat Mass Transfer – volume: 30 start-page: 626 year: 2009 end-page: 642 ident: b0120 article-title: Investigation of the startup condition of a closed-loop oscillating heat pipe publication-title: Heat Transfer Eng. – volume: 29 start-page: 20 year: 2008 end-page: 44 ident: b0025 article-title: Advances and unsolved issues in pulsating heat pipes publication-title: Heat Transfer Eng. – volume: 124 start-page: 1269 year: 2017 end-page: 1278 ident: b0155 article-title: Operational characteristics of an MEMS-based micro oscillating heat pipe publication-title: Appl. Therm. Eng. – volume: 54 start-page: 5139 year: 2011 end-page: 5148 ident: b0200 article-title: Bubble nucleation in microchannel flow boiling using single artificial cavity publication-title: Int. J. Heat Mass Transfer – volume: 59 start-page: 692 year: 2016 end-page: 709 ident: b0040 article-title: Review of the development of pulsating heat pipe for heat dissipation publication-title: Renew. Sust. Energy Rev. – volume: 55 start-page: 6109 year: 2012 end-page: 6120 ident: b0130 article-title: Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes publication-title: Int. J. Heat Mass Transfer – volume: 174 start-page: 189 year: 2012 end-page: 197 ident: b0135 article-title: Fabrication and evaluation of a silicon-based micro pulsating heat spreader publication-title: Sens. Actuat., A – volume: 48 start-page: 535 year: 2009 end-page: 546 ident: b0090 article-title: Multiple quasi-steady states in a closed loop pulsating heat pipe publication-title: Int. J. Therm. Sci. – reference: Y.Q. Chen, Heat Transfer and Flow Visualization of Silicon-Based Micro Pulsating Heat Pipe, MS Thesis, Shanghai Jiao Tong University, China, 2013. – volume: 41 start-page: 685 year: 2005 end-page: 694 ident: b0085 article-title: Start-up and steady thermal oscillation of a pulsating heat pipe publication-title: J. Heat Transfer – volume: 79 start-page: 332 year: 2014 end-page: 341 ident: b0075 article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating publication-title: Int. J. Heat Mass Transfer – volume: 21 start-page: 1845 year: 2001 end-page: 1862 ident: b0045 article-title: Closed-loop pulsating heat pipe publication-title: Appl. Therm. Eng. – reference: H. Akachi, F. Polasek, P. Stulc, Pulsating heat pipe, in: Proceedings of the 5th International Heat Pipe Symposium, Australia, 1996, pp. 208–217. – volume: 30 start-page: 441 year: 2006 end-page: 447 ident: b0185 article-title: Nucleation characteristics and stability considerations during flow boiling in microchannels publication-title: Exp. Therm. Fluid Sci. – volume: 50 start-page: 2309 year: 2007 end-page: 2316 ident: b0115 article-title: Theoretical analysis of startup of a pulsating heat pipe publication-title: Int. J. Heat Mass Transfer – volume: 5 start-page: 385 year: 2014 end-page: 395 ident: b0145 article-title: An experimental investigation of micro pulsating heat pipes publication-title: Micromachines – volume: 34 start-page: 2234 year: 2009 end-page: 2238 ident: b0055 article-title: Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV) publication-title: Renew. Energy – volume: 16 start-page: 37 year: 2012 end-page: 49 ident: b0065 article-title: Experimental investigation of silicon-based micro pulsating heat pipe for cooling electronics publication-title: Nanosca. Microsca. Thermophys. Eng. – volume: 110 start-page: 1568 year: 2017 end-page: 1577 ident: b0105 article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe publication-title: Appl. Therm. Eng. – volume: 31 start-page: 801 year: 2008 end-page: 815 ident: b0005 article-title: Thermal challenges in next-generation electronic systems publication-title: IEEE Trans. Comp. Packag. Technol. – volume: 83 start-page: 131 year: 2015 end-page: 138 ident: b0140 article-title: Micro pulsating heat pipes with alternate microchannel widths publication-title: Appl. Therm. Eng. – volume: 65 start-page: 224 year: 2013 end-page: 233 ident: b0100 article-title: Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs) publication-title: Int. J. Therm. Sci. – volume: 53 start-page: 984 year: 2010 end-page: 990 ident: b0125 article-title: Flow visualization of silicon-based micro pulsating heat pipes publication-title: Sci. China: Technol. Sci. – volume: 47 start-page: 3375 year: 2004 end-page: 3385 ident: b0165 article-title: Heat transfer model for evaporation in microchannels. Part I: Presentation of the model publication-title: Int. J. Heat Mass Transfer – volume: 71 start-page: 149 year: 2014 end-page: 157 ident: b0175 article-title: Heterogeneous bubble nucleation on ideally-smooth horizontal heated surface publication-title: Int. J. Heat. Mass Transfer – volume: 26 start-page: 115 year: 2012 end-page: 122 ident: b0060 article-title: Experimental investigation of uneven-turn water and acetone oscillating heat pipes publication-title: J. Thermophys. Heat Transfer – volume: 34 start-page: 434 year: 2013 end-page: 446 ident: b0010 article-title: Advances in electronics cooling publication-title: Heat Transfer Eng. – volume: 89 start-page: 817 year: 2015 end-page: 828 ident: b0150 article-title: Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel publication-title: Int. J. Heat Mass Transfer – volume: 174 start-page: 189 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0135 article-title: Fabrication and evaluation of a silicon-based micro pulsating heat spreader publication-title: Sens. Actuat., A doi: 10.1016/j.sna.2011.12.006 – volume: 65 start-page: 224 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0100 article-title: Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs) publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.10.012 – volume: 50 start-page: 2309 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0115 article-title: Theoretical analysis of startup of a pulsating heat pipe publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.10.043 – volume: 89 start-page: 817 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0150 article-title: Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.05.091 – volume: 71 start-page: 149 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0175 article-title: Heterogeneous bubble nucleation on ideally-smooth horizontal heated surface publication-title: Int. J. Heat. Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.12.040 – volume: 34 start-page: 2234 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0055 article-title: Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV) publication-title: Renew. Energy doi: 10.1016/j.renene.2009.03.021 – volume: 30 start-page: 441 issue: 5 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0185 article-title: Nucleation characteristics and stability considerations during flow boiling in microchannels publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2005.10.001 – volume: 1 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0030 article-title: Local hydrodynamics of flow in a pulsating heat pipe: a review publication-title: Front. Heat Pipes – volume: 26 start-page: 115 issue: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0060 article-title: Experimental investigation of uneven-turn water and acetone oscillating heat pipes publication-title: J. Thermophys. Heat Transfer doi: 10.2514/1.T3734 – volume: 30 start-page: 626 issue: 8 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0120 article-title: Investigation of the startup condition of a closed-loop oscillating heat pipe publication-title: Heat Transfer Eng. doi: 10.1080/01457630802656876 – volume: 31 start-page: 801 issue: 4 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0005 article-title: Thermal challenges in next-generation electronic systems publication-title: IEEE Trans. Comp. Packag. Technol. doi: 10.1109/TCAPT.2008.2001197 – ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0020 – volume: 48 start-page: 535 issue: 3 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0090 article-title: Multiple quasi-steady states in a closed loop pulsating heat pipe publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2008.04.004 – volume: 31 start-page: 880 issue: 5 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0110 article-title: Experimental study on effective range of miniature oscillating heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.11.009 – volume: 112 start-page: 1154 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0070 article-title: Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.02.030 – volume: 107 start-page: 640 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0080 article-title: Design and experimental study on a hybrid flexible oscillating heat pipe publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.11.076 – volume: 47 start-page: 3375 issue: 14 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0165 article-title: Heat transfer model for evaporation in microchannels. Part I: Presentation of the model publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.01.006 – volume: 21 start-page: 1845 issue: 18 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0045 article-title: Closed-loop pulsating heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(01)00063-1 – volume: 54 start-page: 5139 issue: 25 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0200 article-title: Bubble nucleation in microchannel flow boiling using single artificial cavity publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.08.042 – volume: 48 start-page: 3338 issue: 16 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0050 article-title: High speed flow visualization of a closed loop pulsating heat pipe publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.02.034 – volume: 29 start-page: 20 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0025 article-title: Advances and unsolved issues in pulsating heat pipes publication-title: Heat Transfer Eng. doi: 10.1080/01457630701677114 – volume: 110 start-page: 174 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0160 article-title: Lower limit of internal diameter for oscillating heat pipes: a theoretical model publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.07.002 – volume: 110 start-page: 294 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0015 article-title: Recent advances in MEMS-based micro heat pipes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.03.034 – volume: 19 start-page: 213 issue: 3 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0035 article-title: Recent advances in pulsating heat pipes and its derivatives publication-title: J. Enhanc. Heat Transfer doi: 10.1615/JEnhHeatTransf.2012001896 – volume: 59 start-page: 692 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0040 article-title: Review of the development of pulsating heat pipe for heat dissipation publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.12.350 – volume: 41 start-page: 685 issue: 8 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0085 article-title: Start-up and steady thermal oscillation of a pulsating heat pipe publication-title: J. Heat Transfer – volume: 79 start-page: 332 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0075 article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.08.002 – volume: 55 start-page: 6109 issue: 21 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0130 article-title: Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.06.024 – volume: 83 start-page: 131 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0140 article-title: Micro pulsating heat pipes with alternate microchannel widths publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.03.020 – volume: 48 start-page: 2186 issue: 11 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0170 article-title: Condensation flow patterns in silicon microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.12.034 – ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0180 – volume: 28 start-page: 460 issue: 56 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0095 article-title: Thermal performance of horizontal closed-loop oscillating heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.05.007 – volume: 53 start-page: 984 issue: 4 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0125 article-title: Flow visualization of silicon-based micro pulsating heat pipes publication-title: Sci. China: Technol. Sci. doi: 10.1007/s11431-009-0391-y – volume: 34 start-page: 434 issue: 5–6 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0010 article-title: Advances in electronics cooling publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2012.721316 – volume: 5 start-page: 385 issue: 2 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0145 article-title: An experimental investigation of micro pulsating heat pipes publication-title: Micromachines doi: 10.3390/mi5020385 – volume: 16 start-page: 37 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0065 article-title: Experimental investigation of silicon-based micro pulsating heat pipe for cooling electronics publication-title: Nanosca. Microsca. Thermophys. Eng. doi: 10.1080/15567265.2011.645999 – ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0195 – volume: 124 start-page: 1269 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0155 article-title: Operational characteristics of an MEMS-based micro oscillating heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.06.109 – volume: 110 start-page: 1568 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.02.003_b0105 article-title: Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.017 |
SSID | ssj0017046 |
Score | 2.4429696 |
Snippet | •High speed visualization on the start-up behavior of micro-OHP was experimentally performed.•Start-up with and without bubble nucleation (STWBN/STWOBN) were... The startup characteristics of micro oscillating heat pipe (micro-OHP) have been experimentally investigated using a high-speed CCD camera in conjunction with... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 515 |
SubjectTerms | Bubble nucleation Bubbles CCD cameras Chip level Electronics Electronics cooling Evaporation Heat pipes Microchannels Microelectromechanical systems Miniaturization Nucleation Oscillating heat pipe Plugs Silicon Silicon wafers Slugs Spatial distribution Start-up behavior Temperature measurement Trapezoidal channels Two-phase oscillation Working fluids |
Title | Start-up characteristics of MEMS-based micro oscillating heat pipe with and without bubble nucleation |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.003 https://www.proquest.com/docview/2076201379 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4QjMaL8RlRJHvw4KWybbe77ckQIkEJHFQit6bb3RoIlAbaq7_dnT4waDyQeOp7u5mZzmPzzVeEbrkVQrXDjAAWN3QCHxiCMGUEEZMeEYyzCHqHhyPWH9PniTOpoW7VCwOwytL3Fz4999blmXYpzXYynUKPLxgXmBR4Yg6025RysPL7zw3Mw-SkaNYBbwx3H6C7b4zXdAYeb6HT1DRPExUwhJpuweJp_xWqfjjtPBL1jtFRmULiTjHLE1RT8Snaz6Gc4foMKZ0_rlIjS3C4TcaMlxEePg5fDYhcEi8AioeBy3IOeLj4A8MscTJNFIbVWRzEMt9ZZikWmRBzhWNgP851eY7Gvce3bt8of6ZghDYnqSGDQEd3pcsJaZKISNuWOhWRWjpCCGkyzk0nIsrhkfKoZwlmC0pCrTDKpXBZaF-geryM1SXC0o1cXcTqQkdZlAvqRS6VNLS1LxDMM50Geqjk5ocl0zj88GLuV5Cymf9b8j5I3icWsJU2kLcZISlYN3Z4tlupyt-yJF8HiR1GaVZa9suveq2v69ABHI3e1b-85BodwlGB_m2ierrK1I3OcVLRyo24hfY6T4P-CLaDl_fBFwz0AmE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6VIh4L4ikKBTwwsIQ6jWsnE0IVVXmUBSp1s-LYQa1KGtF05bfjywNUEAMSW5SHY92d72F99xngXLQjrHa4E-Lmhk3gQ0dRbpww5jqgigseY-_w4JH3h-xu1BnVoFv1wiCssvT9hU_PvXV5p1VKs5WOx9jji8aFJoWeWPAVWGV2-eIxBpfvnzgPV9CiWwfdMb6-DhdfIK_xBF3eq81TszxPNEgR6voFjaf3W6z65rXzUNTbhq0yhyTXxTR3oGaSXVjLsZzRfA-MTSDfMmeRkmiZjZnMYjK4GTw5GLo0eUUsHkEyyykC4pIXgrMk6Tg1BLdnSZjo_GK2yIhaKDU1JEH641yZ-zDs3Tx3-055moITeYJmjg5DG96NrSe0S2OqPU_bXERb6SiltMuFcDsxNR0Rm4AFbcU9xWhkNcaEVj6PvAOoJ7PEHALRfuzbKtZWOqbNhGJB7DPNIs86A8UDt9OAq0puMiqpxvHEi6msMGUT-VPyEiUvaRvpShsQfI6QFrQbf_i2W6lKLpmStFHiD6M0Ky3LclnP7XMbO5CkMTj6l5-cwUb_efAgH24f749hE58UUOAm1LO3hTmxCU-mTnOD_gDLrAJM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Start-up+characteristics+of+MEMS-based+micro+oscillating+heat+pipe+with+and+without+bubble+nucleation&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Sun%2C+Qin&rft.au=Qu%2C+Jian&rft.au=Yuan%2C+Jianping&rft.au=Wang%2C+Hai&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=122&rft.spage=515&rft.epage=528&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.02.003&rft.externalDocID=S0017931017341376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |