A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging
We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging APP for monitoring color change of the AuNPs. The magnetic nanoparticles (MNPs) modified with the capture antibodies and the polystyrene micros...
Saved in:
Published in | Biosensors & bioelectronics Vol. 124-125; pp. 143 - 149 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging APP for monitoring color change of the AuNPs. The magnetic nanoparticles (MNPs) modified with the capture antibodies and the polystyrene microspheres (PSs) modified with the detection antibodies and the catalases were simultaneously used to react with the target bacteria in the first mixing channel of the microfluidic chip, and hydrogen peroxide was injected and catalyzed by the catalases on the MNP-bacteria-PS complexes. After the mixture of the AuNPs and the crosslinking agents were injected to react with the catalysate in the second mixing channel and incubated in the detection chamber, the aggregation of the AuNPs was triggered through the crosslinking agents, resulting in the color of the AuNPs changing from blue to red. Finally, the color was measured using the smart phone imaging APP to determine the amount of the bacteria. This biosensor exhibited a good specificity and sensitivity for detection of E. coli O157:H7 in chicken samples with a lower detection limit of 50 CFU/mL.
•AuNP aggregation were successfully used for signal indication.•HSL-based smart phone imaging was effective to detect color change.•Microfluidic chip was successfully developed for on-chip bioreaction.•The detection limit of this biosensor was 50 CFU/mL for E coli O157:H7.•The mean recovery of E coli O157:H7 in the spiked chicken samples was ~96.8%. |
---|---|
AbstractList | We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging APP for monitoring color change of the AuNPs. The magnetic nanoparticles (MNPs) modified with the capture antibodies and the polystyrene microspheres (PSs) modified with the detection antibodies and the catalases were simultaneously used to react with the target bacteria in the first mixing channel of the microfluidic chip, and hydrogen peroxide was injected and catalyzed by the catalases on the MNP-bacteria-PS complexes. After the mixture of the AuNPs and the crosslinking agents were injected to react with the catalysate in the second mixing channel and incubated in the detection chamber, the aggregation of the AuNPs was triggered through the crosslinking agents, resulting in the color of the AuNPs changing from blue to red. Finally, the color was measured using the smart phone imaging APP to determine the amount of the bacteria. This biosensor exhibited a good specificity and sensitivity for detection of E. coli O157:H7 in chicken samples with a lower detection limit of 50 CFU/mL.
•AuNP aggregation were successfully used for signal indication.•HSL-based smart phone imaging was effective to detect color change.•Microfluidic chip was successfully developed for on-chip bioreaction.•The detection limit of this biosensor was 50 CFU/mL for E coli O157:H7.•The mean recovery of E coli O157:H7 in the spiked chicken samples was ~96.8%. We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging APP for monitoring color change of the AuNPs. The magnetic nanoparticles (MNPs) modified with the capture antibodies and the polystyrene microspheres (PSs) modified with the detection antibodies and the catalases were simultaneously used to react with the target bacteria in the first mixing channel of the microfluidic chip, and hydrogen peroxide was injected and catalyzed by the catalases on the MNP-bacteria-PS complexes. After the mixture of the AuNPs and the crosslinking agents were injected to react with the catalysate in the second mixing channel and incubated in the detection chamber, the aggregation of the AuNPs was triggered through the crosslinking agents, resulting in the color of the AuNPs changing from blue to red. Finally, the color was measured using the smart phone imaging APP to determine the amount of the bacteria. This biosensor exhibited a good specificity and sensitivity for detection of E. coli O157:H7 in chicken samples with a lower detection limit of 50 CFU/mL.We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging APP for monitoring color change of the AuNPs. The magnetic nanoparticles (MNPs) modified with the capture antibodies and the polystyrene microspheres (PSs) modified with the detection antibodies and the catalases were simultaneously used to react with the target bacteria in the first mixing channel of the microfluidic chip, and hydrogen peroxide was injected and catalyzed by the catalases on the MNP-bacteria-PS complexes. After the mixture of the AuNPs and the crosslinking agents were injected to react with the catalysate in the second mixing channel and incubated in the detection chamber, the aggregation of the AuNPs was triggered through the crosslinking agents, resulting in the color of the AuNPs changing from blue to red. Finally, the color was measured using the smart phone imaging APP to determine the amount of the bacteria. This biosensor exhibited a good specificity and sensitivity for detection of E. coli O157:H7 in chicken samples with a lower detection limit of 50 CFU/mL. We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging APP for monitoring color change of the AuNPs. The magnetic nanoparticles (MNPs) modified with the capture antibodies and the polystyrene microspheres (PSs) modified with the detection antibodies and the catalases were simultaneously used to react with the target bacteria in the first mixing channel of the microfluidic chip, and hydrogen peroxide was injected and catalyzed by the catalases on the MNP-bacteria-PS complexes. After the mixture of the AuNPs and the crosslinking agents were injected to react with the catalysate in the second mixing channel and incubated in the detection chamber, the aggregation of the AuNPs was triggered through the crosslinking agents, resulting in the color of the AuNPs changing from blue to red. Finally, the color was measured using the smart phone imaging APP to determine the amount of the bacteria. This biosensor exhibited a good specificity and sensitivity for detection of E. coli O157:H7 in chicken samples with a lower detection limit of 50 CFU/mL. |
Author | Li, Yanbin Lin, Jianhan Zheng, Lingyan Liao, Ming Wang, Siyuan Cai, Gaozhe |
Author_xml | – sequence: 1 givenname: Lingyan surname: Zheng fullname: Zheng, Lingyan organization: Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China – sequence: 2 givenname: Gaozhe surname: Cai fullname: Cai, Gaozhe organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China – sequence: 3 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China – sequence: 4 givenname: Ming surname: Liao fullname: Liao, Ming organization: College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China – sequence: 5 givenname: Yanbin surname: Li fullname: Li, Yanbin organization: Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, United States – sequence: 6 givenname: Jianhan surname: Lin fullname: Lin, Jianhan email: jianhan@cau.edu.cn organization: Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30366259$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFF2CBvGSTwT-JHSM2VVUoUqVuYG059k3Go8QOdoLUx-CNcTrthkXFwrJ8fb4j3XMu0FmIARB6T8meEio-Hfedj3nPCG3LYE-IeIV2tJW8qhlvztCOqEZUjRD8HF3kfCSESKrIG3TOCReCNWqH_lzhydsU-3H1zlts4xiTn2BJ5bHZQ8gx4b6cZGbvsIMF7OJjwLHHN9keoCgP3mykx_e0kZ9vJV6zDwMe4uhwMCHOJi3ejoDNMCQYzCNvgsN5Kj94PpTFsJ_MUKi36HVvxgzvnu5L9PPrzY_r2-ru_tv366u7ynJJlsrRjjbKqdZAVxNFDe2EqDtraOuskbUTSvG2q6UTwCRRxgra89rUolctsx2_RB9PvnOKv1bIi558tjCOJkBcs2ZUCl4z1qr_kDKhiKgJL9IPT9K1m8DpuYRp0oN-TrwI2pOghJ5zgl5bvzwGsiTjR02J3srVR72lr7dyt1kpt6DsH_TZ_UXoywmCkuVvD0ln6yFYcD6VIrWL_iX8L1lovx0 |
CitedBy_id | crossref_primary_10_1016_j_bios_2023_115553 crossref_primary_10_1016_j_cclet_2021_08_073 crossref_primary_10_1016_j_bios_2019_111333 crossref_primary_10_1039_D1AN00251A crossref_primary_10_1016_j_cej_2024_151661 crossref_primary_10_1016_j_cherd_2023_03_049 crossref_primary_10_1007_s12161_021_02129_7 crossref_primary_10_1016_j_etap_2022_103911 crossref_primary_10_1021_acs_accounts_1c00598 crossref_primary_10_1016_j_lwt_2021_112172 crossref_primary_10_1016_j_trac_2024_117775 crossref_primary_10_1016_j_trac_2023_117499 crossref_primary_10_1039_D1TB01316E crossref_primary_10_1063_5_0186602 crossref_primary_10_1016_j_chemosphere_2021_130096 crossref_primary_10_1021_acsanm_2c05031 crossref_primary_10_1016_j_enzmictec_2023_110380 crossref_primary_10_1007_s11696_019_00702_3 crossref_primary_10_1016_j_snb_2019_127538 crossref_primary_10_1039_D0NA00961J crossref_primary_10_1016_j_microc_2023_108692 crossref_primary_10_1177_10920617251319552 crossref_primary_10_1007_s11468_023_01804_1 crossref_primary_10_1016_j_chemosphere_2022_133773 crossref_primary_10_3788_PI_2024_R03 crossref_primary_10_1186_s12951_022_01242_x crossref_primary_10_3168_jds_2020_19905 crossref_primary_10_12677_AAC_2022_122007 crossref_primary_10_1016_j_scitotenv_2019_134817 crossref_primary_10_1007_s00216_022_04398_5 crossref_primary_10_1016_j_aca_2024_342769 crossref_primary_10_1007_s10876_024_02678_x crossref_primary_10_1016_j_aca_2019_12_037 crossref_primary_10_1063_5_0208274 crossref_primary_10_1016_j_cobme_2023_100513 crossref_primary_10_1016_j_jksus_2023_103079 crossref_primary_10_1007_s11783_021_1420_8 crossref_primary_10_1039_D3MD00581J crossref_primary_10_1016_j_bej_2022_108361 crossref_primary_10_3390_bios12060401 crossref_primary_10_1002_bab_1898 crossref_primary_10_3389_fnano_2024_1465429 crossref_primary_10_1039_D4AN01495B crossref_primary_10_1016_j_foodcont_2022_108822 crossref_primary_10_1007_s00216_024_05223_x crossref_primary_10_3389_fbioe_2021_799370 crossref_primary_10_3390_mi11121079 crossref_primary_10_1021_acs_langmuir_3c00116 crossref_primary_10_1002_adsr_202400051 crossref_primary_10_1016_j_microc_2023_108479 crossref_primary_10_1016_j_trac_2019_115668 crossref_primary_10_1039_D0AN00597E crossref_primary_10_1016_j_tifs_2022_05_003 crossref_primary_10_1016_j_microc_2020_105429 crossref_primary_10_1016_j_foodchem_2021_131875 crossref_primary_10_1016_j_jcou_2019_11_011 crossref_primary_10_1016_j_foodchem_2022_133534 crossref_primary_10_1111_1541_4337_12839 crossref_primary_10_1016_j_jhazmat_2022_129140 crossref_primary_10_1007_s00216_021_03872_w crossref_primary_10_1007_s12598_022_02129_4 crossref_primary_10_1039_D2RA00348A crossref_primary_10_1021_acsnano_4c16949 crossref_primary_10_1016_j_toxrep_2021_07_002 crossref_primary_10_3390_diagnostics13040656 crossref_primary_10_1016_j_snb_2019_127577 crossref_primary_10_1016_j_trac_2021_116509 crossref_primary_10_3390_bios13110978 crossref_primary_10_3390_s25061936 crossref_primary_10_1021_acs_analchem_9b05149 crossref_primary_10_1021_acs_analchem_9b03644 crossref_primary_10_1016_j_bej_2023_109039 crossref_primary_10_1111_jfs_12870 crossref_primary_10_1007_s12257_022_0235_1 crossref_primary_10_1007_s00216_019_01857_4 crossref_primary_10_1039_D3AY00139C crossref_primary_10_5796_electrochemistry_23_68118 crossref_primary_10_1016_j_microc_2022_107390 crossref_primary_10_1080_10408398_2020_1808877 crossref_primary_10_1039_D1LC00879J crossref_primary_10_1039_D1TB00181G crossref_primary_10_1016_j_aca_2023_341868 crossref_primary_10_1149_1945_7111_adafde crossref_primary_10_1016_j_foodcont_2022_109165 crossref_primary_10_1016_j_aca_2023_342007 crossref_primary_10_1039_D1SD00017A crossref_primary_10_1016_j_apmt_2024_102141 crossref_primary_10_1016_j_trac_2022_116814 crossref_primary_10_1039_D4TB01077A crossref_primary_10_1007_s12010_024_05039_6 crossref_primary_10_1177_2472630320962003 crossref_primary_10_3390_s24092870 crossref_primary_10_1016_j_scitotenv_2019_135918 crossref_primary_10_1016_j_snb_2024_136872 crossref_primary_10_1039_D1AY01522B crossref_primary_10_1155_2021_2959843 crossref_primary_10_1080_10408347_2022_2099733 crossref_primary_10_1002_nano_202100255 crossref_primary_10_1002_jbm_b_34723 crossref_primary_10_1007_s00604_020_04291_x crossref_primary_10_1016_j_foodchem_2023_136433 crossref_primary_10_1021_acsabm_0c01271 crossref_primary_10_1016_j_bios_2020_112788 crossref_primary_10_1016_j_snb_2021_130304 crossref_primary_10_1039_D4LC00572D crossref_primary_10_1080_10408398_2022_2059753 crossref_primary_10_1016_j_snb_2021_130780 crossref_primary_10_1016_j_foodcont_2024_110869 crossref_primary_10_1016_j_bios_2021_113011 crossref_primary_10_1002_admi_202201611 crossref_primary_10_1016_j_nantod_2021_101092 crossref_primary_10_1021_acs_analchem_1c00674 crossref_primary_10_1039_C9NR08849K crossref_primary_10_1016_j_tifs_2019_11_007 crossref_primary_10_1371_journal_pone_0244324 crossref_primary_10_1016_j_aca_2022_339850 crossref_primary_10_1007_s00253_022_12015_9 crossref_primary_10_1016_j_heliyon_2023_e15482 crossref_primary_10_1039_D1AY02023D crossref_primary_10_1016_j_mtadv_2021_100204 crossref_primary_10_1016_j_elecom_2022_107355 crossref_primary_10_1021_acsinfecdis_0c00890 crossref_primary_10_1002_biot_201900279 crossref_primary_10_1016_j_aca_2020_08_004 crossref_primary_10_3390_bios13030387 crossref_primary_10_1007_s00604_024_06338_9 crossref_primary_10_1021_acsfoodscitech_3c00470 crossref_primary_10_1016_j_cofs_2019_09_003 crossref_primary_10_1016_j_foodcont_2019_04_008 crossref_primary_10_1021_acs_analchem_1c01130 crossref_primary_10_1021_acssensors_2c00372 crossref_primary_10_1021_acssensors_1c00602 crossref_primary_10_1111_1541_4337_12592 crossref_primary_10_1016_j_foodchem_2023_136339 crossref_primary_10_1016_j_snb_2022_132042 crossref_primary_10_3390_bios12121082 crossref_primary_10_1016_j_talanta_2022_123980 crossref_primary_10_1016_j_trac_2021_116309 crossref_primary_10_1016_j_bios_2022_114577 crossref_primary_10_1007_s00604_024_06497_9 crossref_primary_10_1021_acssensors_1c00292 crossref_primary_10_1016_j_snb_2021_129730 crossref_primary_10_1016_j_trac_2022_116850 crossref_primary_10_3390_mi14030547 crossref_primary_10_1111_1541_4337_12485 crossref_primary_10_1016_j_aca_2019_09_059 crossref_primary_10_1007_s00604_024_06303_6 crossref_primary_10_1016_j_bios_2020_112162 crossref_primary_10_1016_j_foodchem_2021_129578 crossref_primary_10_1016_j_trac_2020_115880 crossref_primary_10_1021_acs_analchem_1c05069 crossref_primary_10_3390_s20041003 crossref_primary_10_1002_adfm_202104126 crossref_primary_10_3390_nano11020546 crossref_primary_10_1021_acs_analchem_1c03209 crossref_primary_10_3390_pathogens12020343 crossref_primary_10_3390_mi13071083 crossref_primary_10_3390_s19224935 crossref_primary_10_2174_2210681212666220618164341 crossref_primary_10_1016_j_cis_2021_102568 crossref_primary_10_1016_j_microc_2023_108401 crossref_primary_10_1080_10408398_2024_2398630 crossref_primary_10_1021_acs_analchem_9b00255 crossref_primary_10_1002_adbi_201800325 crossref_primary_10_1016_j_snb_2021_131142 crossref_primary_10_1016_j_snb_2022_132277 crossref_primary_10_1007_s11664_021_09247_2 crossref_primary_10_1016_j_coelec_2021_100925 crossref_primary_10_1039_D2AY01822E crossref_primary_10_1016_j_bios_2019_111843 crossref_primary_10_3390_bios12111017 crossref_primary_10_1002_smll_201901943 crossref_primary_10_1016_j_mne_2021_100085 crossref_primary_10_1021_acsami_1c00212 crossref_primary_10_1016_j_foodres_2022_111873 crossref_primary_10_1007_s00203_023_03418_x crossref_primary_10_1021_acssensors_0c01618 crossref_primary_10_1016_j_colsurfa_2023_131955 crossref_primary_10_1007_s00216_019_02149_7 crossref_primary_10_3390_app10238353 crossref_primary_10_1007_s00604_024_06924_x crossref_primary_10_1016_j_aca_2024_343233 crossref_primary_10_1007_s10544_023_00693_9 crossref_primary_10_1016_j_bios_2019_111419 crossref_primary_10_1002_smtd_202401436 crossref_primary_10_1016_j_colsurfa_2019_04_055 crossref_primary_10_1016_j_foodcont_2022_108934 crossref_primary_10_3390_ijms22042011 crossref_primary_10_1080_07388551_2024_2344577 crossref_primary_10_1016_j_trac_2022_116646 crossref_primary_10_2139_ssrn_4184994 crossref_primary_10_1016_j_bios_2022_114390 crossref_primary_10_1002_ppsc_202300038 crossref_primary_10_1016_j_biotechadv_2021_107867 crossref_primary_10_1016_j_enmm_2024_100914 crossref_primary_10_3390_bios12050274 crossref_primary_10_1155_2020_8855550 crossref_primary_10_1016_j_bios_2020_112921 crossref_primary_10_1007_s10544_021_00598_5 crossref_primary_10_1016_j_talanta_2024_126783 crossref_primary_10_3389_fchem_2021_689735 crossref_primary_10_2139_ssrn_3961983 crossref_primary_10_1021_acsami_1c05522 crossref_primary_10_1016_j_tifs_2021_01_065 crossref_primary_10_1021_acssensors_9b02600 crossref_primary_10_1039_C9EN01085H crossref_primary_10_1021_acs_jafc_2c05284 crossref_primary_10_1016_j_snb_2023_135069 crossref_primary_10_3390_bios13070741 crossref_primary_10_1002_agt2_559 crossref_primary_10_1016_j_bios_2022_114003 crossref_primary_10_1016_j_ifset_2021_102613 crossref_primary_10_3390_s24237636 crossref_primary_10_1016_j_foodchem_2020_127348 crossref_primary_10_3390_jfb12040067 crossref_primary_10_1111_1541_4337_12576 crossref_primary_10_1016_j_tifs_2023_04_015 crossref_primary_10_2139_ssrn_4169976 crossref_primary_10_1007_s11356_023_31429_0 crossref_primary_10_1016_j_tifs_2024_104556 crossref_primary_10_1039_D3RA02900J crossref_primary_10_1016_j_teac_2020_e00087 crossref_primary_10_2174_0115734110292458240306055653 crossref_primary_10_3390_bios14050228 crossref_primary_10_3390_bios15030189 crossref_primary_10_1007_s00253_020_10615_x crossref_primary_10_1016_j_snb_2021_131103 crossref_primary_10_1021_acs_jafc_2c07132 crossref_primary_10_3390_polym12051117 crossref_primary_10_1039_D0LC00028K crossref_primary_10_3390_bios11050145 crossref_primary_10_1016_j_talanta_2022_123567 crossref_primary_10_1007_s00216_020_02954_5 crossref_primary_10_1016_j_bios_2022_114594 crossref_primary_10_1016_j_foodcont_2022_109316 crossref_primary_10_1021_acssensors_4c02301 crossref_primary_10_3390_bios13060608 crossref_primary_10_1039_D1CP04546F crossref_primary_10_3390_bios13010029 crossref_primary_10_1021_acs_analchem_4c02413 crossref_primary_10_3168_jds_2024_25518 crossref_primary_10_3390_bios13030411 crossref_primary_10_1016_j_trac_2022_116792 crossref_primary_10_1007_s00604_023_05987_6 crossref_primary_10_1016_j_aca_2022_340737 crossref_primary_10_1016_j_biosx_2022_100173 |
Cites_doi | 10.1177/2472630317724769 10.1016/j.foodcont.2018.05.026 10.1080/09540105.2012.716026 10.1039/C6CC01238H 10.1016/j.bios.2016.01.004 10.1039/C6RA16750K 10.1038/s41467-018-04172-1 10.1016/j.snb.2015.11.083 10.1016/j.foodchem.2017.02.083 10.1038/nprot.2013.085 10.7150/thno.13159 10.1021/acs.accounts.6b00506 10.1039/C5CC09447J 10.1002/smll.201201650 10.1039/C3NR06201E 10.1016/j.bios.2015.10.017 10.1016/j.bios.2016.07.071 10.1039/C7RA00821J 10.1016/j.bios.2017.08.002 10.1016/j.tifs.2017.08.014 10.1016/j.bios.2014.08.048 10.1016/j.bios.2008.12.017 10.1016/j.snb.2017.11.093 10.1016/j.bios.2017.08.003 10.1021/acs.nanolett.5b02837 10.1021/acs.analchem.6b00668 10.1021/acs.analchem.7b00239 10.3390/mi7050089 10.1016/j.jbiotec.2017.12.011 10.1016/j.bios.2015.08.037 10.1021/acs.analchem.5b01302 10.1016/j.bios.2018.02.019 10.1016/j.snb.2017.12.004 10.1002/anie.201300441 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2018.10.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
EndPage | 149 |
ExternalDocumentID | 30366259 10_1016_j_bios_2018_10_006 S0956566318308042 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- SBG SCB SCH SEW SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-d1b159d98aeb4091a1b664bca18dca74d69938b47d6e2709ac61f34a46f982cb3 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Thu Jul 10 22:37:04 EDT 2025 Fri Jul 11 15:16:39 EDT 2025 Wed Feb 19 02:33:43 EST 2025 Tue Jul 01 01:42:44 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Fri Feb 23 02:29:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gold nanoparticle aggregation Microfluidic chip E. coli O157:H7 Smart phone imaging APP Colorimetric biosensor |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-d1b159d98aeb4091a1b664bca18dca74d69938b47d6e2709ac61f34a46f982cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30366259 |
PQID | 2126906403 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2176342289 proquest_miscellaneous_2126906403 pubmed_primary_30366259 crossref_citationtrail_10_1016_j_bios_2018_10_006 crossref_primary_10_1016_j_bios_2018_10_006 elsevier_sciencedirect_doi_10_1016_j_bios_2018_10_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Satija, Punjabi, Mishra, Mukherji (bib26) 2016; 6 Zhang, Liu (bib37) 2016; 75 Chen, Park (bib5) 2017 Chang, Chen, Chen, Lin (bib3) 2016; 52 Zeinhom, Wang, Sheng, Du, Li, Zhu, Lin (bib35) 2018; 261 de la Rica, Stevens (bib10) 2013; 8 Li, Tang, Prasad, Knecht, Swihart (bib22) 2014; 6 Zeinhom, Wang, Song, Zhu, Lin, Du (bib36) 2018; 99 Feng, Yong, Wang, Kuang, Wang, Xu (bib12) 2013; 24 Kim, Oh, Shukla, Hong, Heo, Bajpai, Chun, Jo, Choi, Huh (bib18) 2018; 107 Liang, Huang, Chen, Zhang, Ping, Xiong (bib23) 2018; 259 Li, Zhao, Astruc (bib21) 2014; 53 Goluch, Stoeva, Lee, Shaikh, Mirkin, Liu (bib13) 2009; 24 Güner, Çevik, Şenel, Alpsoy (bib14) 2017; 229 Chen, Wang, Cai, Xiong, Li, Wang, Huo, Lin (bib6) 2016; 86 Jiang, Song, Wei, Li, Du, Zhu, Lin (bib17) 2016; 77 Liu, Rong, Jia, Yang, Dong, Dong, Yang, Hu, Wang, Liu, Liu (bib24) 2016; 6 Yuan, Lu, Peng, Wang, Tseng, Du, Cai, Lien, Chang, He, Yeung (bib33) 2015; 87 Yu, Su, Zhang, Wei, Guo (bib31) 2017; 7 Chen, Park (bib4) 2017 Omari, Frempong, Arthur (bib25) 2018 Wu, Tan, Ang, Luo, Zhao (bib27) 2016; 52 Zhang, Ma, Hu, Lin, Guo, Qiu, Lin, Chen (bib38) 2016; 79 Bui, Ahmed, Abbas (bib1) 2015; 15 Zangheri, Cevenini, Anfossi, Baggiani, Simoni, Di Nardo, Roda (bib34) 2015; 64 Chen, Xianyu, Wu, Dong, Zheng, Sun, Jiang (bib8) 2017; 89 Yu, Chen, Wang, Li (bib32) 2018; 266 Li, Li, Wang, Wu, Wang, Zhou, Xiao, Pu (bib20) 2018; 271 Du, Shao, Yin, Jiang, Ma, Chen (bib11) 2012; 8 Chen, Xianyu, Jiang (bib7) 2017; 50 Yang, Tseng (bib30) 2016; 88 Jiang, Song, Wei, Li, Du, Zhu, Lin (bib16) 2016; 77 Xiong, Lim, Ren, Zhou, Pu, Chan-Park, Mao, Lam, Duan (bib29) 2018; 9 King, Cole, Farber, Eisenbrand, Zabaras, Fox, Hill (bib19) 2017 Cai, Xiang, Chen, Wang (bib2) 2016; 7 Cho, Park, Reynolds, Yoon (bib9) 2017; 22 Guo, Shi, Liu, Han, Zhao, Chen, Xie, Li (bib15) 2018; 99 Wu, Wang, Liu, Kuang, Xu (bib28) 2015; 7 Zhang, Xing, Liu, Zhou, Shi (bib39) 2016; 225 Zhang (10.1016/j.bios.2018.10.006_bib39) 2016; 225 Chen (10.1016/j.bios.2018.10.006_bib4) 2017 Li (10.1016/j.bios.2018.10.006_bib20) 2018; 271 Cho (10.1016/j.bios.2018.10.006_bib9) 2017; 22 de la Rica (10.1016/j.bios.2018.10.006_bib10) 2013; 8 Wu (10.1016/j.bios.2018.10.006_bib27) 2016; 52 Guo (10.1016/j.bios.2018.10.006_bib15) 2018; 99 Li (10.1016/j.bios.2018.10.006_bib21) 2014; 53 Yuan (10.1016/j.bios.2018.10.006_bib33) 2015; 87 Cai (10.1016/j.bios.2018.10.006_bib2) 2016; 7 Kim (10.1016/j.bios.2018.10.006_bib18) 2018; 107 Jiang (10.1016/j.bios.2018.10.006_bib16) 2016; 77 Zhang (10.1016/j.bios.2018.10.006_bib37) 2016; 75 Chen (10.1016/j.bios.2018.10.006_bib7) 2017; 50 Jiang (10.1016/j.bios.2018.10.006_bib17) 2016; 77 Chen (10.1016/j.bios.2018.10.006_bib8) 2017; 89 Goluch (10.1016/j.bios.2018.10.006_bib13) 2009; 24 Li (10.1016/j.bios.2018.10.006_bib22) 2014; 6 Satija (10.1016/j.bios.2018.10.006_bib26) 2016; 6 Chang (10.1016/j.bios.2018.10.006_bib3) 2016; 52 Liang (10.1016/j.bios.2018.10.006_bib23) 2018; 259 Zhang (10.1016/j.bios.2018.10.006_bib38) 2016; 79 Yu (10.1016/j.bios.2018.10.006_bib32) 2018; 266 Yang (10.1016/j.bios.2018.10.006_bib30) 2016; 88 Güner (10.1016/j.bios.2018.10.006_bib14) 2017; 229 King (10.1016/j.bios.2018.10.006_bib19) 2017 Du (10.1016/j.bios.2018.10.006_bib11) 2012; 8 Chen (10.1016/j.bios.2018.10.006_bib6) 2016; 86 Feng (10.1016/j.bios.2018.10.006_bib12) 2013; 24 Chen (10.1016/j.bios.2018.10.006_bib5) 2017 Wu (10.1016/j.bios.2018.10.006_bib28) 2015; 7 Bui (10.1016/j.bios.2018.10.006_bib1) 2015; 15 Zeinhom (10.1016/j.bios.2018.10.006_bib36) 2018; 99 Omari (10.1016/j.bios.2018.10.006_bib25) 2018 Yu (10.1016/j.bios.2018.10.006_bib31) 2017; 7 Zeinhom (10.1016/j.bios.2018.10.006_bib35) 2018; 261 Liu (10.1016/j.bios.2018.10.006_bib24) 2016; 6 Xiong (10.1016/j.bios.2018.10.006_bib29) 2018; 9 Zangheri (10.1016/j.bios.2018.10.006_bib34) 2015; 64 |
References_xml | – volume: 50 start-page: 310 year: 2017 end-page: 319 ident: bib7 article-title: Surface modification of gold nanoparticles with small molecules for biochemical analysis publication-title: Acc. Chem. Res. – volume: 77 start-page: 687 year: 2016 end-page: 694 ident: bib17 article-title: Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification publication-title: Biosens. Bioelectron. – volume: 6 start-page: 85440 year: 2016 end-page: 85456 ident: bib26 article-title: Plasmonic-ELISA: expanding horizons publication-title: RSC Adv. – volume: 53 start-page: 1756 year: 2014 end-page: 1789 ident: bib21 article-title: Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity publication-title: Angew. Chem. – volume: 99 start-page: 368 year: 2018 end-page: 374 ident: bib15 article-title: Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips publication-title: Biosens. Bioelectron. – volume: 107 start-page: 118 year: 2018 end-page: 122 ident: bib18 article-title: Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg) publication-title: Biosens. Bioelectron. – volume: 259 start-page: 162 year: 2018 end-page: 169 ident: bib23 article-title: Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system publication-title: Sens. Actuators B Chem. – volume: 64 start-page: 63 year: 2015 end-page: 68 ident: bib34 article-title: A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection publication-title: Biosens. Bioelectron. – volume: 6 start-page: 3165 year: 2014 end-page: 3172 ident: bib22 article-title: Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties publication-title: Nanoscale – volume: 15 start-page: 6239 year: 2015 end-page: 6246 ident: bib1 article-title: Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay publication-title: Nano Lett. – volume: 52 start-page: 3508 year: 2016 end-page: 3511 ident: bib27 article-title: Oxidation-triggered aggregation of gold nanoparticles for naked-eye detection of hydrogen peroxide publication-title: Chem. Commun. – volume: 9 start-page: 1743 year: 2018 ident: bib29 article-title: Magnetic nanochain integrated microfluidic biochips publication-title: Nat. Commun. – volume: 261 start-page: 75 year: 2018 end-page: 82 ident: bib35 article-title: Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water publication-title: Sens. Actuators B: Chem. – volume: 52 start-page: 4167 year: 2016 end-page: 4170 ident: bib3 article-title: DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing publication-title: Chem. Commun. – volume: 7 start-page: 89 year: 2016 ident: bib2 article-title: A rapid micromixer for centrifugal microfluidic platforms publication-title: Micromachines – volume: 79 start-page: 874 year: 2016 end-page: 880 ident: bib38 article-title: Highly sensitive visual detection of avian influenza A (H7N9) virus based on the enzyme-induced metallization publication-title: Biosens. Bioelectron. – year: 2017 ident: bib5 article-title: Label-free screening of foodborne Salmonella using surface plasmon resonance imaging publication-title: Anal. Bioanal. Chem. – volume: 24 start-page: 2397 year: 2009 end-page: 2403 ident: bib13 article-title: A microfluidic detection system based upon a surface immobilized biobarcode assay publication-title: Biosens. Bioelectron. – year: 2018 ident: bib25 article-title: Public perceptions and worry about food safety hazards and risks in Ghana publication-title: Food Control – volume: 99 start-page: 479 year: 2018 end-page: 485 ident: bib36 article-title: A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in yoghurt and egg publication-title: Biosens. Bioelectron. – volume: 7 start-page: 9047 year: 2015 end-page: 9053 ident: bib28 article-title: Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. analytical publication-title: Methods – volume: 6 start-page: 54 year: 2016 end-page: 64 ident: bib24 article-title: A Wash-free homogeneous colorimetric immunoassay method publication-title: Theranostics – volume: 7 start-page: 17819 year: 2017 end-page: 17823 ident: bib31 article-title: CdTe/CdS quantum dot-labeled fluorescent immunochromatography test strips for rapid detection of Escherichia coli O157:H7 publication-title: Rsc Adv. – volume: 86 start-page: 770 year: 2016 end-page: 776 ident: bib6 article-title: Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics publication-title: Biosens. Bioelectron. – volume: 8 start-page: 1759 year: 2013 end-page: 1764 ident: bib10 article-title: Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye publication-title: Nat. Protoc. – volume: 88 start-page: 5355 year: 2016 end-page: 5362 ident: bib30 article-title: 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with naked-eye detection publication-title: Anal. Chem. – volume: 75 start-page: 273 year: 2016 end-page: 284 ident: bib37 article-title: Biosensors and bioelectronics on smartphone for portable biochemical detection publication-title: Biosens. Bioelectron. – volume: 271 year: 2018 ident: bib20 article-title: Mobile phone mediated point-of-care testing of HIV p24 antigen through plastic micro-pit array chips publication-title: Sens. Actuators B: Chem. – volume: 89 start-page: 5422 year: 2017 end-page: 5427 ident: bib8 article-title: Double-enzymes-mediated bioluminescent sensor for quantitative and ultrasensitive point-of-care testing publication-title: Anal. Chem. – volume: 22 start-page: 609 year: 2017 end-page: 615 ident: bib9 article-title: Multi-normalization and interpolation protocol to improve norovirus immunoagglutination assay from paper microfluidics with smartphone detection publication-title: SLAS Technol. – volume: 77 start-page: 687 year: 2016 end-page: 694 ident: bib16 article-title: Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification publication-title: Biosens. Bioelectron. – volume: 225 start-page: 593 year: 2016 end-page: 599 ident: bib39 article-title: Fenton reaction-triggered colorimetric detection of phenols in water samples using unmodified gold nanoparticles publication-title: Sens. Actuators B: Chem. – volume: 266 start-page: 39 year: 2018 end-page: 49 ident: bib32 article-title: Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor publication-title: J. Biotechnol. – volume: 229 start-page: 358 year: 2017 end-page: 365 ident: bib14 article-title: An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform publication-title: Food Chem. – volume: 87 start-page: 7267 year: 2015 end-page: 7273 ident: bib33 article-title: Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles publication-title: Anal. Chem. – year: 2017 ident: bib4 article-title: Label-free screening of foodborne Salmonella using surface plasmon resonance imaging publication-title: Anal. Bioanal. Chem. – volume: 8 start-page: 3412 year: 2012 end-page: 3416 ident: bib11 article-title: Colorimetric chemodosimeter based on diazonium-gold-nanoparticle complexes for sulfite ion detection in solution publication-title: Small – year: 2017 ident: bib19 article-title: Food safety for food security: Relationship between global megatrends and developments in food safety publication-title: Trends Food Sci. Technol. – volume: 24 start-page: 481 year: 2013 end-page: 487 ident: bib12 article-title: Development of a monoclonal antibody-based ELISA to detect Escherichia coli O157:H7 publication-title: Food Agric. Immunol. – volume: 22 start-page: 609 issue: 6 year: 2017 ident: 10.1016/j.bios.2018.10.006_bib9 article-title: Multi-normalization and interpolation protocol to improve norovirus immunoagglutination assay from paper microfluidics with smartphone detection publication-title: SLAS Technol. doi: 10.1177/2472630317724769 – year: 2018 ident: 10.1016/j.bios.2018.10.006_bib25 article-title: Public perceptions and worry about food safety hazards and risks in Ghana publication-title: Food Control doi: 10.1016/j.foodcont.2018.05.026 – volume: 24 start-page: 481 issue: 4 year: 2013 ident: 10.1016/j.bios.2018.10.006_bib12 article-title: Development of a monoclonal antibody-based ELISA to detect Escherichia coli O157:H7 publication-title: Food Agric. Immunol. doi: 10.1080/09540105.2012.716026 – volume: 52 start-page: 4167 issue: 22 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib3 article-title: DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing publication-title: Chem. Commun. doi: 10.1039/C6CC01238H – volume: 79 start-page: 874 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib38 article-title: Highly sensitive visual detection of avian influenza A (H7N9) virus based on the enzyme-induced metallization publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.01.004 – volume: 7 start-page: 9047 issue: 21 year: 2015 ident: 10.1016/j.bios.2018.10.006_bib28 article-title: Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. analytical publication-title: Methods – volume: 6 start-page: 85440 issue: 88 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib26 article-title: Plasmonic-ELISA: expanding horizons publication-title: RSC Adv. doi: 10.1039/C6RA16750K – volume: 9 start-page: 1743 issue: 1 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib29 article-title: Magnetic nanochain integrated microfluidic biochips publication-title: Nat. Commun. doi: 10.1038/s41467-018-04172-1 – volume: 225 start-page: 593 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib39 article-title: Fenton reaction-triggered colorimetric detection of phenols in water samples using unmodified gold nanoparticles publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.11.083 – volume: 229 start-page: 358 year: 2017 ident: 10.1016/j.bios.2018.10.006_bib14 article-title: An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.02.083 – volume: 8 start-page: 1759 issue: 9 year: 2013 ident: 10.1016/j.bios.2018.10.006_bib10 article-title: Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.085 – volume: 6 start-page: 54 issue: 1 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib24 article-title: A Wash-free homogeneous colorimetric immunoassay method publication-title: Theranostics doi: 10.7150/thno.13159 – year: 2017 ident: 10.1016/j.bios.2018.10.006_bib5 article-title: Label-free screening of foodborne Salmonella using surface plasmon resonance imaging publication-title: Anal. Bioanal. Chem. – volume: 50 start-page: 310 issue: 2 year: 2017 ident: 10.1016/j.bios.2018.10.006_bib7 article-title: Surface modification of gold nanoparticles with small molecules for biochemical analysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00506 – volume: 52 start-page: 3508 issue: 17 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib27 article-title: Oxidation-triggered aggregation of gold nanoparticles for naked-eye detection of hydrogen peroxide publication-title: Chem. Commun. doi: 10.1039/C5CC09447J – volume: 8 start-page: 3412 issue: 22 year: 2012 ident: 10.1016/j.bios.2018.10.006_bib11 article-title: Colorimetric chemodosimeter based on diazonium-gold-nanoparticle complexes for sulfite ion detection in solution publication-title: Small doi: 10.1002/smll.201201650 – volume: 6 start-page: 3165 issue: 6 year: 2014 ident: 10.1016/j.bios.2018.10.006_bib22 article-title: Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties publication-title: Nanoscale doi: 10.1039/C3NR06201E – volume: 77 start-page: 687 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib17 article-title: Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.10.017 – volume: 86 start-page: 770 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib6 article-title: Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.071 – volume: 7 start-page: 17819 issue: 29 year: 2017 ident: 10.1016/j.bios.2018.10.006_bib31 article-title: CdTe/CdS quantum dot-labeled fluorescent immunochromatography test strips for rapid detection of Escherichia coli O157:H7 publication-title: Rsc Adv. doi: 10.1039/C7RA00821J – volume: 77 start-page: 687 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib16 article-title: Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.10.017 – volume: 99 start-page: 479 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib36 article-title: A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in yoghurt and egg publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.08.002 – year: 2017 ident: 10.1016/j.bios.2018.10.006_bib19 article-title: Food safety for food security: Relationship between global megatrends and developments in food safety publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.08.014 – year: 2017 ident: 10.1016/j.bios.2018.10.006_bib4 article-title: Label-free screening of foodborne Salmonella using surface plasmon resonance imaging publication-title: Anal. Bioanal. Chem. – volume: 64 start-page: 63 year: 2015 ident: 10.1016/j.bios.2018.10.006_bib34 article-title: A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.08.048 – volume: 24 start-page: 2397 issue: 8 year: 2009 ident: 10.1016/j.bios.2018.10.006_bib13 article-title: A microfluidic detection system based upon a surface immobilized biobarcode assay publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.12.017 – volume: 261 start-page: 75 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib35 article-title: Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2017.11.093 – volume: 99 start-page: 368 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib15 article-title: Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.08.003 – volume: 15 start-page: 6239 issue: 9 year: 2015 ident: 10.1016/j.bios.2018.10.006_bib1 article-title: Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02837 – volume: 88 start-page: 5355 issue: 10 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib30 article-title: 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with naked-eye detection publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b00668 – volume: 89 start-page: 5422 issue: 10 year: 2017 ident: 10.1016/j.bios.2018.10.006_bib8 article-title: Double-enzymes-mediated bioluminescent sensor for quantitative and ultrasensitive point-of-care testing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00239 – volume: 271 issue: 189–194 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib20 article-title: Mobile phone mediated point-of-care testing of HIV p24 antigen through plastic micro-pit array chips publication-title: Sens. Actuators B: Chem. – volume: 7 start-page: 89 issue: 5 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib2 article-title: A rapid micromixer for centrifugal microfluidic platforms publication-title: Micromachines doi: 10.3390/mi7050089 – volume: 266 start-page: 39 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib32 article-title: Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2017.12.011 – volume: 75 start-page: 273 year: 2016 ident: 10.1016/j.bios.2018.10.006_bib37 article-title: Biosensors and bioelectronics on smartphone for portable biochemical detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.08.037 – volume: 87 start-page: 7267 issue: 14 year: 2015 ident: 10.1016/j.bios.2018.10.006_bib33 article-title: Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01302 – volume: 107 start-page: 118 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib18 article-title: Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg) publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.02.019 – volume: 259 start-page: 162 year: 2018 ident: 10.1016/j.bios.2018.10.006_bib23 article-title: Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.12.004 – volume: 53 start-page: 1756 issue: 7 year: 2014 ident: 10.1016/j.bios.2018.10.006_bib21 article-title: Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity publication-title: Angew. Chem. doi: 10.1002/anie.201300441 |
SSID | ssj0007190 |
Score | 2.6584413 |
Snippet | We intended to develop a novel biosensor using gold nanoparticles (AuNPs) for indicating different concentrations of E. coli O157:H7 and smart phone imaging... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 143 |
SubjectTerms | antibodies Antibodies, Immobilized - chemistry bacteria Biosensing Techniques biosensors catalase chickens color Colorimetric biosensor Colorimetry cross-linking reagents detection limit E. coli O157:H7 Escherichia coli Infections - diagnosis Escherichia coli Infections - microbiology Escherichia coli O157 Escherichia coli O157 - isolation & purification Escherichia coli O157 - pathogenicity Food Microbiology Gold - chemistry Gold nanoparticle aggregation Humans hydrogen peroxide image analysis magnetism Metal Nanoparticles - chemistry Microfluidic chip Microfluidics - instrumentation microparticles mixing mobile telephones monitoring nanogold nanoparticles organ-on-a-chip polystyrenes rapid methods Smart phone imaging APP Smartphone |
Title | A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging |
URI | https://dx.doi.org/10.1016/j.bios.2018.10.006 https://www.ncbi.nlm.nih.gov/pubmed/30366259 https://www.proquest.com/docview/2126906403 https://www.proquest.com/docview/2176342289 |
Volume | 124-125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIiQ4VNDysVCqQeoNpbvOOnHCbVW1WkCUQ1upt8j2JCuj3WS13T30wn_gHzMTJ6UcugeOSWxl5BmP3yTPz0Ic5ymiRcwjxxQaFRuaczYzESaJSzAz5ajdLvb9Ip1eq683yc2OOO33wjCtssv9Iae32bq7M-xGc7j0fnjJEnoERjgoCfYozsNKaY7yk19_aR5ahu8srLfHrbuNM4HjZX3Dkt0yOwkMr8cWp8fAZ7sInb8Qex16hEkw8KXYKet98TScJ3m3L54_UBc8EL8nsGC6XTXfePQOWJ-axfxZkx_YJqpgmxUQaoWVWXoELNctMauGpoKzW3anZyo09_TwQyb681QDM-VnMGvmCLWpqeYOxoCZUek-ax0Npka4XdATYOp7CX7RHob0Slyfn12dTqPuBIbIjfVoHaG0BHcwJ59ZKgSlkTZNlXVGZuiMVpgSvMms0piWsR7lxqWyGiuj0irPYmfHr8VuTa95K4AiNlaZlWjpcaYwz1WlElpDdUVB5PRAyH7oC9fJk_MpGfOi56H9LHhoCnYX3yN3DcSn-z7LIM6xtXXSe7T4J8QKWj229vvYu7-gucc_VExdNhtqJGPWeVaj8bY2lMFZZy0fiDchdu5tZfjA9ee7_7TsvXhGV8x3i2RyKHbXq035gTDS2h61k-BIPJl8-Ta9-AM0PxJZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamTgg4IBgwys-HxA2F1qkdJ9yqaVPGtnJgk3aL_COpjNqk6toDfwb_Me_FSQWH9cA1tpUnv-fn7yWfPzP2KUucM85lkSUKjYg1rjmT6shJaaVLdTluj4tdzZL8Rny7lbcH7KQ_C0O0yi73h5zeZuvuyaibzdHK-9EPktBDMEJBibBHYB4-JHUqOWCH0_OLfLZLyIqHTy0kuUcDurMzgeZlfEOq3Tz9Ekhe9-1P9-HPdh86e8qedAASpsHGZ-ygrI_Yg3Cl5K8j9vgvgcHn7PcUlsS4qxZb77wFkqgmPX-S5QeyCYvYZg0IXGGtV96BKzctN6uGpoLTO_KoJzY0jfTwnUv1NVdAZPk5zJuFg1rXWHYHY0DPsXqft74GXTu4W2ILEPu9BL9s70N6wW7OTq9P8qi7hCGyEzXeRI4bRDwuQ7cZrAW55iZJhLGap85qJVyCCCc1QrmkjNU40zbh1URokVRZGlszeckGNb7mFQMM2likhjuDzalwWSYqIXEbVRXGkVVDxvupL2ynUE4XZSyKnor2s6CpKchd9AzdNWSfd2NWQZ9jb2_Ze7T4J8oK3ED2jvvYu7_A5Uf_VHRdNlvsxGOSehbjyb4-mMRJai0bsuMQOztbCUFQCfr6Py37wB7m11eXxeX57OINe4QtRH-LuHzLBpv1tnyHkGlj3ndL4g-KoxUK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+microfluidic+colorimetric+biosensor+for+rapid+detection+of+Escherichia+coli+O157%3AH7+using+gold+nanoparticle+aggregation+and+smart+phone+imaging&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Zheng%2C+Lingyan&rft.au=Cai%2C+Gaozhe&rft.au=Wang%2C+Siyuan&rft.au=Liao%2C+Ming&rft.date=2019-01-15&rft.issn=1873-4235&rft.eissn=1873-4235&rft.volume=124-125&rft.spage=143&rft_id=info:doi/10.1016%2Fj.bios.2018.10.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |