LORENTZ MARTINGALE SPACES AND INTERPOLATION

In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their basic properties, embedding relationships, and interpolation spaces between them, during which the use of rearrangement good-λ-inequality plays...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 30; no. 4; pp. 1143 - 1153
Main Author 范利萍 焦勇 刘培德
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2010
School of Mathematics and Information Science,Henan University,Kaifeng 475004,China
School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China%School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(10)60112-9

Cover

Loading…
Abstract In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their basic properties, embedding relationships, and interpolation spaces between them, during which the use of rearrangement good-λ-inequality plays an important role.
AbstractList O1; In this article,the authors introduce some new Lorentz spaces for martingales,which are extensions of Hardy spaces of martingales.Then they discuss their basic properties,embedding relationships,and interpolation spaces between them,during which the use of rearrangement good-λ-inequality plays an important role.
In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their basic properties, embedding relationships, and interpolation spaces between them, during which the use of rearrangement good-λ-inequality plays an important role.
Author 范利萍 焦勇 刘培德
AuthorAffiliation School of Mathematics and Information Science, Henan University, Kaifeng 475004, China School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
AuthorAffiliation_xml – name: School of Mathematics and Information Science,Henan University,Kaifeng 475004,China;School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China%School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China
Author_xml – sequence: 1
  fullname: 范利萍 焦勇 刘培德
BookMark eNqFkM9PwjAUxxuDiYD-CSaLJ4mZvrZbV-LBLDiRZA4C8-Kl6boOi7jpNgX_e8ePePDCqa8v3897eZ8OauVFrhE6x3CNAbObGRCX2H0G5BJDjwHGze8ItbHrNQVwr4Xaf5ET1KmqBTQcYU4bXYXjaRDFL9aTP41H0dAPA2s28QfBzPKje2sUxcF0Mg79eDSOTtFxJpeVPtu_XfT8EMSDRzscD0cDP7QV9aC2VaZ55jmJTBUlCrRMKWcsk44jU8KBOZRj1adewjlAxjBTOPG00oylWnGS0i7q7eauZJ7JfC4WxVeZNxtFtV4t14nQBDCAA9hpsre7rCqLqip1JpSpZW2KvC6lWQoMYuNIbB2JjYBNa-tI9Bva_Ud_lOZdlj8HubsdpxsN30aXolJG50qnptSqFmlhDk642G9-LfL5p2muTKR6y8xSC-q4BBPK6S8WEYbY
CitedBy_id crossref_primary_10_1007_s10114_012_1310_x
crossref_primary_10_1007_s10474_023_01360_4
crossref_primary_10_1007_s11425_011_4319_1
crossref_primary_10_1007_s11425_012_4397_8
Cites_doi 10.1017/S0013091500020228
10.1093/qmathj/49.1.93
10.1016/0022-1236(73)90053-0
10.2140/pjm.1951.1.411
10.7146/math.scand.a-10976
10.2307/2001699
10.2307/2154450
10.1006/jfan.1993.1042
10.1007/s11117-003-2712-x
10.1515/form.1992.4.135
ClassificationCodes O1
ContentType Journal Article
Copyright 2010 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2010 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(10)60112-9
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate LORENTZ MARTINGALE SPACES AND INTERPOLATION
EISSN 1572-9087
EndPage 1153
ExternalDocumentID sxwlxb_e201004014
10_1016_S0252_9602_10_60112_9
S0252960210601129
34521238
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAFGU
AAHNG
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAPBV
AAQFI
AAUYE
AAXUO
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABPIF
ABTEG
ABTMW
ABXDB
ABXPI
ABYKQ
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACRLP
ACTTH
ACVWB
ACWMK
ADALY
ADBBV
ADEZE
ADKNI
ADMDM
ADTIX
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESTI
AEVTX
AFKWA
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
CQIGP
CS3
CSCUP
CW9
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IPNFZ
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VFIZW
ZMTXR
~G-
~L9
~WA
AAEDW
AATNV
AAYFA
ABTKH
ACOKC
ACZOJ
ADMUD
ADOXG
ADTPH
AESKC
AFNRJ
AGQEE
AMXSW
DPUIP
EFLBG
FIGPU
IKXTQ
IWAJR
NPVJJ
PT4
SNPRN
SOHCF
VEKWB
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABWVN
ACAOD
ACDTI
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
HG6
SJYHP
SSH
4A8
PSX
ID FETCH-LOGICAL-c370t-cfe8f74badc32c0ead3866fa44ad28064381c937b8800f616c1b7ece66dec82d3
IEDL.DBID .~1
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Tue Jul 01 02:27:31 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Fri Feb 23 02:25:04 EST 2024
Thu Nov 24 20:34:26 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 60G46
weight
interpolation
60G42
Lorentz space
Martingale
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-cfe8f74badc32c0ead3866fa44ad28064381c937b8800f616c1b7ece66dec82d3
Notes interpolation
Martingale
weight
42-1227/O
O412.1
O211.6
Martingale; Lorentz space; weight; interpolation
Lorentz space
PageCount 11
ParticipantIDs wanfang_journals_sxwlxb_e201004014
crossref_citationtrail_10_1016_S0252_9602_10_60112_9
crossref_primary_10_1016_S0252_9602_10_60112_9
elsevier_sciencedirect_doi_10_1016_S0252_9602_10_60112_9
chongqing_backfile_34521238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL ACTA MATHEMATICA SCIENTIA
PublicationYear 2010
Publisher Elsevier Ltd
School of Mathematics and Information Science,Henan University,Kaifeng 475004,China
School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China%School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China
Publisher_xml – name: Elsevier Ltd
– name: School of Mathematics and Information Science,Henan University,Kaifeng 475004,China
– name: School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China%School of Mathematics and Statistics,Wuhan University,Wuhan 430075,China
References Soria (bib3) 1998; 49
Holmstedt (bib17) 1970; 25
Stepanov (bib5) 1993; 338
Boza, Martín (bib7) 2005; 9
Neugebauer (bib2) 1992; 4
Arino, Munckenhoupt (bib4) 1990; 320
Liu P D, Hou Y L, Wang M F. Weak Orlicz space and its applications to martingale theory (to appear)
Bennet, Sharply (bib13) 1988
Cerdà, Martín (bib6) 1999; 42
Riviere, Sagher (bib18) 1973; 14
Carro, García, Soria (bib8) 1993; 112
Weisz (bib10) 1994
Bergh, Löfström (bib15) 1976
Carro, Raposo, Soria (bib9) 2007
Lorentz (bib1) 1951; 1
Grafakos (bib16) 2005
Liu (bib12) 1993
Long (bib11) 1993
10.1016/S0252-9602(10)60112-9_bib14
Liu (10.1016/S0252-9602(10)60112-9_bib12) 1993
Weisz (10.1016/S0252-9602(10)60112-9_bib10) 1994
Arino (10.1016/S0252-9602(10)60112-9_bib4) 1990; 320
Grafakos (10.1016/S0252-9602(10)60112-9_bib16) 2005
Cerdà (10.1016/S0252-9602(10)60112-9_bib6) 1999; 42
Bennet (10.1016/S0252-9602(10)60112-9_bib13) 1988
Holmstedt (10.1016/S0252-9602(10)60112-9_bib17) 1970; 25
Riviere (10.1016/S0252-9602(10)60112-9_bib18) 1973; 14
Carro (10.1016/S0252-9602(10)60112-9_bib8) 1993; 112
Bergh (10.1016/S0252-9602(10)60112-9_bib15) 1976
Soria (10.1016/S0252-9602(10)60112-9_bib3) 1998; 49
Long (10.1016/S0252-9602(10)60112-9_bib11) 1993
Stepanov (10.1016/S0252-9602(10)60112-9_bib5) 1993; 338
Neugebauer (10.1016/S0252-9602(10)60112-9_bib2) 1992; 4
Boza (10.1016/S0252-9602(10)60112-9_bib7) 2005; 9
Lorentz (10.1016/S0252-9602(10)60112-9_bib1) 1951; 1
Carro (10.1016/S0252-9602(10)60112-9_bib9) 2007
References_xml – volume: 49
  start-page: 93
  year: 1998
  end-page: 103
  ident: bib3
  article-title: Lorentz spaces of weak-type
  publication-title: Quart J Math Oxford
– year: 1976
  ident: bib15
  publication-title: Interpolation Spaces
– volume: 112
  start-page: 480
  year: 1993
  end-page: 494
  ident: bib8
  article-title: Weighted Lorentz spaces and the Hardy operator
  publication-title: J Functional Analysis
– volume: 4
  start-page: 135
  year: 1992
  end-page: 146
  ident: bib2
  article-title: Some classical operators on Lorentz spaces
  publication-title: Forum Math
– volume: 338
  start-page: 173
  year: 1993
  end-page: 186
  ident: bib5
  article-title: The weighted Hardy's inequality for nonincreasing functions
  publication-title: Trans Amer Math Soc
– year: 1994
  ident: bib10
  publication-title: Martingale Hardy spaces and their applications in Fourier analysis
– volume: 9
  start-page: 225
  year: 2005
  end-page: 232
  ident: bib7
  article-title: Equality of some classical Lorentz spaces
  publication-title: Positivity
– volume: 1
  start-page: 411
  year: 1951
  end-page: 429
  ident: bib1
  article-title: On the theory of spaces Λ
  publication-title: Pacific J Math
– start-page: 187
  year: 2007
  ident: bib9
  article-title: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities
  publication-title: Memoirs of the American Mathematical Society
– volume: 320
  start-page: 727
  year: 1990
  end-page: 735
  ident: bib4
  article-title: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions
  publication-title: Trans Amer Math Soc
– volume: 25
  start-page: 177
  year: 1970
  end-page: 199
  ident: bib17
  article-title: Interpolation of quasi-normed spaces
  publication-title: Math Scand
– volume: 14
  start-page: 401
  year: 1973
  end-page: 409
  ident: bib18
  article-title: Interpolation between
  publication-title: J Functional Analysis
– volume: 42
  start-page: 243
  year: 1999
  end-page: 256
  ident: bib6
  article-title: Interpolation restricted to decreasing function and Lorentz spaces
  publication-title: Proc Edinburgh Math Soc
– year: 1988
  ident: bib13
  publication-title: Interpolation of Operators
– year: 2005
  ident: bib16
  publication-title: Classical and modern Fourier analysis
– year: 1993
  ident: bib12
  publication-title: Martingales and Geometry in Banach Spaces (in Chinese)
– reference: Liu P D, Hou Y L, Wang M F. Weak Orlicz space and its applications to martingale theory (to appear)
– year: 1993
  ident: bib11
  publication-title: Martingale spaces and inequalities
– year: 1993
  ident: 10.1016/S0252-9602(10)60112-9_bib11
– ident: 10.1016/S0252-9602(10)60112-9_bib14
– year: 1994
  ident: 10.1016/S0252-9602(10)60112-9_bib10
– start-page: 187
  year: 2007
  ident: 10.1016/S0252-9602(10)60112-9_bib9
  article-title: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities
  publication-title: Memoirs of the American Mathematical Society
– year: 1976
  ident: 10.1016/S0252-9602(10)60112-9_bib15
– volume: 42
  start-page: 243
  year: 1999
  ident: 10.1016/S0252-9602(10)60112-9_bib6
  article-title: Interpolation restricted to decreasing function and Lorentz spaces
  publication-title: Proc Edinburgh Math Soc
  doi: 10.1017/S0013091500020228
– volume: 49
  start-page: 93
  issue: 2
  year: 1998
  ident: 10.1016/S0252-9602(10)60112-9_bib3
  article-title: Lorentz spaces of weak-type
  publication-title: Quart J Math Oxford
  doi: 10.1093/qmathj/49.1.93
– volume: 14
  start-page: 401
  year: 1973
  ident: 10.1016/S0252-9602(10)60112-9_bib18
  article-title: Interpolation between L∞ and H1, the Real Method
  publication-title: J Functional Analysis
  doi: 10.1016/0022-1236(73)90053-0
– year: 1988
  ident: 10.1016/S0252-9602(10)60112-9_bib13
– volume: 1
  start-page: 411
  year: 1951
  ident: 10.1016/S0252-9602(10)60112-9_bib1
  article-title: On the theory of spaces Λ
  publication-title: Pacific J Math
  doi: 10.2140/pjm.1951.1.411
– volume: 25
  start-page: 177
  year: 1970
  ident: 10.1016/S0252-9602(10)60112-9_bib17
  article-title: Interpolation of quasi-normed spaces
  publication-title: Math Scand
  doi: 10.7146/math.scand.a-10976
– volume: 320
  start-page: 727
  year: 1990
  ident: 10.1016/S0252-9602(10)60112-9_bib4
  article-title: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions
  publication-title: Trans Amer Math Soc
  doi: 10.2307/2001699
– volume: 338
  start-page: 173
  year: 1993
  ident: 10.1016/S0252-9602(10)60112-9_bib5
  article-title: The weighted Hardy's inequality for nonincreasing functions
  publication-title: Trans Amer Math Soc
  doi: 10.2307/2154450
– volume: 112
  start-page: 480
  year: 1993
  ident: 10.1016/S0252-9602(10)60112-9_bib8
  article-title: Weighted Lorentz spaces and the Hardy operator
  publication-title: J Functional Analysis
  doi: 10.1006/jfan.1993.1042
– volume: 9
  start-page: 225
  year: 2005
  ident: 10.1016/S0252-9602(10)60112-9_bib7
  article-title: Equality of some classical Lorentz spaces
  publication-title: Positivity
  doi: 10.1007/s11117-003-2712-x
– year: 2005
  ident: 10.1016/S0252-9602(10)60112-9_bib16
– volume: 4
  start-page: 135
  year: 1992
  ident: 10.1016/S0252-9602(10)60112-9_bib2
  article-title: Some classical operators on Lorentz spaces
  publication-title: Forum Math
  doi: 10.1515/form.1992.4.135
– year: 1993
  ident: 10.1016/S0252-9602(10)60112-9_bib12
SSID ssj0016264
Score 1.8612126
Snippet In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their...
O1; In this article,the authors introduce some new Lorentz spaces for martingales,which are extensions of Hardy spaces of martingales.Then they discuss their...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1143
SubjectTerms 60G42
60G46
interpolation
Lorentz space
Lorentz空间
Martingale
weight
洛仑兹
鞅Hardy空间
鞅空间
Title LORENTZ MARTINGALE SPACES AND INTERPOLATION
URI http://lib.cqvip.com/qk/86464X/20104/34521238.html
https://dx.doi.org/10.1016/S0252-9602(10)60112-9
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201004014
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB1FVEjlQAstaghFq6oHqspknXXtzTFCoECbXChSbpY_IYJuoAlK1EN_O2OvE-ihQuK41o61Go_njbVvngE-a0Q5jkhBbEE1YaZriaaCE6qEp0FRy8Q7lgZD3r9gZ6NvowYcLXthAq0y5f46p8dsnUbayZvt2_G4fY5o3cH6G88seKhA2Aod7EyEWD_8u6J5UCzYo4QUvkzC249dPPUMcfCA5l_iJKQbNBauJtXlHSLH_7Bqfa4qr6rLJ0h08hY2UwmZ9eqv3IKGq7bhTSons7RZp9uwMVhJsuLTeuR6muk7-PpjEiSZ_mS_ooRAgIgM8wraZKqy2bi-eavmyL2Hi5Pjn0d9ku5MIKYQ-YwY70ovmFbWFB2TY5wUJedeMaZs-IkaFL0MliQa923uOeWGauGM49w6U3ZssQNr1aRyHyArNfPWdARnQjHn0UoJxw3Wd7zsWp83obXyFGKuuQ5KUrJgsRu4bAJb-k6aJDcebr24kY-8MnS_DO4PQ9H9stuEw5XZba238ZxBuVwY-U_gSMSE50w_pYWUaeNO5XQxv1lo6QJJAPMbZbsvn78Fr2uuQSD37sHa7Pe9-4glzEzvxxjdh1e90-_94QOByueA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BFYIeSnmpKY-uKg4gZLLOGntzRAgUaMIFkLhZfkIEbGiTCtRDf3vHXifAoULiuJbHssb2fGPt528AtjSiHEekILagmjDTtkRTwQlVwtOgqGVijaXeGe9cstOr_aspOBy_hQm0yhT765geo3VqaSZvNh_6_eY5onUL82-8s-ClAmFrGj6w_UIEXt_e3wnPg2LGHjWksDcJ3Z-f8dRDxMZtmu_EUUg7iCzcDKrrnwgd_wOr2UdVeVVdv4Ci48_wKeWQ2UE9zUWYctUSLKR8MkundbgEH3sTTVb8mo1kTzNcht3uIGgy_cnuo4ZAwIgMAwvaZKqyWb8uvVWT5Fbg8vjo4rBDUtEEYgqRj4jxrvSCaWVN0TI5bpSi5NwrxpQNf1GDpJfBnETjwc09p9xQLZxxnFtnypYtVmGmGlTuC2SlZt6aluBMKOY8WinhuMEEj5dt6_MGrE08haBrboOUlCxYfA5cNoCNfSdN0hsPZS_u5DOxDN0vg_tDU3S_bDdgb2L2UAtuvGVQjhdGvto5EkHhLdPvaSFlOrlDOXx6vHvS0gWWAAY4yr6-f_xvMNe56HVl9-TsxxrM18SDwPRdh5nRr99uA_OZkd6M-_Uf7kbpEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LORENTZ+MARTINGALE+SPACES+AND+INTERPOLATION&rft.jtitle=Acta+mathematica+scientia&rft.au=%E8%8C%83%E5%88%A9%E8%90%8D+%E7%84%A6%E5%8B%87+%E5%88%98%E5%9F%B9%E5%BE%B7&rft.date=2010-07-01&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=4&rft.spage=1143&rft.epage=1153&rft_id=info:doi/10.1016%2FS0252-9602%2810%2960112-9&rft.externalDocID=34521238
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg