Effects of natural dihydrochalcones in sweet tea () on diabetes: a systematical review and meta-analysis of animal studies

Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 13; no. 11; pp. 5899 - 5913
Main Authors Chen, Xue-Min, Yang, Wei-Qi, Wang, Xue, Chen, Chong, Qian, Zheng-Ming, Wang, Shu-Mei, Tang, Dan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc . Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes.
AbstractList Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc.Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc.
Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc . Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes.
Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc.
Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc .
Sweet tea ( Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response .
Author Wang, Xue
Chen, Chong
Qian, Zheng-Ming
Tang, Dan
Wang, Shu-Mei
Chen, Xue-Min
Yang, Wei-Qi
AuthorAffiliation Guangdong Pharmaceutical University
Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province
Ruyuan HEC Pharm Co
Ltd
AuthorAffiliation_xml – name: Ruyuan HEC Pharm Co
– name: Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province
– name: Guangdong Pharmaceutical University
– name: Ltd
Author_xml – sequence: 1
  givenname: Xue-Min
  surname: Chen
  fullname: Chen, Xue-Min
– sequence: 2
  givenname: Wei-Qi
  surname: Yang
  fullname: Yang, Wei-Qi
– sequence: 3
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
– sequence: 4
  givenname: Chong
  surname: Chen
  fullname: Chen, Chong
– sequence: 5
  givenname: Zheng-Ming
  surname: Qian
  fullname: Qian, Zheng-Ming
– sequence: 6
  givenname: Shu-Mei
  surname: Wang
  fullname: Wang, Shu-Mei
– sequence: 7
  givenname: Dan
  surname: Tang
  fullname: Tang, Dan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35583219$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1PFTEQAPDGYASBi3dNEy9gstiP3fbVm0FAIwkXTbxt-rrTUNxtodOVPP96-3iACTGxh7aH38ykM31JtmKKQMgrzo44k-b9IHxiTLTdz2dkR7BWNKpjP7Ye7q1R22Qf8YrVJY1ZmMULsi27biEFNzvk94n34ArS5Gm0Zc52pEO4XA05uUs7uloMaYgUbwEKLWDpwSFNsRq7hAL4gVqKKyww2RJcDc7wK8AttXGgExTb2GjHFYa7AjaGqRIs8xAA98hzb0eE_ftzl3w_Pfl2_Lk5vzj7cvzxvHFSs9I4B8wJbYQQDpThXni-lAOTrbFcDy1wyR0zdZPATNcp0LrVHpSEzkgwcpccbPJe53QzA5Z-CuhgHG2ENGMvNF8IqaVQ_6dKqa6tXeSVvn1Cr9Kc62PXSkvZqlas1Zt7NS8nGPrrXDuQV_3DACp4twEuJ8QM_pFw1q8H3H8Spxd3A_5aMXuCXSi17ymWbMP475DXm5CM7jH13z8j_wBSX6_K
CitedBy_id crossref_primary_10_1007_s00343_023_2387_z
crossref_primary_10_1039_D4AN01102C
crossref_primary_10_1002_fft2_494
crossref_primary_10_1039_D3AN00368J
crossref_primary_10_3390_antiox11081578
crossref_primary_10_1016_j_ijbiomac_2022_10_094
crossref_primary_10_1016_j_ejphar_2022_175291
crossref_primary_10_1016_j_fitote_2024_106313
crossref_primary_10_1016_j_foodchem_2023_136671
crossref_primary_10_1021_acs_jafc_4c04487
crossref_primary_10_1016_j_vibspec_2023_103623
Cites_doi 10.1038/ni.3153
10.1016/j.jacl.2015.05.003
10.1097/MD.0000000000021904
10.1001/jama.2015.3656
10.1186/s13020-020-00390-2
10.1016/j.trsl.2015.08.011
10.1039/D1FO03374C
10.1039/D0FO00037J
10.1039/D1FO02385C
10.1016/j.diabres.2017.03.024
10.1186/1471-2288-14-43
10.1039/D1FO03636J
10.3390/molecules24244468
10.1021/acs.jafc.6b03474
10.2337/dc08-1826
10.1002/jcb.26174
10.1021/acs.jafc.7b04445
10.1093/eurheartj/ehz455
10.1016/j.jep.2012.06.016
10.33549/physiolres.933709
10.1155/2012/542042
10.1155/2013/263845
10.1080/09168451.2019.1699396
10.3390/nu10111701
10.1016/j.clnu.2018.06.962
10.1016/j.jacl.2014.07.007
10.1371/journal.pone.0166557
10.1016/j.biopha.2018.02.135
10.1136/bmj.g4356
10.1021/acs.jafc.1c03582
10.1007/s11684-019-0729-1
10.1039/C9FO01326A
10.4093/dmj.2017.0105
10.3389/fphar.2022.828473
10.21010/ajtcam.v13i3.25
10.1016/j.jdiacomp.2014.04.010
10.3892/mmr.2012.772
10.1538/expanim.14-0084
10.1007/s00125-015-3525-8
10.1007/s11033-011-1328-7
10.1016/j.diabres.2018.11.016
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
DOI 10.1039/d2fo00245k
DatabaseName CrossRef
PubMed
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Oncogenes and Growth Factors Abstracts
CrossRef
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
Medicine
EISSN 2042-650X
EndPage 5913
ExternalDocumentID 35583219
10_1039_D2FO00245K
d2fo00245k
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -
0-7
0R
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
JG
O-G
O9-
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
---
0R~
AAHBH
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-cce0c279222ce691f2f1b3d0349a17d4e131c0931c3e09556e7747fe63e593e93
ISSN 2042-6496
2042-650X
IngestDate Thu Jul 10 23:43:56 EDT 2025
Fri Jul 11 04:29:04 EDT 2025
Mon Jun 30 11:18:28 EDT 2025
Thu Apr 03 07:08:31 EDT 2025
Tue Jul 01 03:02:40 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jun 07 04:20:51 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-cce0c279222ce691f2f1b3d0349a17d4e131c0931c3e09556e7747fe63e593e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0364-2220
0000-0002-8467-2941
PMID 35583219
PQID 2673346421
PQPubID 2047526
PageCount 15
ParticipantIDs proquest_miscellaneous_2666549981
crossref_citationtrail_10_1039_D2FO00245K
rsc_primary_d2fo00245k
proquest_journals_2673346421
crossref_primary_10_1039_D2FO00245K
proquest_miscellaneous_2718237326
pubmed_primary_35583219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-06
PublicationDateYYYYMMDD 2022-06-06
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Stewart (D2FO00245K/cit9/1) 2015; 313
Wang (D2FO00245K/cit14/1) 2016; 11
Motohashi (D2FO00245K/cit30/1) 2018; 67
Basu (D2FO00245K/cit39/1) 2009; 32
Yue (D2FO00245K/cit1/1) 2022; 4
Ye (D2FO00245K/cit43/1) 2021; 12
Osorio (D2FO00245K/cit32/1) 2012; 2012
Hunter (D2FO00245K/cit45/1) 2015; 16
Ogurtsova (D2FO00245K/cit3/1) 2017; 128
Mach (D2FO00245K/cit36/1) 2020; 41
Shen (D2FO00245K/cit19/1) 2012; 125
Mei (D2FO00245K/cit26/1) 2016; 64
Cai (D2FO00245K/cit27/1) 2013; 2013
Dong (D2FO00245K/cit15/1) 2006
Balaha (D2FO00245K/cit17/1) 2018; 101
Xia (D2FO00245K/cit18/1) 2021
International Diabetes Federation (D2FO00245K/cit2/1)
He (D2FO00245K/cit40/1) 2022; 2
Katsuda (D2FO00245K/cit25/1) 2015; 64
Rhee (D2FO00245K/cit50/1) 2018; 42
Liu (D2FO00245K/cit12/1) 2020; 15
Patel (D2FO00245K/cit46/1) 2019; 38
Hou (D2FO00245K/cit7/1) 2012; 143
Li (D2FO00245K/cit23/1) 2017; 45
Stompor (D2FO00245K/cit6/1) 2019; 24
Najafian (D2FO00245K/cit29/1) 2012; 39
Wang (D2FO00245K/cit4/1) 2020; 11
Wong (D2FO00245K/cit38/1) 2015; 9
Hooijmans (D2FO00245K/cit10/1) 2014; 14
Li (D2FO00245K/cit22/1) 2017; 45
Association (D2FO00245K/cit35/1) 2021; 13
Chen (D2FO00245K/cit20/1) 2018
Ibdah (D2FO00245K/cit5/1) 2018; 66
Shang (D2FO00245K/cit8/1) 2020
Zhang (D2FO00245K/cit49/1) 2021; 69
Londzin (D2FO00245K/cit28/1) 2018; 10
Jacobson (D2FO00245K/cit33/1) 2014; 8
Shi (D2FO00245K/cit16/1) 2022; 13
Vergès (D2FO00245K/cit34/1) 2015; 58
Zhang (D2FO00245K/cit42/1) 2020; 14
Lu (D2FO00245K/cit21/1) 2012; 5
Pei (D2FO00245K/cit24/1) 2014; 28
Shen (D2FO00245K/cit11/1) 2020; 11
Xia (D2FO00245K/cit13/1) 2020; 84
Rabar (D2FO00245K/cit37/1) 2014; 349
Liang (D2FO00245K/cit31/1) 2016; 13
Leng (D2FO00245K/cit41/1) 2020; 99
Akash (D2FO00245K/cit47/1) 2018; 119
Jud (D2FO00245K/cit48/1) 2019; 148
Khodabandehloo (D2FO00245K/cit44/1) 2016; 167
References_xml – end-page: 2021
  publication-title: IDF Diabetes Atlas
  doi: International Diabetes Federation
– issn: 2021
  publication-title: Study on the renal protective effect of phloretin nanoparticles on diabetic rats
  doi: Xia
– issn: 2018
  publication-title: Optimization of Extraction Process of Phloridzin from Lithocarpus Polystachyus Rehd and Antioxidant and Hypoglycemic Effects
  doi: Chen
– volume: 16
  start-page: 448
  year: 2015
  ident: D2FO00245K/cit45/1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3153
– volume: 9
  start-page: 525
  year: 2015
  ident: D2FO00245K/cit38/1
  publication-title: J. Clin. Lipidol.
  doi: 10.1016/j.jacl.2015.05.003
– volume: 99
  start-page: e21904
  year: 2020
  ident: D2FO00245K/cit41/1
  publication-title: Medicine
  doi: 10.1097/MD.0000000000021904
– volume: 313
  start-page: 1657
  year: 2015
  ident: D2FO00245K/cit9/1
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2015.3656
– volume: 15
  start-page: 110
  year: 2020
  ident: D2FO00245K/cit12/1
  publication-title: Chin. Med.
  doi: 10.1186/s13020-020-00390-2
– volume: 167
  start-page: 228
  year: 2016
  ident: D2FO00245K/cit44/1
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2015.08.011
– volume: 4
  start-page: 1921
  year: 2022
  ident: D2FO00245K/cit1/1
  publication-title: Food Funct.
  doi: 10.1039/D1FO03374C
– volume: 125
  start-page: 3692
  year: 2012
  ident: D2FO00245K/cit19/1
  publication-title: Chin. Med. J.
– volume: 11
  start-page: 6517
  year: 2020
  ident: D2FO00245K/cit4/1
  publication-title: Food Funct.
  doi: 10.1039/D0FO00037J
– volume: 12
  start-page: 11599
  year: 2021
  ident: D2FO00245K/cit43/1
  publication-title: Food Funct.
  doi: 10.1039/D1FO02385C
– volume: 128
  start-page: 40
  year: 2017
  ident: D2FO00245K/cit3/1
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2017.03.024
– volume: 14
  start-page: 43
  year: 2014
  ident: D2FO00245K/cit10/1
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-43
– volume: 2
  start-page: 857
  year: 2022
  ident: D2FO00245K/cit40/1
  publication-title: Food Funct.
  doi: 10.1039/D1FO03636J
– start-page: 714
  year: 2006
  ident: D2FO00245K/cit15/1
  publication-title: Food Sci
– volume: 24
  start-page: 4468
  year: 2019
  ident: D2FO00245K/cit6/1
  publication-title: Molecules
  doi: 10.3390/molecules24244468
– volume: 64
  start-page: 7502
  year: 2016
  ident: D2FO00245K/cit26/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b03474
– volume: 32
  start-page: 866
  year: 2009
  ident: D2FO00245K/cit39/1
  publication-title: Diabetes Care
  doi: 10.2337/dc08-1826
– volume: 119
  start-page: 105
  year: 2018
  ident: D2FO00245K/cit47/1
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.26174
– volume: 66
  start-page: 2273
  year: 2018
  ident: D2FO00245K/cit5/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04445
– start-page: 2021
  volume-title: IDF Diabetes Atlas
  ident: D2FO00245K/cit2/1
– volume-title: Study on the renal protective effect of phloretin nanoparticles on diabetic rats
  year: 2021
  ident: D2FO00245K/cit18/1
– volume: 41
  start-page: 111
  year: 2020
  ident: D2FO00245K/cit36/1
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz455
– volume: 143
  start-page: 441
  year: 2012
  ident: D2FO00245K/cit7/1
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2012.06.016
– volume: 13
  start-page: 315
  year: 2021
  ident: D2FO00245K/cit35/1
  publication-title: Chin. J. Diabetes
– volume: 67
  start-page: 423
  year: 2018
  ident: D2FO00245K/cit30/1
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.933709
– volume: 2012
  start-page: 542042
  year: 2012
  ident: D2FO00245K/cit32/1
  publication-title: Oxid. Med. Cell. Longevity
  doi: 10.1155/2012/542042
– volume: 2013
  start-page: 263845
  year: 2013
  ident: D2FO00245K/cit27/1
  publication-title: J. Diabetes Res.
  doi: 10.1155/2013/263845
– volume: 84
  start-page: 815
  year: 2020
  ident: D2FO00245K/cit13/1
  publication-title: Biosci., Biotechnol., Biochem.
  doi: 10.1080/09168451.2019.1699396
– volume: 10
  start-page: 1701
  year: 2018
  ident: D2FO00245K/cit28/1
  publication-title: Nutrients
  doi: 10.3390/nu10111701
– volume: 38
  start-page: 1414
  year: 2019
  ident: D2FO00245K/cit46/1
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2018.06.962
– volume: 8
  start-page: 473
  year: 2014
  ident: D2FO00245K/cit33/1
  publication-title: J. Clin. Lipidol.
  doi: 10.1016/j.jacl.2014.07.007
– start-page: 1
  year: 2020
  ident: D2FO00245K/cit8/1
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 11
  start-page: e0166557
  year: 2016
  ident: D2FO00245K/cit14/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0166557
– volume: 101
  start-page: 821
  year: 2018
  ident: D2FO00245K/cit17/1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.02.135
– volume: 349
  start-page: g4356
  year: 2014
  ident: D2FO00245K/cit37/1
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.g4356
– volume: 69
  start-page: 10943
  year: 2021
  ident: D2FO00245K/cit49/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.1c03582
– volume: 14
  start-page: 583
  year: 2020
  ident: D2FO00245K/cit42/1
  publication-title: Front. Med.
  doi: 10.1007/s11684-019-0729-1
– volume: 45
  start-page: 148
  year: 2017
  ident: D2FO00245K/cit22/1
  publication-title: J. Anhui Agric. Sci.
– volume: 11
  start-page: 392
  year: 2020
  ident: D2FO00245K/cit11/1
  publication-title: Food Funct.
  doi: 10.1039/C9FO01326A
– volume: 42
  start-page: 188
  year: 2018
  ident: D2FO00245K/cit50/1
  publication-title: Diabetes Metab. J.
  doi: 10.4093/dmj.2017.0105
– volume: 45
  start-page: 85
  year: 2017
  ident: D2FO00245K/cit23/1
  publication-title: J. Anhui Agric. Sci.
– volume: 13
  start-page: 828473
  year: 2022
  ident: D2FO00245K/cit16/1
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.828473
– volume: 13
  start-page: 209
  year: 2016
  ident: D2FO00245K/cit31/1
  publication-title: Afr. J. Tradit., Complementary Altern. Med.
  doi: 10.21010/ajtcam.v13i3.25
– volume: 28
  start-page: 596
  year: 2014
  ident: D2FO00245K/cit24/1
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2014.04.010
– volume-title: Optimization of Extraction Process of Phloridzin from Lithocarpus Polystachyus Rehd and Antioxidant and Hypoglycemic Effects
  year: 2018
  ident: D2FO00245K/cit20/1
– volume: 5
  start-page: 1285
  year: 2012
  ident: D2FO00245K/cit21/1
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2012.772
– volume: 64
  start-page: 161
  year: 2015
  ident: D2FO00245K/cit25/1
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.14-0084
– volume: 58
  start-page: 886
  year: 2015
  ident: D2FO00245K/cit34/1
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3525-8
– volume: 39
  start-page: 5299
  year: 2012
  ident: D2FO00245K/cit29/1
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-011-1328-7
– volume: 148
  start-page: 54
  year: 2019
  ident: D2FO00245K/cit48/1
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.11.016
SSID ssj0000399898
Score 2.3779788
SecondaryResourceType review_article
Snippet Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is...
Sweet tea ( Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous...
Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5899
SubjectTerms Animal models
animals
Biomarkers
Blood
Blood glucose
blood lipids
Carbonyl compounds
Carbonyls
China
Cholesterol
computer software
Density
Diabetes
Diabetes mellitus
functional foods
Functional foods & nutraceuticals
Glucose
Glucose metabolism
Glutathione
Glutathione peroxidase
High density lipoprotein
high density lipoprotein cholesterol
Homeostasis
Inflammation
Inflammatory response
Insulin
Insulin resistance
Lipid metabolism
Lipids
Lithocarpus
Lithocarpus polystachyus
Low density lipoprotein
low density lipoprotein cholesterol
malondialdehyde
medicine
Meta-analysis
Oxidation resistance
Oxidative metabolism
Oxidative stress
Peroxidase
Superoxide dismutase
Sweet taste
Tea
triacylglycerols
Triglycerides
Title Effects of natural dihydrochalcones in sweet tea () on diabetes: a systematical review and meta-analysis of animal studies
URI https://www.ncbi.nlm.nih.gov/pubmed/35583219
https://www.proquest.com/docview/2673346421
https://www.proquest.com/docview/2666549981
https://www.proquest.com/docview/2718237326
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyFeEAwGgYGMQIhpykjsJl14G13LxNZOSJ3WPUWO46gRWzKtiVD5C3jmL-YucT66TWjwYlVnx011v9r3fYS8E44lpCVDU0RKoptRmsDmnsmZpQIHJPSQYTbyeOIenPS-zpxZp_OrFbWUZ8GO_HlrXsn_cBVowFfMkv0HztabAgE-A39hBA7DeCceD1vBGKIsoBHG82WIbbAEepqKaKvtxQ90PAM3i_4dcTZP0euSL7BDwxKkQzlf5gs0DwASKltsmQTd1Hku6v8XWS5oab9QmTBFq56JSOKLIvOkiUqse3-mYYEvvEHbXv-BzguZ5cocxzX5TBuwT1Vsfosbe39JneXq-vODeapvX228AL0X7Rduc8YxzA4CIXG2ciDzNvDs7csdB7RC0_H0RHnUIq11bVezN64Ei2NF1ZBFaeFm_t5cfJWzf3Lsj06OjvzpcDa9R9YYKBysS9b2Dj9_Oa3tdbANttrEXoXVO1fVbrn3sdl-Vb65obSACHNVtZYpRJjpI_JQ6x50rwTSY9JRyTox9mOV0fdUF4g9p5OqP8M6uT_WkRdPyG-NNZpGVGONXscajRNaYI0C1uiHFtJoG2lbNE1ohbNPVNA2ymiJMgoooysowy8uUUY1yp6Sk9FwOjgwdT8PU_K-lZlSKktiwUrGpHI9O2KRHfAQKyQJux_2lM1taXkwcIWVEV0Fukk_Ui5XjseVxzdIN4Gf85zQSEjHCcNdxWXYs5S7i3l48Ixknh14gW2QrYoLvtTF7rHnyrlfBF1wz99no-OCY4cGeVuvvSxLvNy6arNipq-PgIXP3D7nPcwVN8ibehoOaPS6iUSlOa7BBt8Anr-tAQmR8T6oUgZ5VgKlfhXsf8BBrjDIBiCnJjeIe3GHbV-SB83fb5N0s6tcvQJpOgtea6D_AcMHzRk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+natural+dihydrochalcones+in+sweet+tea+%28Lithocarpus+polystachyus%29+on+diabetes%3A+a+systematical+review+and+meta-analysis+of+animal+studies&rft.jtitle=Food+%26+function&rft.au=Chen%2C+Xue-Min&rft.au=Yang%2C+Wei-Qi&rft.au=Wang%2C+Xue&rft.au=Chen%2C+Chong&rft.date=2022-06-06&rft.issn=2042-650X&rft.volume=13&rft.issue=11+p.5899-5913&rft.spage=5899&rft.epage=5913&rft_id=info:doi/10.1039%2Fd2fo00245k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon