Effects of natural dihydrochalcones in sweet tea () on diabetes: a systematical review and meta-analysis of animal studies
Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is...
Saved in:
Published in | Food & function Vol. 13; no. 11; pp. 5899 - 5913 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sweet tea (
Lithocarpus polystachyus
Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response
etc
.
Sweet tea (
Lithocarpus polystachyus
Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. |
---|---|
AbstractList | Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc.Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc. Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc . Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc. Sweet tea ( Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc . Sweet tea ( Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response . |
Author | Wang, Xue Chen, Chong Qian, Zheng-Ming Tang, Dan Wang, Shu-Mei Chen, Xue-Min Yang, Wei-Qi |
AuthorAffiliation | Guangdong Pharmaceutical University Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province Ruyuan HEC Pharm Co Ltd |
AuthorAffiliation_xml | – name: Ruyuan HEC Pharm Co – name: Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province – name: Guangdong Pharmaceutical University – name: Ltd |
Author_xml | – sequence: 1 givenname: Xue-Min surname: Chen fullname: Chen, Xue-Min – sequence: 2 givenname: Wei-Qi surname: Yang fullname: Yang, Wei-Qi – sequence: 3 givenname: Xue surname: Wang fullname: Wang, Xue – sequence: 4 givenname: Chong surname: Chen fullname: Chen, Chong – sequence: 5 givenname: Zheng-Ming surname: Qian fullname: Qian, Zheng-Ming – sequence: 6 givenname: Shu-Mei surname: Wang fullname: Wang, Shu-Mei – sequence: 7 givenname: Dan surname: Tang fullname: Tang, Dan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35583219$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1PFTEQAPDGYASBi3dNEy9gstiP3fbVm0FAIwkXTbxt-rrTUNxtodOVPP96-3iACTGxh7aH38ykM31JtmKKQMgrzo44k-b9IHxiTLTdz2dkR7BWNKpjP7Ye7q1R22Qf8YrVJY1ZmMULsi27biEFNzvk94n34ArS5Gm0Zc52pEO4XA05uUs7uloMaYgUbwEKLWDpwSFNsRq7hAL4gVqKKyww2RJcDc7wK8AttXGgExTb2GjHFYa7AjaGqRIs8xAA98hzb0eE_ftzl3w_Pfl2_Lk5vzj7cvzxvHFSs9I4B8wJbYQQDpThXni-lAOTrbFcDy1wyR0zdZPATNcp0LrVHpSEzkgwcpccbPJe53QzA5Z-CuhgHG2ENGMvNF8IqaVQ_6dKqa6tXeSVvn1Cr9Kc62PXSkvZqlas1Zt7NS8nGPrrXDuQV_3DACp4twEuJ8QM_pFw1q8H3H8Spxd3A_5aMXuCXSi17ymWbMP475DXm5CM7jH13z8j_wBSX6_K |
CitedBy_id | crossref_primary_10_1007_s00343_023_2387_z crossref_primary_10_1039_D4AN01102C crossref_primary_10_1002_fft2_494 crossref_primary_10_1039_D3AN00368J crossref_primary_10_3390_antiox11081578 crossref_primary_10_1016_j_ijbiomac_2022_10_094 crossref_primary_10_1016_j_ejphar_2022_175291 crossref_primary_10_1016_j_fitote_2024_106313 crossref_primary_10_1016_j_foodchem_2023_136671 crossref_primary_10_1021_acs_jafc_4c04487 crossref_primary_10_1016_j_vibspec_2023_103623 |
Cites_doi | 10.1038/ni.3153 10.1016/j.jacl.2015.05.003 10.1097/MD.0000000000021904 10.1001/jama.2015.3656 10.1186/s13020-020-00390-2 10.1016/j.trsl.2015.08.011 10.1039/D1FO03374C 10.1039/D0FO00037J 10.1039/D1FO02385C 10.1016/j.diabres.2017.03.024 10.1186/1471-2288-14-43 10.1039/D1FO03636J 10.3390/molecules24244468 10.1021/acs.jafc.6b03474 10.2337/dc08-1826 10.1002/jcb.26174 10.1021/acs.jafc.7b04445 10.1093/eurheartj/ehz455 10.1016/j.jep.2012.06.016 10.33549/physiolres.933709 10.1155/2012/542042 10.1155/2013/263845 10.1080/09168451.2019.1699396 10.3390/nu10111701 10.1016/j.clnu.2018.06.962 10.1016/j.jacl.2014.07.007 10.1371/journal.pone.0166557 10.1016/j.biopha.2018.02.135 10.1136/bmj.g4356 10.1021/acs.jafc.1c03582 10.1007/s11684-019-0729-1 10.1039/C9FO01326A 10.4093/dmj.2017.0105 10.3389/fphar.2022.828473 10.21010/ajtcam.v13i3.25 10.1016/j.jdiacomp.2014.04.010 10.3892/mmr.2012.772 10.1538/expanim.14-0084 10.1007/s00125-015-3525-8 10.1007/s11033-011-1328-7 10.1016/j.diabres.2018.11.016 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
DOI | 10.1039/d2fo00245k |
DatabaseName | CrossRef PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts CrossRef PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition Medicine |
EISSN | 2042-650X |
EndPage | 5913 |
ExternalDocumentID | 35583219 10_1039_D2FO00245K d2fo00245k |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | - 0-7 0R 4.4 53G 705 7~J AAEMU AAGNR AAIWI AAJAE AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- HZ H~N J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF --- 0R~ AAHBH AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-cce0c279222ce691f2f1b3d0349a17d4e131c0931c3e09556e7747fe63e593e93 |
ISSN | 2042-6496 2042-650X |
IngestDate | Thu Jul 10 23:43:56 EDT 2025 Fri Jul 11 04:29:04 EDT 2025 Mon Jun 30 11:18:28 EDT 2025 Thu Apr 03 07:08:31 EDT 2025 Tue Jul 01 03:02:40 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Tue Jun 07 04:20:51 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-cce0c279222ce691f2f1b3d0349a17d4e131c0931c3e09556e7747fe63e593e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0364-2220 0000-0002-8467-2941 |
PMID | 35583219 |
PQID | 2673346421 |
PQPubID | 2047526 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2666549981 crossref_citationtrail_10_1039_D2FO00245K rsc_primary_d2fo00245k proquest_journals_2673346421 crossref_primary_10_1039_D2FO00245K proquest_miscellaneous_2718237326 pubmed_primary_35583219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-06 |
PublicationDateYYYYMMDD | 2022-06-06 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Stewart (D2FO00245K/cit9/1) 2015; 313 Wang (D2FO00245K/cit14/1) 2016; 11 Motohashi (D2FO00245K/cit30/1) 2018; 67 Basu (D2FO00245K/cit39/1) 2009; 32 Yue (D2FO00245K/cit1/1) 2022; 4 Ye (D2FO00245K/cit43/1) 2021; 12 Osorio (D2FO00245K/cit32/1) 2012; 2012 Hunter (D2FO00245K/cit45/1) 2015; 16 Ogurtsova (D2FO00245K/cit3/1) 2017; 128 Mach (D2FO00245K/cit36/1) 2020; 41 Shen (D2FO00245K/cit19/1) 2012; 125 Mei (D2FO00245K/cit26/1) 2016; 64 Cai (D2FO00245K/cit27/1) 2013; 2013 Dong (D2FO00245K/cit15/1) 2006 Balaha (D2FO00245K/cit17/1) 2018; 101 Xia (D2FO00245K/cit18/1) 2021 International Diabetes Federation (D2FO00245K/cit2/1) He (D2FO00245K/cit40/1) 2022; 2 Katsuda (D2FO00245K/cit25/1) 2015; 64 Rhee (D2FO00245K/cit50/1) 2018; 42 Liu (D2FO00245K/cit12/1) 2020; 15 Patel (D2FO00245K/cit46/1) 2019; 38 Hou (D2FO00245K/cit7/1) 2012; 143 Li (D2FO00245K/cit23/1) 2017; 45 Stompor (D2FO00245K/cit6/1) 2019; 24 Najafian (D2FO00245K/cit29/1) 2012; 39 Wang (D2FO00245K/cit4/1) 2020; 11 Wong (D2FO00245K/cit38/1) 2015; 9 Hooijmans (D2FO00245K/cit10/1) 2014; 14 Li (D2FO00245K/cit22/1) 2017; 45 Association (D2FO00245K/cit35/1) 2021; 13 Chen (D2FO00245K/cit20/1) 2018 Ibdah (D2FO00245K/cit5/1) 2018; 66 Shang (D2FO00245K/cit8/1) 2020 Zhang (D2FO00245K/cit49/1) 2021; 69 Londzin (D2FO00245K/cit28/1) 2018; 10 Jacobson (D2FO00245K/cit33/1) 2014; 8 Shi (D2FO00245K/cit16/1) 2022; 13 Vergès (D2FO00245K/cit34/1) 2015; 58 Zhang (D2FO00245K/cit42/1) 2020; 14 Lu (D2FO00245K/cit21/1) 2012; 5 Pei (D2FO00245K/cit24/1) 2014; 28 Shen (D2FO00245K/cit11/1) 2020; 11 Xia (D2FO00245K/cit13/1) 2020; 84 Rabar (D2FO00245K/cit37/1) 2014; 349 Liang (D2FO00245K/cit31/1) 2016; 13 Leng (D2FO00245K/cit41/1) 2020; 99 Akash (D2FO00245K/cit47/1) 2018; 119 Jud (D2FO00245K/cit48/1) 2019; 148 Khodabandehloo (D2FO00245K/cit44/1) 2016; 167 |
References_xml | – end-page: 2021 publication-title: IDF Diabetes Atlas doi: International Diabetes Federation – issn: 2021 publication-title: Study on the renal protective effect of phloretin nanoparticles on diabetic rats doi: Xia – issn: 2018 publication-title: Optimization of Extraction Process of Phloridzin from Lithocarpus Polystachyus Rehd and Antioxidant and Hypoglycemic Effects doi: Chen – volume: 16 start-page: 448 year: 2015 ident: D2FO00245K/cit45/1 publication-title: Nat. Immunol. doi: 10.1038/ni.3153 – volume: 9 start-page: 525 year: 2015 ident: D2FO00245K/cit38/1 publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2015.05.003 – volume: 99 start-page: e21904 year: 2020 ident: D2FO00245K/cit41/1 publication-title: Medicine doi: 10.1097/MD.0000000000021904 – volume: 313 start-page: 1657 year: 2015 ident: D2FO00245K/cit9/1 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2015.3656 – volume: 15 start-page: 110 year: 2020 ident: D2FO00245K/cit12/1 publication-title: Chin. Med. doi: 10.1186/s13020-020-00390-2 – volume: 167 start-page: 228 year: 2016 ident: D2FO00245K/cit44/1 publication-title: Transl. Res. doi: 10.1016/j.trsl.2015.08.011 – volume: 4 start-page: 1921 year: 2022 ident: D2FO00245K/cit1/1 publication-title: Food Funct. doi: 10.1039/D1FO03374C – volume: 125 start-page: 3692 year: 2012 ident: D2FO00245K/cit19/1 publication-title: Chin. Med. J. – volume: 11 start-page: 6517 year: 2020 ident: D2FO00245K/cit4/1 publication-title: Food Funct. doi: 10.1039/D0FO00037J – volume: 12 start-page: 11599 year: 2021 ident: D2FO00245K/cit43/1 publication-title: Food Funct. doi: 10.1039/D1FO02385C – volume: 128 start-page: 40 year: 2017 ident: D2FO00245K/cit3/1 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2017.03.024 – volume: 14 start-page: 43 year: 2014 ident: D2FO00245K/cit10/1 publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-43 – volume: 2 start-page: 857 year: 2022 ident: D2FO00245K/cit40/1 publication-title: Food Funct. doi: 10.1039/D1FO03636J – start-page: 714 year: 2006 ident: D2FO00245K/cit15/1 publication-title: Food Sci – volume: 24 start-page: 4468 year: 2019 ident: D2FO00245K/cit6/1 publication-title: Molecules doi: 10.3390/molecules24244468 – volume: 64 start-page: 7502 year: 2016 ident: D2FO00245K/cit26/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b03474 – volume: 32 start-page: 866 year: 2009 ident: D2FO00245K/cit39/1 publication-title: Diabetes Care doi: 10.2337/dc08-1826 – volume: 119 start-page: 105 year: 2018 ident: D2FO00245K/cit47/1 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.26174 – volume: 66 start-page: 2273 year: 2018 ident: D2FO00245K/cit5/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b04445 – start-page: 2021 volume-title: IDF Diabetes Atlas ident: D2FO00245K/cit2/1 – volume-title: Study on the renal protective effect of phloretin nanoparticles on diabetic rats year: 2021 ident: D2FO00245K/cit18/1 – volume: 41 start-page: 111 year: 2020 ident: D2FO00245K/cit36/1 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz455 – volume: 143 start-page: 441 year: 2012 ident: D2FO00245K/cit7/1 publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2012.06.016 – volume: 13 start-page: 315 year: 2021 ident: D2FO00245K/cit35/1 publication-title: Chin. J. Diabetes – volume: 67 start-page: 423 year: 2018 ident: D2FO00245K/cit30/1 publication-title: Physiol. Res. doi: 10.33549/physiolres.933709 – volume: 2012 start-page: 542042 year: 2012 ident: D2FO00245K/cit32/1 publication-title: Oxid. Med. Cell. Longevity doi: 10.1155/2012/542042 – volume: 2013 start-page: 263845 year: 2013 ident: D2FO00245K/cit27/1 publication-title: J. Diabetes Res. doi: 10.1155/2013/263845 – volume: 84 start-page: 815 year: 2020 ident: D2FO00245K/cit13/1 publication-title: Biosci., Biotechnol., Biochem. doi: 10.1080/09168451.2019.1699396 – volume: 10 start-page: 1701 year: 2018 ident: D2FO00245K/cit28/1 publication-title: Nutrients doi: 10.3390/nu10111701 – volume: 38 start-page: 1414 year: 2019 ident: D2FO00245K/cit46/1 publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2018.06.962 – volume: 8 start-page: 473 year: 2014 ident: D2FO00245K/cit33/1 publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2014.07.007 – start-page: 1 year: 2020 ident: D2FO00245K/cit8/1 publication-title: Crit. Rev. Food Sci. Nutr. – volume: 11 start-page: e0166557 year: 2016 ident: D2FO00245K/cit14/1 publication-title: PLoS One doi: 10.1371/journal.pone.0166557 – volume: 101 start-page: 821 year: 2018 ident: D2FO00245K/cit17/1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.02.135 – volume: 349 start-page: g4356 year: 2014 ident: D2FO00245K/cit37/1 publication-title: Br. Med. J. doi: 10.1136/bmj.g4356 – volume: 69 start-page: 10943 year: 2021 ident: D2FO00245K/cit49/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.1c03582 – volume: 14 start-page: 583 year: 2020 ident: D2FO00245K/cit42/1 publication-title: Front. Med. doi: 10.1007/s11684-019-0729-1 – volume: 45 start-page: 148 year: 2017 ident: D2FO00245K/cit22/1 publication-title: J. Anhui Agric. Sci. – volume: 11 start-page: 392 year: 2020 ident: D2FO00245K/cit11/1 publication-title: Food Funct. doi: 10.1039/C9FO01326A – volume: 42 start-page: 188 year: 2018 ident: D2FO00245K/cit50/1 publication-title: Diabetes Metab. J. doi: 10.4093/dmj.2017.0105 – volume: 45 start-page: 85 year: 2017 ident: D2FO00245K/cit23/1 publication-title: J. Anhui Agric. Sci. – volume: 13 start-page: 828473 year: 2022 ident: D2FO00245K/cit16/1 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.828473 – volume: 13 start-page: 209 year: 2016 ident: D2FO00245K/cit31/1 publication-title: Afr. J. Tradit., Complementary Altern. Med. doi: 10.21010/ajtcam.v13i3.25 – volume: 28 start-page: 596 year: 2014 ident: D2FO00245K/cit24/1 publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2014.04.010 – volume-title: Optimization of Extraction Process of Phloridzin from Lithocarpus Polystachyus Rehd and Antioxidant and Hypoglycemic Effects year: 2018 ident: D2FO00245K/cit20/1 – volume: 5 start-page: 1285 year: 2012 ident: D2FO00245K/cit21/1 publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2012.772 – volume: 64 start-page: 161 year: 2015 ident: D2FO00245K/cit25/1 publication-title: Exp. Anim. doi: 10.1538/expanim.14-0084 – volume: 58 start-page: 886 year: 2015 ident: D2FO00245K/cit34/1 publication-title: Diabetologia doi: 10.1007/s00125-015-3525-8 – volume: 39 start-page: 5299 year: 2012 ident: D2FO00245K/cit29/1 publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-011-1328-7 – volume: 148 start-page: 54 year: 2019 ident: D2FO00245K/cit48/1 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.11.016 |
SSID | ssj0000399898 |
Score | 2.3779788 |
SecondaryResourceType | review_article |
Snippet | Sweet tea (
Lithocarpus polystachyus
Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is... Sweet tea ( Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous... Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5899 |
SubjectTerms | Animal models animals Biomarkers Blood Blood glucose blood lipids Carbonyl compounds Carbonyls China Cholesterol computer software Density Diabetes Diabetes mellitus functional foods Functional foods & nutraceuticals Glucose Glucose metabolism Glutathione Glutathione peroxidase High density lipoprotein high density lipoprotein cholesterol Homeostasis Inflammation Inflammatory response Insulin Insulin resistance Lipid metabolism Lipids Lithocarpus Lithocarpus polystachyus Low density lipoprotein low density lipoprotein cholesterol malondialdehyde medicine Meta-analysis Oxidation resistance Oxidative metabolism Oxidative stress Peroxidase Superoxide dismutase Sweet taste Tea triacylglycerols Triglycerides |
Title | Effects of natural dihydrochalcones in sweet tea () on diabetes: a systematical review and meta-analysis of animal studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35583219 https://www.proquest.com/docview/2673346421 https://www.proquest.com/docview/2666549981 https://www.proquest.com/docview/2718237326 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyFeEAwGgYGMQIhpykjsJl14G13LxNZOSJ3WPUWO46gRWzKtiVD5C3jmL-YucT66TWjwYlVnx011v9r3fYS8E44lpCVDU0RKoptRmsDmnsmZpQIHJPSQYTbyeOIenPS-zpxZp_OrFbWUZ8GO_HlrXsn_cBVowFfMkv0HztabAgE-A39hBA7DeCceD1vBGKIsoBHG82WIbbAEepqKaKvtxQ90PAM3i_4dcTZP0euSL7BDwxKkQzlf5gs0DwASKltsmQTd1Hku6v8XWS5oab9QmTBFq56JSOKLIvOkiUqse3-mYYEvvEHbXv-BzguZ5cocxzX5TBuwT1Vsfosbe39JneXq-vODeapvX228AL0X7Rduc8YxzA4CIXG2ciDzNvDs7csdB7RC0_H0RHnUIq11bVezN64Ei2NF1ZBFaeFm_t5cfJWzf3Lsj06OjvzpcDa9R9YYKBysS9b2Dj9_Oa3tdbANttrEXoXVO1fVbrn3sdl-Vb65obSACHNVtZYpRJjpI_JQ6x50rwTSY9JRyTox9mOV0fdUF4g9p5OqP8M6uT_WkRdPyG-NNZpGVGONXscajRNaYI0C1uiHFtJoG2lbNE1ohbNPVNA2ymiJMgoooysowy8uUUY1yp6Sk9FwOjgwdT8PU_K-lZlSKktiwUrGpHI9O2KRHfAQKyQJux_2lM1taXkwcIWVEV0Fukk_Ui5XjseVxzdIN4Gf85zQSEjHCcNdxWXYs5S7i3l48Ixknh14gW2QrYoLvtTF7rHnyrlfBF1wz99no-OCY4cGeVuvvSxLvNy6arNipq-PgIXP3D7nPcwVN8ibehoOaPS6iUSlOa7BBt8Anr-tAQmR8T6oUgZ5VgKlfhXsf8BBrjDIBiCnJjeIe3GHbV-SB83fb5N0s6tcvQJpOgtea6D_AcMHzRk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+natural+dihydrochalcones+in+sweet+tea+%28Lithocarpus+polystachyus%29+on+diabetes%3A+a+systematical+review+and+meta-analysis+of+animal+studies&rft.jtitle=Food+%26+function&rft.au=Chen%2C+Xue-Min&rft.au=Yang%2C+Wei-Qi&rft.au=Wang%2C+Xue&rft.au=Chen%2C+Chong&rft.date=2022-06-06&rft.issn=2042-650X&rft.volume=13&rft.issue=11+p.5899-5913&rft.spage=5899&rft.epage=5913&rft_id=info:doi/10.1039%2Fd2fo00245k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |