Trajectory Design for UAV-Based Internet of Things Data Collection: A Deep Reinforcement Learning Approach

In this article, we investigate an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) system in a sophisticated 3-D environment, where the UAV's trajectory is optimized to efficiently collect data from multiple IoT ground nodes. Unlike existing approaches focusing only on a simplif...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 9; no. 5; pp. 3899 - 3912
Main Authors Wang, Yang, Gao, Zhen, Zhang, Jun, Cao, Xianbin, Zheng, Dezhi, Gao, Yue, Ng, Derrick Wing Kwan, Renzo, Marco Di
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we investigate an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) system in a sophisticated 3-D environment, where the UAV's trajectory is optimized to efficiently collect data from multiple IoT ground nodes. Unlike existing approaches focusing only on a simplified 2-D scenario and the availability of perfect channel state information (CSI), this article considers a practical 3-D urban environment with imperfect CSI, where the UAV's trajectory is designed to minimize data collection completion time subject to practical throughput and flight movement constraints. Specifically, inspired by the state-of-the-art deep reinforcement learning approaches, we leverage the twin-delayed deep deterministic policy gradient (TD3) to design the UAV's trajectory and we present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm. In particular, we set an additional information, i.e., the merged pheromone, to represent the state information of the UAV and environment as a reference of reward which facilitates the algorithm design. By taking the service statuses of the IoT nodes, the UAV's position, and the merged pheromone as input, the proposed algorithm can continuously and adaptively learn how to adjust the UAV's movement strategy. By interacting with the external environment in the corresponding Markov decision process, the proposed algorithm can achieve a near-optimal navigation strategy. Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional nonlearning-based baseline methods.
AbstractList In this article, we investigate an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) system in a sophisticated 3-D environment, where the UAV’s trajectory is optimized to efficiently collect data from multiple IoT ground nodes. Unlike existing approaches focusing only on a simplified 2-D scenario and the availability of perfect channel state information (CSI), this article considers a practical 3-D urban environment with imperfect CSI, where the UAV’s trajectory is designed to minimize data collection completion time subject to practical throughput and flight movement constraints. Specifically, inspired by the state-of-the-art deep reinforcement learning approaches, we leverage the twin-delayed deep deterministic policy gradient (TD3) to design the UAV’s trajectory and we present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm. In particular, we set an additional information, i.e., the merged pheromone, to represent the state information of the UAV and environment as a reference of reward which facilitates the algorithm design. By taking the service statuses of the IoT nodes, the UAV’s position, and the merged pheromone as input, the proposed algorithm can continuously and adaptively learn how to adjust the UAV’s movement strategy. By interacting with the external environment in the corresponding Markov decision process, the proposed algorithm can achieve a near-optimal navigation strategy. Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional nonlearning-based baseline methods.
In this article, we investigate an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) system in a sophisticated 3-D environment, where the UAV’s trajectory is optimized to efficiently collect data from multiple IoT ground nodes. Unlike existing approaches focusing only on a simplified 2-D scenario and the availability of perfect channel state information (CSI), this article considers a practical 3-D urban environment with imperfect CSI, where the UAV’s trajectory is designed to minimize data collection completion time subject to practical throughput and flight movement constraints. Specifically, inspired by the state-of-the-art deep reinforcement learning approaches, we leverage the twin-delayed deep deterministic policy gradient (TD3) to design the UAV’s trajectory and we present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm. In particular, we set an additional information, i.e., the merged pheromone, to represent the state information of the UAV and environment as a reference of reward which facilitates the algorithm design. By taking the service statuses of the IoT nodes, the UAV’s position, and the merged pheromone as input, the proposed algorithm can continuously and adaptively learn how to adjust the UAV’s movement strategy. By interacting with the external environment in the corresponding Markov decision process, the proposed algorithm can achieve a near-optimal navigation strategy. Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional nonlearning-based baseline methods
Author Wang, Yang
Gao, Zhen
Zheng, Dezhi
Gao, Yue
Renzo, Marco Di
Cao, Xianbin
Ng, Derrick Wing Kwan
Zhang, Jun
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-6713-030X
  surname: Wang
  fullname: Wang, Yang
  email: 3120200843@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0002-2709-0216
  surname: Gao
  fullname: Gao, Zhen
  email: gaozhen16@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-1017-7179
  surname: Zhang
  fullname: Zhang, Jun
  email: buaazhangjun@vip.sina.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Xianbin
  orcidid: 0000-0002-5042-7884
  surname: Cao
  fullname: Cao, Xianbin
  email: xbcao@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Dezhi
  orcidid: 0000-0003-3998-5989
  surname: Zheng
  fullname: Zheng, Dezhi
  email: zhengdezhi@buaa.edu.cn
  organization: Innovation Institute of Frontier Science and Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Yue
  orcidid: 0000-0001-6502-9910
  surname: Gao
  fullname: Gao, Yue
  email: yue.gao@ieee.org
  organization: Department of Electrical and Electronic Engineering, University of Surrey, Surrey, U.K
– sequence: 7
  givenname: Derrick Wing Kwan
  orcidid: 0000-0001-6400-712X
  surname: Ng
  fullname: Ng, Derrick Wing Kwan
  email: w.k.ng@unsw.edu.au
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, Australia
– sequence: 8
  givenname: Marco Di
  orcidid: 0000-0003-0772-8793
  surname: Renzo
  fullname: Renzo, Marco Di
  email: marco.di.renzo@gmail.com
  organization: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
BackLink https://hal.science/hal-03837851$$DView record in HAL
BookMark eNp9kV1rFDEUhoNUsNb-APEm4JUXs-Zjkpnxbtyq3bJQKNvehjOZs90s02RNUqH_3gxbRbzoTRLC8xzew_uWnPjgkZD3nC04Z93nq9X1ZiGY4AvJy9mqV-RUSNFUtdbi5J_3G3Ke0p4xVjTFO31K9psIe7Q5xCd6gcnde7oNkd72d9VXSDjSlc8YPWYatnSzc_4-0QvIQJdhmorngv9C-6Ligd6g80W2-IA-0zVC9IWn_eEQA9jdO_J6C1PC8-f7jNx-_7ZZXlbr6x-rZb-urGxYrqy1chANG5iCttFY19AKNqJW3djysatHUIMEK4VQbISxE7UcaotsEHxoBi7PyKfj3B1M5hDdA8QnE8CZy35t5j8mW9m0iv-a2Y9HtkT8-Ygpm314jL7EM0JL3qmOaV2o5kjZGFKKuDXWZZh3zxHcZDgzcw9m7sHMPZjnHorJ_zP_BHrJ-XB0HCL-5TvFas2E_A3u15ON
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_LCOMM_2023_3252725
crossref_primary_10_1109_TMC_2022_3172444
crossref_primary_10_3390_electronics13081592
crossref_primary_10_1109_TIE_2022_3220893
crossref_primary_10_3390_electronics12061376
crossref_primary_10_1109_TVT_2024_3419842
crossref_primary_10_1109_TMC_2024_3419915
crossref_primary_10_1038_s41598_024_72654_y
crossref_primary_10_1177_17543371241229521
crossref_primary_10_1016_j_iot_2024_101262
crossref_primary_10_1016_j_iot_2024_101184
crossref_primary_10_3390_drones8090485
crossref_primary_10_1109_JIOT_2023_3268316
crossref_primary_10_1002_dac_5421
crossref_primary_10_1109_TWC_2023_3282909
crossref_primary_10_3390_s24082386
crossref_primary_10_1109_JSAC_2024_3459039
crossref_primary_10_1109_TITS_2023_3345280
crossref_primary_10_1109_JSAC_2024_3459035
crossref_primary_10_1109_TVT_2023_3320676
crossref_primary_10_1177_09544100241278023
crossref_primary_10_3390_app132312555
crossref_primary_10_1109_TGCN_2022_3186841
crossref_primary_10_1109_TWC_2024_3458194
crossref_primary_10_3390_drones7070465
crossref_primary_10_1109_LSENS_2024_3487009
crossref_primary_10_1109_LCOMM_2023_3305537
crossref_primary_10_1016_j_aei_2024_102920
crossref_primary_10_3390_math13010046
crossref_primary_10_1049_cje_2021_00_314
crossref_primary_10_1109_TWC_2023_3260304
crossref_primary_10_1049_ell2_70063
crossref_primary_10_1109_JIOT_2024_3395779
crossref_primary_10_3390_drones8090510
crossref_primary_10_3390_electronics12173537
crossref_primary_10_1109_LCOMM_2023_3258922
crossref_primary_10_1109_OJCOMS_2024_3429198
crossref_primary_10_1109_ACCESS_2025_3526193
crossref_primary_10_1016_j_ijcip_2024_100726
crossref_primary_10_1016_j_phycom_2024_102462
crossref_primary_10_3390_drones8010027
crossref_primary_10_3390_en17112762
crossref_primary_10_3390_drones8120717
crossref_primary_10_3390_drones9020121
crossref_primary_10_1016_j_oceaneng_2022_112809
crossref_primary_10_1109_ACCESS_2024_3412392
crossref_primary_10_1109_TMC_2024_3480910
crossref_primary_10_1109_JIOT_2024_3392358
crossref_primary_10_1109_JIOT_2022_3231341
crossref_primary_10_1109_TWC_2023_3244868
crossref_primary_10_1016_j_jnca_2023_103670
crossref_primary_10_1109_JSEN_2023_3265935
crossref_primary_10_1109_JIOT_2022_3201017
crossref_primary_10_1109_LWC_2023_3335037
crossref_primary_10_1109_TNSE_2023_3344428
crossref_primary_10_1109_TWC_2022_3149636
crossref_primary_10_1109_JIOT_2024_3350525
crossref_primary_10_1109_JIOT_2023_3309136
crossref_primary_10_48084_etasr_8981
crossref_primary_10_1016_j_cja_2025_103493
crossref_primary_10_1109_LCOMM_2022_3210660
crossref_primary_10_1016_j_comnet_2023_110074
crossref_primary_10_1142_S021812662350305X
crossref_primary_10_3390_s23104691
crossref_primary_10_1109_TWC_2024_3430228
crossref_primary_10_1109_TITS_2022_3219048
crossref_primary_10_1109_TWC_2024_3470525
crossref_primary_10_1109_TWC_2024_3387855
crossref_primary_10_1109_JIOT_2022_3222027
crossref_primary_10_1109_TCOMM_2024_3379417
crossref_primary_10_1109_TWC_2023_3292290
crossref_primary_10_3390_machines11010108
Cites_doi 10.1109/JIOT.2019.2955732
10.1109/JIOT.2020.3012835
10.1109/JSAC.2021.3088681
10.1109/LWC.2017.2776922
10.1109/TCOMM.2020.2982152
10.1109/MCOM.2016.7470933
10.1109/JSAC.2018.2864420
10.1109/TVT.2019.2959808
10.1609/aaai.v30i1.10295
10.1109/JIOT.2019.2943608
10.1109/TWC.2019.2911939
10.1109/INFOCOM.2014.6848000
10.23919/JCIN.2020.9055113
10.1109/JSAC.2019.2904353
10.1038/nature14236
10.1109/JIOT.2018.2875446
10.1017/CBO9780511804441
10.1109/3477.484436
10.1109/INFOCOMWKSHPS50562.2020.9162896
10.1109/TWC.2017.2751045
10.1109/TVT.2019.2913988
10.1109/LWC.2014.2342736
10.1109/GLOBECOM38437.2019.9014041
10.1109/TWC.2020.3016024
10.1109/TCOMM.2019.2900630
10.1109/TII.2017.2783439
10.1109/JIOT.2018.2887086
10.1109/TNN.1998.712192
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/JIOT.2021.3102185
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 3912
ExternalDocumentID oai_HAL_hal_03837851v1
10_1109_JIOT_2021_3102185
9504602
Genre orig-research
GrantInformation_xml – fundername: Basic Science Center for Autonomous Intelligent Unmanned Systems
  grantid: 62088101
– fundername: National Natural Science Foundation of China
  grantid: 62071044
  funderid: 10.13039/501100001809
– fundername: UNSW Digital Grid Futures Institute, UNSW, Sydney, under a Crossdisciplinary Fund Scheme
– fundername: Beijing Natural Science Foundation
  grantid: L182024
  funderid: 10.13039/501100004826
– fundername: Science and Technology Innovation Plan from Beijing Institute of Technology
– fundername: Australian Research Council’s Discovery Project
  grantid: DP210102169
  funderid: 10.13039/501100000923
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c370t-ccc3b270b05a876e44a820de659d81d94da5b3ac32250dad9243b4ce0b21b7b13
IEDL.DBID RIE
ISSN 2327-4662
2372-2541
IngestDate Fri May 09 12:21:20 EDT 2025
Mon Jun 30 03:37:50 EDT 2025
Tue Jul 01 04:08:13 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 27 02:49:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Internet-of-Things (IoT)
trajectory design
deep reinforcement learning
UAV communications
data collection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-ccc3b270b05a876e44a820de659d81d94da5b3ac32250dad9243b4ce0b21b7b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3998-5989
0000-0003-0772-8793
0000-0001-6502-9910
0000-0001-6400-712X
0000-0002-2709-0216
0000-0002-5042-7884
0000-0003-1017-7179
0000-0001-6713-030X
OpenAccessLink https://hal.science/hal-03837851
PQID 2631959066
PQPubID 2040421
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_03837851v1
crossref_citationtrail_10_1109_JIOT_2021_3102185
proquest_journals_2631959066
crossref_primary_10_1109_JIOT_2021_3102185
ieee_primary_9504602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Schulman (ref27) 2017
ref34
ref15
ref14
ref30
LaValle (ref35) 1998
ref11
ref33
ref10
ref32
Lillicrap (ref23) 2015; 8
ref2
ref1
ref17
ref16
ref19
ref18
Haarnoja (ref28) 2018
ref24
Lowe (ref25)
ref20
ref22
Fujimoto (ref26)
ref21
(ref31) 2012
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/JIOT.2019.2955732
– volume: 8
  issue: 6
  year: 2015
  ident: ref23
  article-title: Continuous control with deep reinforcement learning
  publication-title: Comput. Sci.
– year: 1998
  ident: ref35
  article-title: Rapidly-exploring random trees: A new tool for path planning
– ident: ref15
  doi: 10.1109/JIOT.2020.3012835
– volume-title: Soft actor–critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
  year: 2018
  ident: ref28
– ident: ref2
  doi: 10.1109/JSAC.2021.3088681
– ident: ref5
  doi: 10.1109/LWC.2017.2776922
– ident: ref8
  doi: 10.1109/TCOMM.2020.2982152
– ident: ref4
  doi: 10.1109/MCOM.2016.7470933
– start-page: 6379
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref25
  article-title: Multi-agent actor–critic for mixed cooperative-competitive environments
– ident: ref13
  doi: 10.1109/JSAC.2018.2864420
– ident: ref7
  doi: 10.1109/TVT.2019.2959808
– ident: ref33
  doi: 10.1609/aaai.v30i1.10295
– start-page: 1582
  volume-title: Proc. Int. Conf. Mech. Learn. (ICML)
  ident: ref26
  article-title: Addressing function approximation error in actor–critic methods
– ident: ref30
  doi: 10.1109/JIOT.2019.2943608
– ident: ref10
  doi: 10.1109/TWC.2019.2911939
– ident: ref3
  doi: 10.1109/INFOCOM.2014.6848000
– ident: ref9
  doi: 10.23919/JCIN.2020.9055113
– ident: ref19
  doi: 10.1109/JSAC.2019.2904353
– ident: ref24
  doi: 10.1038/nature14236
– ident: ref11
  doi: 10.1109/JIOT.2018.2875446
– ident: ref32
  doi: 10.1017/CBO9780511804441
– volume-title: Proximal policy optimization algorithms
  year: 2017
  ident: ref27
– ident: ref22
  doi: 10.1109/3477.484436
– ident: ref21
  doi: 10.1109/INFOCOMWKSHPS50562.2020.9162896
– ident: ref6
  doi: 10.1109/TWC.2017.2751045
– ident: ref17
  doi: 10.1109/TVT.2019.2913988
– ident: ref29
  doi: 10.1109/LWC.2014.2342736
– ident: ref20
  doi: 10.1109/GLOBECOM38437.2019.9014041
– ident: ref34
  doi: 10.1109/TWC.2020.3016024
– ident: ref12
  doi: 10.1109/TCOMM.2019.2900630
– ident: ref18
  doi: 10.1109/TII.2017.2783439
– ident: ref1
  doi: 10.1109/JIOT.2018.2887086
– volume-title: Propagation data and prediction methods required for the design of terrestrial broadband radio access systems operating in a frequency range from 3 to 60 GHz
  year: 2012
  ident: ref31
– ident: ref16
  doi: 10.1109/TNN.1998.712192
SSID ssj0001105196
Score 2.5593133
Snippet In this article, we investigate an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) system in a sophisticated 3-D environment, where the UAV's...
In this article, we investigate an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) system in a sophisticated 3-D environment, where the UAV’s...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3899
SubjectTerms Algorithms
Completion time
Data collection
Deep learning
deep reinforcement learning (DRL)
Engineering Sciences
Internet of Things
Internet of Things (IoT)
Machine learning
Markov processes
Minimization
Nodes
Optimization
Resource management
Sensors
Signal and Image processing
Three-dimensional displays
Trajectory
trajectory design
Trajectory optimization
unmanned aerial vehicle (UAV) communications
Unmanned aerial vehicles
Urban environments
Title Trajectory Design for UAV-Based Internet of Things Data Collection: A Deep Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/9504602
https://www.proquest.com/docview/2631959066
https://hal.science/hal-03837851
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7UJ19q27M0rZWl-FSaczfZJBffolZO8SqIV3wL-0uLLXeiOUH_emc2m5S2Ir6FZBcCs7vzfbMz3wBsaW3RsRQ2RvagYqnzMtYXyFK0kkY650Rmqd558j0fT-XReXa-BF_7Whj87pPP3JAe_V2-nZsFhcq2y4yu8fDAXUbi1tZq_YmnCAIjebi4FLzcPjo8OUMCmAjkpeTJsr9cz_JPSnz0HVX-O4a9bzlYg0n3V21Kya_hotFD8_CPYONLf_s1vAogk1XtqngDS272Fta6Bg4s7OcBXKGnuvJh-3u271M5GGJYNq1-xLvo3Sxr44WuYfML1nb4ZPuqUcyHG3xFxA6rcKq7ZqfOa7AaH25kQbb1klVBs3wdpgffzvbGcWi-EJu04E1sjEl1UnDNM4UnppNSIViwLs9Kixi3lFZlOlWGDgRulUUel2ppHNeJ0IUW6TtYmc1n7j0wBFnIWqy0orRSJIVyuRxlelSOHE-0SSLgnV1qE5TJqUHG79ozFF7WZMqaTFkHU0bwpZ9y3cpyPDf4Mxq7H0eC2uPquKZ3nAg6gs47EcGALNePCkaLYKNbG3XY3bd1kqekyYNo7cPTsz7CakJlEj5XbQNWmpuF-4TgpdGbftU-AjhC6tw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bb9MwFD7axgO8bMBAFAZYCF6Q0tmOnTRIewiUqd26IaEW7c34tqGB2omloPFb9lf4bxw7bhEX8TaJtyixI8X57POdO8BTYxwKltJlqD3oTJiiyswxailGCyu890y6kO98cFgMJmLvSB6twOUyFwafx-Az3w2X0ZfvZnYeTGXblQxuPJ5CKPf9xVdU0M53hn38m8843309fjXIUg-BzOYlbTJrbW54SQ2VGje-F0KjzHO-kJVDqlYJp6XJtQ24pk47VEdyI6ynhjNTGpbje1fhGvIMydvssJ8WHBboT5FcpYxW23vDN2NUOTlDTTjITvmLsFv9EEItYw-XPw7-KM12N-D7Yh3aIJaP3XljuvbbbyUi_9eFugnriUaTusX9LVjx09uwsWhRQdKJtQmnKItPo2PigvRjsApBlk4m9bvsJcpvR1qLqG_I7Ji0PUxJXzeaRINKzPl4QWqc6s_IWx-rzNpoUCWpMO0JqVNV9jswuZIvvgtr09nU3wOCNBL1Miccq5xgvNS-ED1pelXPU24s7wBd4EDZVHs9tAD5pKIORisVoKMCdFSCTgeeL6ectYVH_jX4CYJrOS6UDB_UIxXu0WCCQFr9hXVgMyBlOSqBpANbCyyqdH6dK17koeoQ8tH7f5_1GK4PxgcjNRoe7j-AGzwkhcTIvC1Yaz7P_UOkao15FHcMgfdXjbwfHGRIwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Design+for+UAV-Based+Internet+of+Things+Data+Collection%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wang%2C+Yang&rft.au=Gao%2C+Zhen&rft.au=Zhang%2C+Jun&rft.au=Cao%2C+Xianbin&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=9&rft.issue=5&rft.spage=3899&rft_id=info:doi/10.1109%2FJIOT.2021.3102185&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon