Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions

Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 57; no. 5; pp. 667 - 67
Main Authors Wang, Lin, Zhao, Zhihao, Shinde, Digambar B, Lai, Zhiping, Wang, Dong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices. Nitrogen and carbonyl bridge substituents embedded in truxene derivatives enhance the single-molecule conductance prominently by alleviating the destructive quantum interference effect and pushing away the anti-resonance dip from the Fermi energy.
AbstractList Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.
Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.
Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices. Nitrogen and carbonyl bridge substituents embedded in truxene derivatives enhance the single-molecule conductance prominently by alleviating the destructive quantum interference effect and pushing away the anti-resonance dip from the Fermi energy.
Author Wang, Lin
Lai, Zhiping
Wang, Dong
Zhao, Zhihao
Shinde, Digambar B
AuthorAffiliation King Abdullah University of Science and Technology (KAUST)
Institute of Chemistry
China University of Geosciences
Chinese Academy of Sciences (CAS)
School of Materials Science and Technology
Division of Physical Science and Engineering
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences
Advanced Membranes and Porous Materials Center
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Institute of Chemistry
– name: Division of Physical Science and Engineering
– name: Advanced Membranes and Porous Materials Center
– name: School of Materials Science and Technology
– name: China University of Geosciences
– name: Chinese Academy of Sciences (CAS)
– name: King Abdullah University of Science and Technology (KAUST)
– name: University of Chinese Academy of Sciences
– name: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences
Author_xml – sequence: 1
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 2
  givenname: Zhihao
  surname: Zhao
  fullname: Zhao, Zhihao
– sequence: 3
  givenname: Digambar B
  surname: Shinde
  fullname: Shinde, Digambar B
– sequence: 4
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
– sequence: 5
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33346271$$D View this record in MEDLINE/PubMed
BookMark eNqFks1r3DAQxUVJyVdz6b1F0EsouJU0lmUfw-ajhZRcUujNaKXxosWWNpIVmv8-2myaQihUF2mY33sw83RE9nzwSMh7zr5wBt1Xy4xhqoZWvyGHHJq6knX7a2_7ll2loJYH5CilNSuHy3afHABA3QjFD8n6R7B51LMLnoaBWkxzzGZ290jvsvZznqjzM8YBI3qDdPlAl9HZFdJVDHmTSpcWxW_0WC11QkuT86sRqymMaPKIdJ292dqnd-TtoMeEJ8_3Mfl5eXG7-FZd31x9X5xdVwYUmysjFEhrUIORWjRtLSRqK1TbccuaUnChO9Vgayw2A2ghreSdHnirtQHQcExOd76bGO5yGaifXDI4jtpjyKkXUhRP1cnu_2ituAQBihf00yt0HXL0ZZAt1dVSNKwp1MdnKi8ntP0muknHh_7PwgvweQeYGFKKOLwgnPXbNPtztlg8pXlWYPYKNm5-ymqO2o3_lnzYSWIyL9Z_Pwg8Aj7Rq5s
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118358
crossref_primary_10_1142_S2737416521500459
crossref_primary_10_1039_D2CP03902H
crossref_primary_10_1039_D3SC00075C
crossref_primary_10_1021_acsphyschemau_2c00016
crossref_primary_10_1039_D2TC01155G
crossref_primary_10_1007_s40242_022_2136_4
crossref_primary_10_1088_1361_6528_ac3b84
crossref_primary_10_1016_j_physb_2022_413989
Cites_doi 10.1246/cl.2010.788
10.1021/ja804399q
10.1038/ncomms15436
10.1002/anie.202000061
10.1038/nchem.2160
10.1002/ange.201308398
10.1021/jacs.8b10450
10.1016/j.chempr.2018.12.008
10.1002/anie.201904521
10.1039/C9NR01235D
10.1038/nnano.2012.147
10.1126/sciadv.aat8237
10.1038/s41563-018-0265-4
10.1021/jacs.9b08427
10.1021/jacs.9b06965
10.1021/jacs.8b02825
10.1002/chem.201704488
10.1021/acs.jpcc.8b03023
10.1002/anie.202005047
10.1038/ncomms7389
10.1038/s41565-018-0258-0
10.1021/acs.jpclett.9b02319
10.1002/anie.201807879
10.1021/ja411143s
10.1039/C9CP06384F
10.1038/s41563-018-0280-5
10.1039/b404929b
10.1021/acs.jpcc.6b01828
10.1002/anie.201609051
10.1002/anie.201909461
10.1039/c4sc00064a
10.1038/nchem.2588
10.1021/jacs.6b10837
10.1021/jacs.8b06964
10.1039/D0NR04001K
10.1002/chem.201705760
10.1021/cm4029484
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d0cc07438a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 67
ExternalDocumentID 33346271
10_1039_D0CC07438A
d0cc07438a
Genre Journal Article
GroupedDBID -
0-7
0R
1TJ
29B
4.4
53G
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
IH2
J3I
JG
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RCNCU
RIG
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X
X7L
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACBEA
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c370t-c2735dcea3c5a268425ead27891d0625e12a976e8cde6f3a25d519af18aac33a3
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 15:12:22 EDT 2025
Fri Jul 11 08:00:03 EDT 2025
Sun Jun 29 16:54:18 EDT 2025
Wed Feb 19 02:29:46 EST 2025
Tue Jul 01 04:09:20 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Sat Jan 08 03:52:06 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-c2735dcea3c5a268425ead27891d0625e12a976e8cde6f3a25d519af18aac33a3
Notes Electronic supplementary information (ESI) available: Details of the conductance experiment and theoretical calculations. See DOI
10.1039/d0cc07438a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1449-0621
0000-0001-9555-6009
0000-0002-1649-942X
PMID 33346271
PQID 2479452606
PQPubID 2047502
PageCount 4
ParticipantIDs proquest_journals_2479452606
pubmed_primary_33346271
crossref_citationtrail_10_1039_D0CC07438A
proquest_miscellaneous_2524257959
rsc_primary_d0cc07438a
crossref_primary_10_1039_D0CC07438A
proquest_miscellaneous_2471532371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210121
PublicationDateYYYYMMDD 2021-01-21
PublicationDate_xml – month: 1
  year: 2021
  text: 20210121
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Klausen (D0CC07438A-(cit27)/*[position()=1]) 2014; 5
Grace (D0CC07438A-(cit24)/*[position()=1]) 2020; 12
Jia (D0CC07438A-(cit5)/*[position()=1]) 2018; 4
Carlotti (D0CC07438A-(cit1)/*[position()=1]) 2018; 57
Bürkle (D0CC07438A-(cit3)/*[position()=1]) 2017; 139
Zhao (D0CC07438A-(cit34)/*[position()=1]) 2013; 25
Haiss (D0CC07438A-(cit31)/*[position()=1]) 2004; 6
Andrews (D0CC07438A-(cit36)/*[position()=1]) 2008; 130
Kiguchi (D0CC07438A-(cit29)/*[position()=1]) 2010; 39
Zang (D0CC07438A-(cit33)/*[position()=1]) 2018; 140
Li (D0CC07438A-(cit14)/*[position()=1]) 2019; 18
Caneva (D0CC07438A-(cit2)/*[position()=1]) 2018; 13
Huang (D0CC07438A-(cit12)/*[position()=1]) 2018; 140
Dell (D0CC07438A-(cit35)/*[position()=1]) 2015; 7
Gomez-Esteban (D0CC07438A-(cit28)/*[position()=1]) 2018; 24
Bai (D0CC07438A-(cit13)/*[position()=1]) 2019; 18
Soni (D0CC07438A-(cit25)/*[position()=1]) 2020; 59
Liu (D0CC07438A-(cit17)/*[position()=1]) 2017; 56
Garner (D0CC07438A-(cit37)/*[position()=1]) 2016; 120
Li (D0CC07438A-(cit19)/*[position()=1]) 2019; 141
Naghibi (D0CC07438A-(cit23)/*[position()=1]) 2019; 10
Famili (D0CC07438A-(cit6)/*[position()=1]) 2019; 5
Garner (D0CC07438A-(cit11)/*[position()=1]) 2019; 141
Zotti (D0CC07438A-(cit20)/*[position()=1]) 2020; 22
Alanazy (D0CC07438A-(cit22)/*[position()=1]) 2019; 11
Yang (D0CC07438A-(cit18)/*[position()=1]) 2018; 122
Jiang (D0CC07438A-(cit21)/*[position()=1]) 2019; 58
Frisenda (D0CC07438A-(cit10)/*[position()=1]) 2016; 8
Zhang (D0CC07438A-(cit8)/*[position()=1]) 2018; 140
Lambert (D0CC07438A-(cit16)/*[position()=1]) 2018; 24
Shen (D0CC07438A-(cit4)/*[position()=1]) 2020; 59
Chen (D0CC07438A-(cit26)/*[position()=1]) 2014; 136
Vazquez (D0CC07438A-(cit32)/*[position()=1]) 2012; 7
Huang (D0CC07438A-(cit7)/*[position()=1]) 2017; 8
Li (D0CC07438A-(cit30)/*[position()=1]) 2014; 126
Manrique (D0CC07438A-(cit9)/*[position()=1]) 2015; 6
Tang (D0CC07438A-(cit15)/*[position()=1]) 2019; 58
References_xml – volume: 39
  start-page: 788
  year: 2010
  ident: D0CC07438A-(cit29)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2010.788
– volume: 130
  start-page: 17309
  year: 2008
  ident: D0CC07438A-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804399q
– volume: 8
  start-page: 15436
  year: 2017
  ident: D0CC07438A-(cit7)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15436
– volume: 59
  start-page: 4581
  year: 2020
  ident: D0CC07438A-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000061
– volume: 7
  start-page: 209
  year: 2015
  ident: D0CC07438A-(cit35)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2160
– volume: 126
  start-page: 1116
  year: 2014
  ident: D0CC07438A-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201308398
– volume: 140
  start-page: 17685
  year: 2018
  ident: D0CC07438A-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10450
– volume: 5
  start-page: 474
  year: 2019
  ident: D0CC07438A-(cit6)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2018.12.008
– volume: 58
  start-page: 10601
  year: 2019
  ident: D0CC07438A-(cit15)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904521
– volume: 11
  start-page: 13720
  year: 2019
  ident: D0CC07438A-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR01235D
– volume: 7
  start-page: 663
  year: 2012
  ident: D0CC07438A-(cit32)/*[position()=1]
  publication-title: Nat. Nano
  doi: 10.1038/nnano.2012.147
– volume: 4
  start-page: eaat8237
  year: 2018
  ident: D0CC07438A-(cit5)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat8237
– volume: 18
  start-page: 364
  year: 2019
  ident: D0CC07438A-(cit13)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0265-4
– volume: 141
  start-page: 16079
  year: 2019
  ident: D0CC07438A-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08427
– volume: 141
  start-page: 15471
  year: 2019
  ident: D0CC07438A-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06965
– volume: 140
  start-page: 6531
  year: 2018
  ident: D0CC07438A-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02825
– volume: 24
  start-page: 4193
  year: 2018
  ident: D0CC07438A-(cit16)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201704488
– volume: 122
  start-page: 14965
  year: 2018
  ident: D0CC07438A-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03023
– volume: 59
  start-page: 14308
  year: 2020
  ident: D0CC07438A-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005047
– volume: 6
  start-page: 6389
  year: 2015
  ident: D0CC07438A-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7389
– volume: 13
  start-page: 1126
  year: 2018
  ident: D0CC07438A-(cit2)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0258-0
– volume: 10
  start-page: 6419
  year: 2019
  ident: D0CC07438A-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02319
– volume: 57
  start-page: 15681
  year: 2018
  ident: D0CC07438A-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201807879
– volume: 136
  start-page: 918
  year: 2014
  ident: D0CC07438A-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411143s
– volume: 22
  start-page: 5638
  year: 2020
  ident: D0CC07438A-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06384F
– volume: 18
  start-page: 357
  year: 2019
  ident: D0CC07438A-(cit14)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0280-5
– volume: 6
  start-page: 4330
  year: 2004
  ident: D0CC07438A-(cit31)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b404929b
– volume: 120
  start-page: 9097
  year: 2016
  ident: D0CC07438A-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01828
– volume: 56
  start-page: 173
  year: 2017
  ident: D0CC07438A-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201609051
– volume: 58
  start-page: 18987
  year: 2019
  ident: D0CC07438A-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909461
– volume: 5
  start-page: 1561
  year: 2014
  ident: D0CC07438A-(cit27)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c4sc00064a
– volume: 8
  start-page: 1099
  year: 2016
  ident: D0CC07438A-(cit10)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2588
– volume: 139
  start-page: 2989
  year: 2017
  ident: D0CC07438A-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10837
– volume: 140
  start-page: 13167
  year: 2018
  ident: D0CC07438A-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06964
– volume: 12
  start-page: 14682
  year: 2020
  ident: D0CC07438A-(cit24)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/D0NR04001K
– volume: 24
  start-page: 3576
  year: 2018
  ident: D0CC07438A-(cit28)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201705760
– volume: 25
  start-page: 4340
  year: 2013
  ident: D0CC07438A-(cit34)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm4029484
SSID ssj0000158
Score 2.419875
Snippet Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 667
SubjectTerms Carbonyls
electron transfer
Electron transport
energy
Interference
Measurement techniques
nitrogen
Resistance
Transport properties
Title Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions
URI https://www.ncbi.nlm.nih.gov/pubmed/33346271
https://www.proquest.com/docview/2479452606
https://www.proquest.com/docview/2471532371
https://www.proquest.com/docview/2524257959
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXxKuwUJARXFDlktixkxyrpaighdNWrHqJHNtht2p3q7JFwP_hfzJ-xEm7FSpcosiPyMlM5mXPNwi9FrrWRjY1KXhtSCbSghRC5yQF2zUtm8IirtvTFp_FwWH2ccqng8Hv3qmli1W9q35dm1fyP1SFNqCrzZL9B8rGh0ID3AN94QoUhuuNaPxpqUP1LWvzaRPAYL8bmysJyuTUoUGct1CyYGmG_CyXy-FOwsKMHyDuiNVmescGDk4MOfU1c83OMWi9LqLXAhq0GAOqn1ziorcxA8yJWF8fpBdr-BKC0-N5ZMmjmXTB2qPZHO5ivGdmURydPJx_hWdKmxHTdo59BW2Ycdbq3RC2oDZmQXwudJC0jJckZx5LcteENpERcKGmffHs8asDG_KerBW-jkdQ28LXH1nTCAmzgKrvktHIGktFxFTtYLevqMN4SNFtz7Oy6ubeQpsUvBEQp5t7-5MP4x5OmSsEG9-pxcFl5dtu9mXLZ82dAePmvC0644ybyT10N3gleM-z2H00MIsH6PaoLQb4EB13rIaXDe6xGg6shvushuuf2DMC9qwGvfgSq-ErrIYjqz1Ch-_3J6MDEsp0EMXyZEUUWMBcKyOZ4pK6fV0QTzbDOtUJuNcmpRKMXlMobUTDJOUa3AbZpIWUijHJttDGYrkwTxAG9SFo02Q59GYppTVVKml4mTZFXtYlG6I37SesVMCwt6VUTqp1Yg3Rqzj2zCO3XDtqu6VEFf7sbxW1ZRc4ePpiiF7GbvjidjNNLszywo0BY4GyPP3LGO4c-pKXQ_TYUzkuhTGWCWpnbwHZY7NO4I3tyuTTG63_GbrT_V3baANIaZ6DmbyqXwQm_QP1G76I
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+destructive+quantum+interference+by+bridge+groups+in+truxene-based+single-molecule+junctions&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Wang%2C+Lin&rft.au=Zhao%2C+Zhihao&rft.au=Shinde%2C+Digambar+B.&rft.au=Lai%2C+Zhiping&rft.date=2021-01-21&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=57&rft.issue=5&rft.spage=667&rft.epage=670&rft_id=info:doi/10.1039%2FD0CC07438A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CC07438A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon