Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions
Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 57; no. 5; pp. 667 - 67 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.
Nitrogen and carbonyl bridge substituents embedded in truxene derivatives enhance the single-molecule conductance prominently by alleviating the destructive quantum interference effect and pushing away the anti-resonance dip from the Fermi energy. |
---|---|
AbstractList | Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices. Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices. Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices. Nitrogen and carbonyl bridge substituents embedded in truxene derivatives enhance the single-molecule conductance prominently by alleviating the destructive quantum interference effect and pushing away the anti-resonance dip from the Fermi energy. |
Author | Wang, Lin Lai, Zhiping Wang, Dong Zhao, Zhihao Shinde, Digambar B |
AuthorAffiliation | King Abdullah University of Science and Technology (KAUST) Institute of Chemistry China University of Geosciences Chinese Academy of Sciences (CAS) School of Materials Science and Technology Division of Physical Science and Engineering CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences Advanced Membranes and Porous Materials Center University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Institute of Chemistry – name: Division of Physical Science and Engineering – name: Advanced Membranes and Porous Materials Center – name: School of Materials Science and Technology – name: China University of Geosciences – name: Chinese Academy of Sciences (CAS) – name: King Abdullah University of Science and Technology (KAUST) – name: University of Chinese Academy of Sciences – name: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences |
Author_xml | – sequence: 1 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 2 givenname: Zhihao surname: Zhao fullname: Zhao, Zhihao – sequence: 3 givenname: Digambar B surname: Shinde fullname: Shinde, Digambar B – sequence: 4 givenname: Zhiping surname: Lai fullname: Lai, Zhiping – sequence: 5 givenname: Dong surname: Wang fullname: Wang, Dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33346271$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1r3DAQxUVJyVdz6b1F0EsouJU0lmUfw-ajhZRcUujNaKXxosWWNpIVmv8-2myaQihUF2mY33sw83RE9nzwSMh7zr5wBt1Xy4xhqoZWvyGHHJq6knX7a2_7ll2loJYH5CilNSuHy3afHABA3QjFD8n6R7B51LMLnoaBWkxzzGZ290jvsvZznqjzM8YBI3qDdPlAl9HZFdJVDHmTSpcWxW_0WC11QkuT86sRqymMaPKIdJ292dqnd-TtoMeEJ8_3Mfl5eXG7-FZd31x9X5xdVwYUmysjFEhrUIORWjRtLSRqK1TbccuaUnChO9Vgayw2A2ghreSdHnirtQHQcExOd76bGO5yGaifXDI4jtpjyKkXUhRP1cnu_2ituAQBihf00yt0HXL0ZZAt1dVSNKwp1MdnKi8ntP0muknHh_7PwgvweQeYGFKKOLwgnPXbNPtztlg8pXlWYPYKNm5-ymqO2o3_lnzYSWIyL9Z_Pwg8Aj7Rq5s |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118358 crossref_primary_10_1142_S2737416521500459 crossref_primary_10_1039_D2CP03902H crossref_primary_10_1039_D3SC00075C crossref_primary_10_1021_acsphyschemau_2c00016 crossref_primary_10_1039_D2TC01155G crossref_primary_10_1007_s40242_022_2136_4 crossref_primary_10_1088_1361_6528_ac3b84 crossref_primary_10_1016_j_physb_2022_413989 |
Cites_doi | 10.1246/cl.2010.788 10.1021/ja804399q 10.1038/ncomms15436 10.1002/anie.202000061 10.1038/nchem.2160 10.1002/ange.201308398 10.1021/jacs.8b10450 10.1016/j.chempr.2018.12.008 10.1002/anie.201904521 10.1039/C9NR01235D 10.1038/nnano.2012.147 10.1126/sciadv.aat8237 10.1038/s41563-018-0265-4 10.1021/jacs.9b08427 10.1021/jacs.9b06965 10.1021/jacs.8b02825 10.1002/chem.201704488 10.1021/acs.jpcc.8b03023 10.1002/anie.202005047 10.1038/ncomms7389 10.1038/s41565-018-0258-0 10.1021/acs.jpclett.9b02319 10.1002/anie.201807879 10.1021/ja411143s 10.1039/C9CP06384F 10.1038/s41563-018-0280-5 10.1039/b404929b 10.1021/acs.jpcc.6b01828 10.1002/anie.201609051 10.1002/anie.201909461 10.1039/c4sc00064a 10.1038/nchem.2588 10.1021/jacs.6b10837 10.1021/jacs.8b06964 10.1039/D0NR04001K 10.1002/chem.201705760 10.1021/cm4029484 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cc07438a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 67 |
ExternalDocumentID | 33346271 10_1039_D0CC07438A d0cc07438a |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 1TJ 29B 4.4 53G 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ IH2 J3I JG M4U N9A O9- P2P R7B R7C R7D RCNCU RIG RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X X7L --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c370t-c2735dcea3c5a268425ead27891d0625e12a976e8cde6f3a25d519af18aac33a3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 15:12:22 EDT 2025 Fri Jul 11 08:00:03 EDT 2025 Sun Jun 29 16:54:18 EDT 2025 Wed Feb 19 02:29:46 EST 2025 Tue Jul 01 04:09:20 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Sat Jan 08 03:52:06 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-c2735dcea3c5a268425ead27891d0625e12a976e8cde6f3a25d519af18aac33a3 |
Notes | Electronic supplementary information (ESI) available: Details of the conductance experiment and theoretical calculations. See DOI 10.1039/d0cc07438a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1449-0621 0000-0001-9555-6009 0000-0002-1649-942X |
PMID | 33346271 |
PQID | 2479452606 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2479452606 pubmed_primary_33346271 crossref_citationtrail_10_1039_D0CC07438A proquest_miscellaneous_2524257959 rsc_primary_d0cc07438a crossref_primary_10_1039_D0CC07438A proquest_miscellaneous_2471532371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210121 |
PublicationDateYYYYMMDD | 2021-01-21 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210121 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Klausen (D0CC07438A-(cit27)/*[position()=1]) 2014; 5 Grace (D0CC07438A-(cit24)/*[position()=1]) 2020; 12 Jia (D0CC07438A-(cit5)/*[position()=1]) 2018; 4 Carlotti (D0CC07438A-(cit1)/*[position()=1]) 2018; 57 Bürkle (D0CC07438A-(cit3)/*[position()=1]) 2017; 139 Zhao (D0CC07438A-(cit34)/*[position()=1]) 2013; 25 Haiss (D0CC07438A-(cit31)/*[position()=1]) 2004; 6 Andrews (D0CC07438A-(cit36)/*[position()=1]) 2008; 130 Kiguchi (D0CC07438A-(cit29)/*[position()=1]) 2010; 39 Zang (D0CC07438A-(cit33)/*[position()=1]) 2018; 140 Li (D0CC07438A-(cit14)/*[position()=1]) 2019; 18 Caneva (D0CC07438A-(cit2)/*[position()=1]) 2018; 13 Huang (D0CC07438A-(cit12)/*[position()=1]) 2018; 140 Dell (D0CC07438A-(cit35)/*[position()=1]) 2015; 7 Gomez-Esteban (D0CC07438A-(cit28)/*[position()=1]) 2018; 24 Bai (D0CC07438A-(cit13)/*[position()=1]) 2019; 18 Soni (D0CC07438A-(cit25)/*[position()=1]) 2020; 59 Liu (D0CC07438A-(cit17)/*[position()=1]) 2017; 56 Garner (D0CC07438A-(cit37)/*[position()=1]) 2016; 120 Li (D0CC07438A-(cit19)/*[position()=1]) 2019; 141 Naghibi (D0CC07438A-(cit23)/*[position()=1]) 2019; 10 Famili (D0CC07438A-(cit6)/*[position()=1]) 2019; 5 Garner (D0CC07438A-(cit11)/*[position()=1]) 2019; 141 Zotti (D0CC07438A-(cit20)/*[position()=1]) 2020; 22 Alanazy (D0CC07438A-(cit22)/*[position()=1]) 2019; 11 Yang (D0CC07438A-(cit18)/*[position()=1]) 2018; 122 Jiang (D0CC07438A-(cit21)/*[position()=1]) 2019; 58 Frisenda (D0CC07438A-(cit10)/*[position()=1]) 2016; 8 Zhang (D0CC07438A-(cit8)/*[position()=1]) 2018; 140 Lambert (D0CC07438A-(cit16)/*[position()=1]) 2018; 24 Shen (D0CC07438A-(cit4)/*[position()=1]) 2020; 59 Chen (D0CC07438A-(cit26)/*[position()=1]) 2014; 136 Vazquez (D0CC07438A-(cit32)/*[position()=1]) 2012; 7 Huang (D0CC07438A-(cit7)/*[position()=1]) 2017; 8 Li (D0CC07438A-(cit30)/*[position()=1]) 2014; 126 Manrique (D0CC07438A-(cit9)/*[position()=1]) 2015; 6 Tang (D0CC07438A-(cit15)/*[position()=1]) 2019; 58 |
References_xml | – volume: 39 start-page: 788 year: 2010 ident: D0CC07438A-(cit29)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2010.788 – volume: 130 start-page: 17309 year: 2008 ident: D0CC07438A-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804399q – volume: 8 start-page: 15436 year: 2017 ident: D0CC07438A-(cit7)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15436 – volume: 59 start-page: 4581 year: 2020 ident: D0CC07438A-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000061 – volume: 7 start-page: 209 year: 2015 ident: D0CC07438A-(cit35)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2160 – volume: 126 start-page: 1116 year: 2014 ident: D0CC07438A-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201308398 – volume: 140 start-page: 17685 year: 2018 ident: D0CC07438A-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10450 – volume: 5 start-page: 474 year: 2019 ident: D0CC07438A-(cit6)/*[position()=1] publication-title: Chemistry doi: 10.1016/j.chempr.2018.12.008 – volume: 58 start-page: 10601 year: 2019 ident: D0CC07438A-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904521 – volume: 11 start-page: 13720 year: 2019 ident: D0CC07438A-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01235D – volume: 7 start-page: 663 year: 2012 ident: D0CC07438A-(cit32)/*[position()=1] publication-title: Nat. Nano doi: 10.1038/nnano.2012.147 – volume: 4 start-page: eaat8237 year: 2018 ident: D0CC07438A-(cit5)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aat8237 – volume: 18 start-page: 364 year: 2019 ident: D0CC07438A-(cit13)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0265-4 – volume: 141 start-page: 16079 year: 2019 ident: D0CC07438A-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08427 – volume: 141 start-page: 15471 year: 2019 ident: D0CC07438A-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06965 – volume: 140 start-page: 6531 year: 2018 ident: D0CC07438A-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02825 – volume: 24 start-page: 4193 year: 2018 ident: D0CC07438A-(cit16)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704488 – volume: 122 start-page: 14965 year: 2018 ident: D0CC07438A-(cit18)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03023 – volume: 59 start-page: 14308 year: 2020 ident: D0CC07438A-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005047 – volume: 6 start-page: 6389 year: 2015 ident: D0CC07438A-(cit9)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7389 – volume: 13 start-page: 1126 year: 2018 ident: D0CC07438A-(cit2)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0258-0 – volume: 10 start-page: 6419 year: 2019 ident: D0CC07438A-(cit23)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02319 – volume: 57 start-page: 15681 year: 2018 ident: D0CC07438A-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807879 – volume: 136 start-page: 918 year: 2014 ident: D0CC07438A-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411143s – volume: 22 start-page: 5638 year: 2020 ident: D0CC07438A-(cit20)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06384F – volume: 18 start-page: 357 year: 2019 ident: D0CC07438A-(cit14)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0280-5 – volume: 6 start-page: 4330 year: 2004 ident: D0CC07438A-(cit31)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b404929b – volume: 120 start-page: 9097 year: 2016 ident: D0CC07438A-(cit37)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01828 – volume: 56 start-page: 173 year: 2017 ident: D0CC07438A-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609051 – volume: 58 start-page: 18987 year: 2019 ident: D0CC07438A-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909461 – volume: 5 start-page: 1561 year: 2014 ident: D0CC07438A-(cit27)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c4sc00064a – volume: 8 start-page: 1099 year: 2016 ident: D0CC07438A-(cit10)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2588 – volume: 139 start-page: 2989 year: 2017 ident: D0CC07438A-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10837 – volume: 140 start-page: 13167 year: 2018 ident: D0CC07438A-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06964 – volume: 12 start-page: 14682 year: 2020 ident: D0CC07438A-(cit24)/*[position()=1] publication-title: Nanoscale doi: 10.1039/D0NR04001K – volume: 24 start-page: 3576 year: 2018 ident: D0CC07438A-(cit28)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201705760 – volume: 25 start-page: 4340 year: 2013 ident: D0CC07438A-(cit34)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm4029484 |
SSID | ssj0000158 |
Score | 2.419875 |
Snippet | Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 667 |
SubjectTerms | Carbonyls electron transfer Electron transport energy Interference Measurement techniques nitrogen Resistance Transport properties |
Title | Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33346271 https://www.proquest.com/docview/2479452606 https://www.proquest.com/docview/2471532371 https://www.proquest.com/docview/2524257959 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXxKuwUJARXFDlktixkxyrpaighdNWrHqJHNtht2p3q7JFwP_hfzJ-xEm7FSpcosiPyMlM5mXPNwi9FrrWRjY1KXhtSCbSghRC5yQF2zUtm8IirtvTFp_FwWH2ccqng8Hv3qmli1W9q35dm1fyP1SFNqCrzZL9B8rGh0ID3AN94QoUhuuNaPxpqUP1LWvzaRPAYL8bmysJyuTUoUGct1CyYGmG_CyXy-FOwsKMHyDuiNVmescGDk4MOfU1c83OMWi9LqLXAhq0GAOqn1ziorcxA8yJWF8fpBdr-BKC0-N5ZMmjmXTB2qPZHO5ivGdmURydPJx_hWdKmxHTdo59BW2Ycdbq3RC2oDZmQXwudJC0jJckZx5LcteENpERcKGmffHs8asDG_KerBW-jkdQ28LXH1nTCAmzgKrvktHIGktFxFTtYLevqMN4SNFtz7Oy6ubeQpsUvBEQp5t7-5MP4x5OmSsEG9-pxcFl5dtu9mXLZ82dAePmvC0644ybyT10N3gleM-z2H00MIsH6PaoLQb4EB13rIaXDe6xGg6shvushuuf2DMC9qwGvfgSq-ErrIYjqz1Ch-_3J6MDEsp0EMXyZEUUWMBcKyOZ4pK6fV0QTzbDOtUJuNcmpRKMXlMobUTDJOUa3AbZpIWUijHJttDGYrkwTxAG9SFo02Q59GYppTVVKml4mTZFXtYlG6I37SesVMCwt6VUTqp1Yg3Rqzj2zCO3XDtqu6VEFf7sbxW1ZRc4ePpiiF7GbvjidjNNLszywo0BY4GyPP3LGO4c-pKXQ_TYUzkuhTGWCWpnbwHZY7NO4I3tyuTTG63_GbrT_V3baANIaZ6DmbyqXwQm_QP1G76I |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+destructive+quantum+interference+by+bridge+groups+in+truxene-based+single-molecule+junctions&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Wang%2C+Lin&rft.au=Zhao%2C+Zhihao&rft.au=Shinde%2C+Digambar+B.&rft.au=Lai%2C+Zhiping&rft.date=2021-01-21&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=57&rft.issue=5&rft.spage=667&rft.epage=670&rft_id=info:doi/10.1039%2FD0CC07438A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CC07438A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |