The effect of thermocapillarity on the dynamics of an exterior coating film flow down a fibre subject to an axial temperature gradient

•A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical simulations.•Coherent solutions are tracked.•Thermocapillarity plays adverse roles in different flow regimes. The dynamics of a viscous film flowing down a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 123; pp. 718 - 727
Main Authors Liu, Rong, Ding, Zijing, Chen, Xue
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical simulations.•Coherent solutions are tracked.•Thermocapillarity plays adverse roles in different flow regimes. The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is investigated theoretically. The instability of this exterior coating flow is driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the thermocapillarity. We derived an evolution equation for the interface in the framework of the long wave approximation. A linear stability analysis and a nonlinear simulation are performed to investigate the influence of the thermocapillarity on the dynamics of axisymmetric disturbances. The results of linear stability showed that the thermocapillarity does not influence the growth rate of the disturbance and only affects its frequency. For the nonlinear evolution, the thermocapillarity plays an important role in influencing the profile of the interface in different flow regimes. We also examined the effect of thermocapillarity on the wave speed and the characteristics of the structures of travelling wave solutions.
AbstractList The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is investigated theoretically. The instability of this exterior coating flow is driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the thermocapillarity. We derived an evolution equation for the interface in the framework of the long wave approximation. A linear stability analysis and a nonlinear simulation are performed to investigate the influence of the thermocapillarity on the dynamics of axisymmetric disturbances. The results of linear stability showed that the thermocapillarity does not influence the growth rate of the disturbance and only affects its frequency. For the nonlinear evolution, the thermocapillarity plays an important role in influencing the profile of the interface in different flow regimes. We also examined the effect of thermocapillarity on the wave speed and the characteristics of the structures of travelling wave solutions.
•A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical simulations.•Coherent solutions are tracked.•Thermocapillarity plays adverse roles in different flow regimes. The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is investigated theoretically. The instability of this exterior coating flow is driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the thermocapillarity. We derived an evolution equation for the interface in the framework of the long wave approximation. A linear stability analysis and a nonlinear simulation are performed to investigate the influence of the thermocapillarity on the dynamics of axisymmetric disturbances. The results of linear stability showed that the thermocapillarity does not influence the growth rate of the disturbance and only affects its frequency. For the nonlinear evolution, the thermocapillarity plays an important role in influencing the profile of the interface in different flow regimes. We also examined the effect of thermocapillarity on the wave speed and the characteristics of the structures of travelling wave solutions.
Author Ding, Zijing
Liu, Rong
Chen, Xue
Author_xml – sequence: 1
  givenname: Rong
  surname: Liu
  fullname: Liu, Rong
  email: rongliu@guet.edu.cn
  organization: School of Mechanical and Electrical Engineering, Gui Lin University of Electronic Technology, Gui Lin 541004, China
– sequence: 2
  givenname: Zijing
  surname: Ding
  fullname: Ding, Zijing
  email: z.ding@damtp.cam.ac.uk
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB30WA, United Kingdom
– sequence: 3
  givenname: Xue
  surname: Chen
  fullname: Chen, Xue
  email: chenxue@guet.edu.cn
  organization: School of Mechanical and Electrical Engineering, Gui Lin University of Electronic Technology, Gui Lin 541004, China
BookMark eNqVkM9u1DAQhy1UJLaFd7DEhUvC2Gni5AaqKH9UiUs5WxNn3HWU2Ivtpd0X4LlxtJzgAqfRzPzmG-m7ZBc-eGLsjYBagOjezrWb94R5xZRyRJ8sxVqC6GtoapDNM7YTvRoqKfrhgu0AhKqGRsALdpnSvLVw3e3Yz_s9cbKWTObB8rynuAaDB7csGF0-8eC3IZ9OHldn0hZCz-kpU3QhchMwO__ArVtWbpfwyKfw6DmWwRiJp-M4b-gctit8crjwTOuBIuZj2T9EnBz5_JI9t7gkevW7XrFvtx_ubz5Vd18_fr55f1eZRkGujLBEvWxNP5jeDFIZ0ZsOsTFth6MsYppeKlBWInaynUZrlBJmFCN010PbNlfs9Zl7iOH7kVLWczhGX15qCaqTANDKknp3TpkYUopk9SG6FeNJC9CbfT3rv-3rzb6GRhf7BXH7B8K4XFQFX-Ju-R_QlzOIipYfrmyTKcYMTS4Ws3oK7t9hvwBW4Ld0
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_044
crossref_primary_10_1007_s12217_019_09751_5
crossref_primary_10_1016_j_ces_2023_119211
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126027
crossref_primary_10_1007_s11071_020_05558_x
crossref_primary_10_1017_jfm_2021_198
crossref_primary_10_1063_5_0131461
Cites_doi 10.1017/S0022112003004373
10.1103/PhysRevLett.98.244502
10.1209/0295-5075/18/7/003
10.1017/S0022112008001225
10.1017/S0022112094000297
10.1063/1.1286594
10.1103/PhysRevE.90.033005
10.1063/1.4974076
10.1017/S0022112088002484
10.1017/S0022112006008706
10.1016/j.ijheatmasstransfer.2015.06.035
10.1016/j.ijheatmasstransfer.2016.12.066
10.1016/j.cej.2010.08.040
10.1017/S0022112000003268
10.1146/annurev.fluid.31.1.347
10.1017/S0022112083001512
10.1017/S0022112098003632
10.1016/j.ijheatmasstransfer.2017.05.030
10.1016/S0017-9310(99)00180-5
10.1017/S0022112085002798
10.1080/14786449208620301
10.1209/0295-5075/13/8/009
ContentType Journal Article
Copyright 2018
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.03.023
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 727
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_03_023
S0017931017334154
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-c1fee825c89c8c927c18c6aa3c56ab2101382707f2aa625dbfc771cb1b0649553
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Mon Jul 14 08:17:47 EDT 2025
Thu Apr 24 23:06:31 EDT 2025
Tue Jul 01 02:16:58 EDT 2025
Fri Feb 23 02:50:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermocapillarity
Travelling wave solutions
Coating flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-c1fee825c89c8c927c18c6aa3c56ab2101382707f2aa625dbfc771cb1b0649553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2076200052
PQPubID 2045464
PageCount 10
ParticipantIDs proquest_journals_2076200052
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_023
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_03_023
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zeng, Sadeghpour, Warrier, Ju (b0085) 2017; 108
Rayleigh (b0010) 1892; 34
Ruyer-Quil, Treveleyan, Giorgiutti-Dauphiné, Dupat, Kalliadasis (b0045) 2008; 603
Burelbach, Bankoff, Davis (b0095) 1988; 195
Craster, Matar (b0040) 2006; 553
Quéré (b0005) 1999; 31
Frenkel (b0020) 1992; 18
Liu, Ding, Zhu (b0060) 2017; 112
Sweetland, Lienhard (b0050) 2000; 43
Moctezuma-Sánchez, Dávalos-Orozco (b0070) 2015; 90
Duprat, Ruyer-Quil, Kalliadasis, Giorgiutti-Dauphiné (b0110) 2007; 82
Liu, Liu (b0055) 2014; 90
Grünig, Skale, Kraume (b0080) 2010; 164
Xu, Davis (b0100) 1985; 161
Kliakhandler, Davis, Bankoff (b0035) 2001; 429
Kalliadasis, Chang (b0025) 1994; 261
Smith, Davis (b0090) 1983; 132
Dávalos-Orozco, You (b0065) 2000; 12
Chang, Demekhin (b0030) 1999; 380
Ding, Wong (b0075) 2017; 29
Quéré (b0015) 1990; 13
Chen, Abbaschian, Steen (b0105) 2003; 485
Quéré (10.1016/j.ijheatmasstransfer.2018.03.023_b0015) 1990; 13
Rayleigh (10.1016/j.ijheatmasstransfer.2018.03.023_b0010) 1892; 34
Craster (10.1016/j.ijheatmasstransfer.2018.03.023_b0040) 2006; 553
Ding (10.1016/j.ijheatmasstransfer.2018.03.023_b0075) 2017; 29
Chen (10.1016/j.ijheatmasstransfer.2018.03.023_b0105) 2003; 485
Chang (10.1016/j.ijheatmasstransfer.2018.03.023_b0030) 1999; 380
Ruyer-Quil (10.1016/j.ijheatmasstransfer.2018.03.023_b0045) 2008; 603
Liu (10.1016/j.ijheatmasstransfer.2018.03.023_b0055) 2014; 90
Dávalos-Orozco (10.1016/j.ijheatmasstransfer.2018.03.023_b0065) 2000; 12
Grünig (10.1016/j.ijheatmasstransfer.2018.03.023_b0080) 2010; 164
Liu (10.1016/j.ijheatmasstransfer.2018.03.023_b0060) 2017; 112
Sweetland (10.1016/j.ijheatmasstransfer.2018.03.023_b0050) 2000; 43
Smith (10.1016/j.ijheatmasstransfer.2018.03.023_b0090) 1983; 132
Zeng (10.1016/j.ijheatmasstransfer.2018.03.023_b0085) 2017; 108
Kalliadasis (10.1016/j.ijheatmasstransfer.2018.03.023_b0025) 1994; 261
Kliakhandler (10.1016/j.ijheatmasstransfer.2018.03.023_b0035) 2001; 429
Duprat (10.1016/j.ijheatmasstransfer.2018.03.023_b0110) 2007; 82
Frenkel (10.1016/j.ijheatmasstransfer.2018.03.023_b0020) 1992; 18
Burelbach (10.1016/j.ijheatmasstransfer.2018.03.023_b0095) 1988; 195
Quéré (10.1016/j.ijheatmasstransfer.2018.03.023_b0005) 1999; 31
Moctezuma-Sánchez (10.1016/j.ijheatmasstransfer.2018.03.023_b0070) 2015; 90
Xu (10.1016/j.ijheatmasstransfer.2018.03.023_b0100) 1985; 161
References_xml – volume: 13
  start-page: 347
  year: 1990
  end-page: 384
  ident: b0015
  article-title: Thin films flowing on vertical fibers
  publication-title: Europhys. Lett.
– volume: 553
  start-page: 85
  year: 2006
  end-page: 105
  ident: b0040
  article-title: On viscous beads flowing down a vertical fibre
  publication-title: J. Fluid Mech.
– volume: 485
  start-page: 97
  year: 2003
  end-page: 113
  ident: b0105
  article-title: Thermocapillary suppression of the Plateau-Rayleigh instability: a model for long encapsulated liquid zones
  publication-title: J. Fluid Mech.
– volume: 90
  start-page: 033005
  year: 2014
  ident: b0055
  article-title: Thermocapillary effect on the dynamics of viscous beads on vertical fiber
  publication-title: Phys. Rev. E
– volume: 12
  start-page: 2099
  year: 2000
  end-page: 2198
  ident: b0065
  article-title: Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder
  publication-title: Phys. Fluids
– volume: 34
  start-page: 145
  year: 1892
  end-page: 154
  ident: b0010
  article-title: On the instability of a cylinder of viscous liquid under capillary force
  publication-title: Phil. Mag.
– volume: 603
  start-page: 431
  year: 2008
  end-page: 462
  ident: b0045
  article-title: Modelling film flows down a fibre
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 347
  year: 1999
  end-page: 384
  ident: b0005
  article-title: Fluid coating on a fiber
  publication-title: Annu. Rev. Fluid Mech.
– volume: 108
  start-page: 830
  year: 2017
  end-page: 840
  ident: b0085
  article-title: Experimental study of heat transfer between thin liquid films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas stream
  publication-title: Int. J. Heat Mass Tran.
– volume: 261
  start-page: 135
  year: 1994
  end-page: 168
  ident: b0025
  article-title: Drop formation during coating of vertical fibres
  publication-title: J. Fluid Mech.
– volume: 90
  start-page: 15
  year: 2015
  end-page: 25
  ident: b0070
  article-title: Azimuthal instability modes in a viscoelastic liquid layer flowing down a heated cylinder
  publication-title: Int. J. Heat Mass Tran.
– volume: 164
  start-page: 121
  year: 2010
  end-page: 131
  ident: b0080
  article-title: Liquid flow on a vertical wire in a countercurrent gas flow
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 777
  year: 2000
  end-page: 790
  ident: b0050
  article-title: Evaporative cooling of continuously drawn glass fibers by water sprays
  publication-title: Int. J. Heat Mass Tran.
– volume: 132
  start-page: 119
  year: 1983
  end-page: 144
  ident: b0090
  article-title: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities
  publication-title: J. Fluid Mech.
– volume: 429
  start-page: 381
  year: 2001
  end-page: 390
  ident: b0035
  article-title: Viscous beads on vertical fibre
  publication-title: J. Fluid Mech.
– volume: 29
  start-page: 011701
  year: 2017
  ident: b0075
  article-title: Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect
  publication-title: Phys. Fluids
– volume: 195
  start-page: 463
  year: 1988
  end-page: 494
  ident: b0095
  article-title: Nonlinear stability of evaporating/condensing liquid films
  publication-title: J. Fluid Mech.
– volume: 380
  start-page: 233
  year: 1999
  end-page: 255
  ident: b0030
  article-title: Mechanism for drop formation on a coated vertical fibre
  publication-title: J. Fluid Mech.
– volume: 161
  start-page: 1
  year: 1985
  end-page: 25
  ident: b0100
  article-title: Instability of capillary jets with thermocapillarity
  publication-title: J. Fluid Mech.
– volume: 18
  start-page: 583
  year: 1992
  end-page: 588
  ident: b0020
  article-title: Nonlinear theory of strongly undulating thin films flowing down vertical cylinders
  publication-title: Europhys. Lett.
– volume: 82
  start-page: 244502
  year: 2007
  ident: b0110
  article-title: Absolute and convective instabilities of a viscous film flowing down a vertical fiber
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: 918
  year: 2017
  end-page: 925
  ident: b0060
  article-title: Thermocapillary effect on the absolute and convective instabilities of film flows down a fibre
  publication-title: Int. J. Heat Mass Tran.
– volume: 485
  start-page: 97
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0105
  article-title: Thermocapillary suppression of the Plateau-Rayleigh instability: a model for long encapsulated liquid zones
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003004373
– volume: 82
  start-page: 244502
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0110
  article-title: Absolute and convective instabilities of a viscous film flowing down a vertical fiber
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.244502
– volume: 18
  start-page: 583
  issue: 7
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0020
  article-title: Nonlinear theory of strongly undulating thin films flowing down vertical cylinders
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/18/7/003
– volume: 603
  start-page: 431
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0045
  article-title: Modelling film flows down a fibre
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008001225
– volume: 261
  start-page: 135
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0025
  article-title: Drop formation during coating of vertical fibres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094000297
– volume: 12
  start-page: 2099
  issue: 9
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0065
  article-title: Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder
  publication-title: Phys. Fluids
  doi: 10.1063/1.1286594
– volume: 90
  start-page: 033005
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0055
  article-title: Thermocapillary effect on the dynamics of viscous beads on vertical fiber
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.033005
– volume: 29
  start-page: 011701
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0075
  article-title: Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect
  publication-title: Phys. Fluids
  doi: 10.1063/1.4974076
– volume: 195
  start-page: 463
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0095
  article-title: Nonlinear stability of evaporating/condensing liquid films
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088002484
– volume: 553
  start-page: 85
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0040
  article-title: On viscous beads flowing down a vertical fibre
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006008706
– volume: 90
  start-page: 15
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0070
  article-title: Azimuthal instability modes in a viscoelastic liquid layer flowing down a heated cylinder
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.06.035
– volume: 108
  start-page: 830
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0085
  article-title: Experimental study of heat transfer between thin liquid films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas stream
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2016.12.066
– volume: 164
  start-page: 121
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0080
  article-title: Liquid flow on a vertical wire in a countercurrent gas flow
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.08.040
– volume: 429
  start-page: 381
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0035
  article-title: Viscous beads on vertical fibre
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000003268
– volume: 31
  start-page: 347
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0005
  article-title: Fluid coating on a fiber
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.347
– volume: 132
  start-page: 119
  year: 1983
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0090
  article-title: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112083001512
– volume: 380
  start-page: 233
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0030
  article-title: Mechanism for drop formation on a coated vertical fibre
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098003632
– volume: 112
  start-page: 918
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0060
  article-title: Thermocapillary effect on the absolute and convective instabilities of film flows down a fibre
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.030
– volume: 43
  start-page: 777
  issue: 5
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0050
  article-title: Evaporative cooling of continuously drawn glass fibers by water sprays
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/S0017-9310(99)00180-5
– volume: 161
  start-page: 1
  year: 1985
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0100
  article-title: Instability of capillary jets with thermocapillarity
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112085002798
– volume: 34
  start-page: 145
  year: 1892
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0010
  article-title: On the instability of a cylinder of viscous liquid under capillary force
  publication-title: Phil. Mag.
  doi: 10.1080/14786449208620301
– volume: 13
  start-page: 347
  issue: 8
  year: 1990
  ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0015
  article-title: Thin films flowing on vertical fibers
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/13/8/009
SSID ssj0017046
Score 2.307802
Snippet •A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical...
The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 718
SubjectTerms Coating effects
Coating flow
Dynamic stability
Evolution
Flow stability
Gravitation
Non-Newtonian fluids
Nonlinear analysis
Reynolds number
Stability analysis
Temperature gradients
Thermocapillarity
Thin films
Traveling waves
Travelling wave solutions
Viscosity
Title The effect of thermocapillarity on the dynamics of an exterior coating film flow down a fibre subject to an axial temperature gradient
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.03.023
https://www.proquest.com/docview/2076200052
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaqrkBc0PISy5ZqDhy4hObt5LSqqq0KFT0gKnqzbCdGqdqkalPBaY_7u3fGSYoAcajEKYpjO5FnMo_k8zeMvXMDFQYy0w4qh0ek2sZJjes6oeJcKkI32XJAnxfxbBl-WkWrHpt0e2EIVtna_samW2vdtoza1RztioL2-JJykUoFaIoj4gQNQ05a_uHuBPPwuNts1iFrTL0fs_e_MF7FmizeFsPU2oaJOTGEeomlPfWDf7mqP4y29UTTS_a0DSFh3DzlM9bLy-fskYVy6sMLdo-ShwamAZUBCvC26LB2VF6IKtVBVVIjZE0t-gN1kiVYI11Ue9CVJCg0mGKzBbOpfkCGmTpIbMD0GQ5HRZ9uoK5olPyJ-gvEb9WSM8P3vQWR1S_Zcnr7dTJz2moLjg64WzvaM3mO-aJOUp3o1OfaS3QsZaCjWCrMDImtkLvc-FJi0pQpozn3tPIURjVpFAWvWL-syvw1g8jECtPMJDY-hmM6lRmKyJdZHOkwydL8it10Cyt0S0VOFTE2osOcrcXfohEkGuEGAkVzxdLTDLuGluOMsZNOluI3VRPoRc6YZdCpgWhf-wNeR99i_56--S83uWZP6KwBHA5Yv94f87cYBNVqaLV8yC7GH-ezBR3nX77NHwA4og83
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3RRS29VP1UKbSdQw-9ROTbyalCq6KlwJ5A4mbZTlwF7Sar3SD4BfzuzjgOqK16QOrViZPIM3kzkzy_AfgSJjpNVGUCco6IRbVtUNowDFIthNLMbnLtgM7m-ewi_XGZXW7BdNwLw7RKj_0Dpju09iMHfjUPVk3De3zZudilEoLiLH0C26xOlU1g-_D4ZDa__5kgwmG_DgMyT3gGXx9oXs0Vg96SMtXeZYo1i4RGhVM-jZN_Ras_cNsFo6OX8MJnkXg4POgr2Krb1_DUsTnN5g3ckfFxYGpgZ5FzvCXFrBV3GOJmddi1PIjV0I5-wyepFh1ON90aTaeYDY22WSzRLrobrKhYR0UDVEHj5lrz1xvsO56lbsmFkSWuvD4z_lw7Hln_Fi6Ovp9PZ4FvuBCYRIR9YCJb11QymqI0hSljYaLC5EolJsuVpuKQBQtFKGysFNVNlbZGiMjoSFNiU2ZZ8g4mbdfW7wEzm2uqNIvcxpSRmVJVZKVYVXlm0qIq6134Ni6sNF6NnJtiLORIO7uSf5tGsmlkmEgyzS6U91dYDcocj5g7HW0pf_M2SYHkEVfZH91A-jd_Q8cpvLgfqB_-y00-w87s_OxUnh7PT_bgOR8Z-If7MOnX1_VHyol6_cn7_C_mZhBF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+thermocapillarity+on+the+dynamics+of+an+exterior+coating+film+flow+down+a+fibre+subject+to+an+axial+temperature+gradient&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Rong&rft.au=Ding%2C+Zijing&rft.au=Chen%2C+Xue&rft.date=2018-08-01&rft.issn=0017-9310&rft.volume=123&rft.spage=718&rft.epage=727&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_03_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon