The effect of thermocapillarity on the dynamics of an exterior coating film flow down a fibre subject to an axial temperature gradient
•A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical simulations.•Coherent solutions are tracked.•Thermocapillarity plays adverse roles in different flow regimes. The dynamics of a viscous film flowing down a...
Saved in:
Published in | International journal of heat and mass transfer Vol. 123; pp. 718 - 727 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical simulations.•Coherent solutions are tracked.•Thermocapillarity plays adverse roles in different flow regimes.
The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is investigated theoretically. The instability of this exterior coating flow is driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the thermocapillarity. We derived an evolution equation for the interface in the framework of the long wave approximation. A linear stability analysis and a nonlinear simulation are performed to investigate the influence of the thermocapillarity on the dynamics of axisymmetric disturbances. The results of linear stability showed that the thermocapillarity does not influence the growth rate of the disturbance and only affects its frequency. For the nonlinear evolution, the thermocapillarity plays an important role in influencing the profile of the interface in different flow regimes. We also examined the effect of thermocapillarity on the wave speed and the characteristics of the structures of travelling wave solutions. |
---|---|
AbstractList | The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is investigated theoretically. The instability of this exterior coating flow is driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the thermocapillarity. We derived an evolution equation for the interface in the framework of the long wave approximation. A linear stability analysis and a nonlinear simulation are performed to investigate the influence of the thermocapillarity on the dynamics of axisymmetric disturbances. The results of linear stability showed that the thermocapillarity does not influence the growth rate of the disturbance and only affects its frequency. For the nonlinear evolution, the thermocapillarity plays an important role in influencing the profile of the interface in different flow regimes. We also examined the effect of thermocapillarity on the wave speed and the characteristics of the structures of travelling wave solutions. •A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical simulations.•Coherent solutions are tracked.•Thermocapillarity plays adverse roles in different flow regimes. The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is investigated theoretically. The instability of this exterior coating flow is driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the thermocapillarity. We derived an evolution equation for the interface in the framework of the long wave approximation. A linear stability analysis and a nonlinear simulation are performed to investigate the influence of the thermocapillarity on the dynamics of axisymmetric disturbances. The results of linear stability showed that the thermocapillarity does not influence the growth rate of the disturbance and only affects its frequency. For the nonlinear evolution, the thermocapillarity plays an important role in influencing the profile of the interface in different flow regimes. We also examined the effect of thermocapillarity on the wave speed and the characteristics of the structures of travelling wave solutions. |
Author | Ding, Zijing Liu, Rong Chen, Xue |
Author_xml | – sequence: 1 givenname: Rong surname: Liu fullname: Liu, Rong email: rongliu@guet.edu.cn organization: School of Mechanical and Electrical Engineering, Gui Lin University of Electronic Technology, Gui Lin 541004, China – sequence: 2 givenname: Zijing surname: Ding fullname: Ding, Zijing email: z.ding@damtp.cam.ac.uk organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB30WA, United Kingdom – sequence: 3 givenname: Xue surname: Chen fullname: Chen, Xue email: chenxue@guet.edu.cn organization: School of Mechanical and Electrical Engineering, Gui Lin University of Electronic Technology, Gui Lin 541004, China |
BookMark | eNqVkM9u1DAQhy1UJLaFd7DEhUvC2Gni5AaqKH9UiUs5WxNn3HWU2Ivtpd0X4LlxtJzgAqfRzPzmG-m7ZBc-eGLsjYBagOjezrWb94R5xZRyRJ8sxVqC6GtoapDNM7YTvRoqKfrhgu0AhKqGRsALdpnSvLVw3e3Yz_s9cbKWTObB8rynuAaDB7csGF0-8eC3IZ9OHldn0hZCz-kpU3QhchMwO__ArVtWbpfwyKfw6DmWwRiJp-M4b-gctit8crjwTOuBIuZj2T9EnBz5_JI9t7gkevW7XrFvtx_ubz5Vd18_fr55f1eZRkGujLBEvWxNP5jeDFIZ0ZsOsTFth6MsYppeKlBWInaynUZrlBJmFCN010PbNlfs9Zl7iOH7kVLWczhGX15qCaqTANDKknp3TpkYUopk9SG6FeNJC9CbfT3rv-3rzb6GRhf7BXH7B8K4XFQFX-Ju-R_QlzOIipYfrmyTKcYMTS4Ws3oK7t9hvwBW4Ld0 |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_044 crossref_primary_10_1007_s12217_019_09751_5 crossref_primary_10_1016_j_ces_2023_119211 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126027 crossref_primary_10_1007_s11071_020_05558_x crossref_primary_10_1017_jfm_2021_198 crossref_primary_10_1063_5_0131461 |
Cites_doi | 10.1017/S0022112003004373 10.1103/PhysRevLett.98.244502 10.1209/0295-5075/18/7/003 10.1017/S0022112008001225 10.1017/S0022112094000297 10.1063/1.1286594 10.1103/PhysRevE.90.033005 10.1063/1.4974076 10.1017/S0022112088002484 10.1017/S0022112006008706 10.1016/j.ijheatmasstransfer.2015.06.035 10.1016/j.ijheatmasstransfer.2016.12.066 10.1016/j.cej.2010.08.040 10.1017/S0022112000003268 10.1146/annurev.fluid.31.1.347 10.1017/S0022112083001512 10.1017/S0022112098003632 10.1016/j.ijheatmasstransfer.2017.05.030 10.1016/S0017-9310(99)00180-5 10.1017/S0022112085002798 10.1080/14786449208620301 10.1209/0295-5075/13/8/009 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier BV Aug 2018 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2018.03.023 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 727 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2018_03_023 S0017931017334154 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c370t-c1fee825c89c8c927c18c6aa3c56ab2101382707f2aa625dbfc771cb1b0649553 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Mon Jul 14 08:17:47 EDT 2025 Thu Apr 24 23:06:31 EDT 2025 Tue Jul 01 02:16:58 EDT 2025 Fri Feb 23 02:50:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermocapillarity Travelling wave solutions Coating flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-c1fee825c89c8c927c18c6aa3c56ab2101382707f2aa625dbfc771cb1b0649553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2076200052 |
PQPubID | 2045464 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2076200052 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_023 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_03_023 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zeng, Sadeghpour, Warrier, Ju (b0085) 2017; 108 Rayleigh (b0010) 1892; 34 Ruyer-Quil, Treveleyan, Giorgiutti-Dauphiné, Dupat, Kalliadasis (b0045) 2008; 603 Burelbach, Bankoff, Davis (b0095) 1988; 195 Craster, Matar (b0040) 2006; 553 Quéré (b0005) 1999; 31 Frenkel (b0020) 1992; 18 Liu, Ding, Zhu (b0060) 2017; 112 Sweetland, Lienhard (b0050) 2000; 43 Moctezuma-Sánchez, Dávalos-Orozco (b0070) 2015; 90 Duprat, Ruyer-Quil, Kalliadasis, Giorgiutti-Dauphiné (b0110) 2007; 82 Liu, Liu (b0055) 2014; 90 Grünig, Skale, Kraume (b0080) 2010; 164 Xu, Davis (b0100) 1985; 161 Kliakhandler, Davis, Bankoff (b0035) 2001; 429 Kalliadasis, Chang (b0025) 1994; 261 Smith, Davis (b0090) 1983; 132 Dávalos-Orozco, You (b0065) 2000; 12 Chang, Demekhin (b0030) 1999; 380 Ding, Wong (b0075) 2017; 29 Quéré (b0015) 1990; 13 Chen, Abbaschian, Steen (b0105) 2003; 485 Quéré (10.1016/j.ijheatmasstransfer.2018.03.023_b0015) 1990; 13 Rayleigh (10.1016/j.ijheatmasstransfer.2018.03.023_b0010) 1892; 34 Craster (10.1016/j.ijheatmasstransfer.2018.03.023_b0040) 2006; 553 Ding (10.1016/j.ijheatmasstransfer.2018.03.023_b0075) 2017; 29 Chen (10.1016/j.ijheatmasstransfer.2018.03.023_b0105) 2003; 485 Chang (10.1016/j.ijheatmasstransfer.2018.03.023_b0030) 1999; 380 Ruyer-Quil (10.1016/j.ijheatmasstransfer.2018.03.023_b0045) 2008; 603 Liu (10.1016/j.ijheatmasstransfer.2018.03.023_b0055) 2014; 90 Dávalos-Orozco (10.1016/j.ijheatmasstransfer.2018.03.023_b0065) 2000; 12 Grünig (10.1016/j.ijheatmasstransfer.2018.03.023_b0080) 2010; 164 Liu (10.1016/j.ijheatmasstransfer.2018.03.023_b0060) 2017; 112 Sweetland (10.1016/j.ijheatmasstransfer.2018.03.023_b0050) 2000; 43 Smith (10.1016/j.ijheatmasstransfer.2018.03.023_b0090) 1983; 132 Zeng (10.1016/j.ijheatmasstransfer.2018.03.023_b0085) 2017; 108 Kalliadasis (10.1016/j.ijheatmasstransfer.2018.03.023_b0025) 1994; 261 Kliakhandler (10.1016/j.ijheatmasstransfer.2018.03.023_b0035) 2001; 429 Duprat (10.1016/j.ijheatmasstransfer.2018.03.023_b0110) 2007; 82 Frenkel (10.1016/j.ijheatmasstransfer.2018.03.023_b0020) 1992; 18 Burelbach (10.1016/j.ijheatmasstransfer.2018.03.023_b0095) 1988; 195 Quéré (10.1016/j.ijheatmasstransfer.2018.03.023_b0005) 1999; 31 Moctezuma-Sánchez (10.1016/j.ijheatmasstransfer.2018.03.023_b0070) 2015; 90 Xu (10.1016/j.ijheatmasstransfer.2018.03.023_b0100) 1985; 161 |
References_xml | – volume: 13 start-page: 347 year: 1990 end-page: 384 ident: b0015 article-title: Thin films flowing on vertical fibers publication-title: Europhys. Lett. – volume: 553 start-page: 85 year: 2006 end-page: 105 ident: b0040 article-title: On viscous beads flowing down a vertical fibre publication-title: J. Fluid Mech. – volume: 485 start-page: 97 year: 2003 end-page: 113 ident: b0105 article-title: Thermocapillary suppression of the Plateau-Rayleigh instability: a model for long encapsulated liquid zones publication-title: J. Fluid Mech. – volume: 90 start-page: 033005 year: 2014 ident: b0055 article-title: Thermocapillary effect on the dynamics of viscous beads on vertical fiber publication-title: Phys. Rev. E – volume: 12 start-page: 2099 year: 2000 end-page: 2198 ident: b0065 article-title: Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder publication-title: Phys. Fluids – volume: 34 start-page: 145 year: 1892 end-page: 154 ident: b0010 article-title: On the instability of a cylinder of viscous liquid under capillary force publication-title: Phil. Mag. – volume: 603 start-page: 431 year: 2008 end-page: 462 ident: b0045 article-title: Modelling film flows down a fibre publication-title: J. Fluid Mech. – volume: 31 start-page: 347 year: 1999 end-page: 384 ident: b0005 article-title: Fluid coating on a fiber publication-title: Annu. Rev. Fluid Mech. – volume: 108 start-page: 830 year: 2017 end-page: 840 ident: b0085 article-title: Experimental study of heat transfer between thin liquid films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas stream publication-title: Int. J. Heat Mass Tran. – volume: 261 start-page: 135 year: 1994 end-page: 168 ident: b0025 article-title: Drop formation during coating of vertical fibres publication-title: J. Fluid Mech. – volume: 90 start-page: 15 year: 2015 end-page: 25 ident: b0070 article-title: Azimuthal instability modes in a viscoelastic liquid layer flowing down a heated cylinder publication-title: Int. J. Heat Mass Tran. – volume: 164 start-page: 121 year: 2010 end-page: 131 ident: b0080 article-title: Liquid flow on a vertical wire in a countercurrent gas flow publication-title: Chem. Eng. J. – volume: 43 start-page: 777 year: 2000 end-page: 790 ident: b0050 article-title: Evaporative cooling of continuously drawn glass fibers by water sprays publication-title: Int. J. Heat Mass Tran. – volume: 132 start-page: 119 year: 1983 end-page: 144 ident: b0090 article-title: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities publication-title: J. Fluid Mech. – volume: 429 start-page: 381 year: 2001 end-page: 390 ident: b0035 article-title: Viscous beads on vertical fibre publication-title: J. Fluid Mech. – volume: 29 start-page: 011701 year: 2017 ident: b0075 article-title: Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect publication-title: Phys. Fluids – volume: 195 start-page: 463 year: 1988 end-page: 494 ident: b0095 article-title: Nonlinear stability of evaporating/condensing liquid films publication-title: J. Fluid Mech. – volume: 380 start-page: 233 year: 1999 end-page: 255 ident: b0030 article-title: Mechanism for drop formation on a coated vertical fibre publication-title: J. Fluid Mech. – volume: 161 start-page: 1 year: 1985 end-page: 25 ident: b0100 article-title: Instability of capillary jets with thermocapillarity publication-title: J. Fluid Mech. – volume: 18 start-page: 583 year: 1992 end-page: 588 ident: b0020 article-title: Nonlinear theory of strongly undulating thin films flowing down vertical cylinders publication-title: Europhys. Lett. – volume: 82 start-page: 244502 year: 2007 ident: b0110 article-title: Absolute and convective instabilities of a viscous film flowing down a vertical fiber publication-title: Phys. Rev. Lett. – volume: 112 start-page: 918 year: 2017 end-page: 925 ident: b0060 article-title: Thermocapillary effect on the absolute and convective instabilities of film flows down a fibre publication-title: Int. J. Heat Mass Tran. – volume: 485 start-page: 97 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0105 article-title: Thermocapillary suppression of the Plateau-Rayleigh instability: a model for long encapsulated liquid zones publication-title: J. Fluid Mech. doi: 10.1017/S0022112003004373 – volume: 82 start-page: 244502 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0110 article-title: Absolute and convective instabilities of a viscous film flowing down a vertical fiber publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.244502 – volume: 18 start-page: 583 issue: 7 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0020 article-title: Nonlinear theory of strongly undulating thin films flowing down vertical cylinders publication-title: Europhys. Lett. doi: 10.1209/0295-5075/18/7/003 – volume: 603 start-page: 431 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0045 article-title: Modelling film flows down a fibre publication-title: J. Fluid Mech. doi: 10.1017/S0022112008001225 – volume: 261 start-page: 135 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0025 article-title: Drop formation during coating of vertical fibres publication-title: J. Fluid Mech. doi: 10.1017/S0022112094000297 – volume: 12 start-page: 2099 issue: 9 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0065 article-title: Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder publication-title: Phys. Fluids doi: 10.1063/1.1286594 – volume: 90 start-page: 033005 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0055 article-title: Thermocapillary effect on the dynamics of viscous beads on vertical fiber publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.033005 – volume: 29 start-page: 011701 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0075 article-title: Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect publication-title: Phys. Fluids doi: 10.1063/1.4974076 – volume: 195 start-page: 463 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0095 article-title: Nonlinear stability of evaporating/condensing liquid films publication-title: J. Fluid Mech. doi: 10.1017/S0022112088002484 – volume: 553 start-page: 85 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0040 article-title: On viscous beads flowing down a vertical fibre publication-title: J. Fluid Mech. doi: 10.1017/S0022112006008706 – volume: 90 start-page: 15 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0070 article-title: Azimuthal instability modes in a viscoelastic liquid layer flowing down a heated cylinder publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.06.035 – volume: 108 start-page: 830 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0085 article-title: Experimental study of heat transfer between thin liquid films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas stream publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2016.12.066 – volume: 164 start-page: 121 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0080 article-title: Liquid flow on a vertical wire in a countercurrent gas flow publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.08.040 – volume: 429 start-page: 381 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0035 article-title: Viscous beads on vertical fibre publication-title: J. Fluid Mech. doi: 10.1017/S0022112000003268 – volume: 31 start-page: 347 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0005 article-title: Fluid coating on a fiber publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.347 – volume: 132 start-page: 119 year: 1983 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0090 article-title: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities publication-title: J. Fluid Mech. doi: 10.1017/S0022112083001512 – volume: 380 start-page: 233 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0030 article-title: Mechanism for drop formation on a coated vertical fibre publication-title: J. Fluid Mech. doi: 10.1017/S0022112098003632 – volume: 112 start-page: 918 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0060 article-title: Thermocapillary effect on the absolute and convective instabilities of film flows down a fibre publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.05.030 – volume: 43 start-page: 777 issue: 5 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0050 article-title: Evaporative cooling of continuously drawn glass fibers by water sprays publication-title: Int. J. Heat Mass Tran. doi: 10.1016/S0017-9310(99)00180-5 – volume: 161 start-page: 1 year: 1985 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0100 article-title: Instability of capillary jets with thermocapillarity publication-title: J. Fluid Mech. doi: 10.1017/S0022112085002798 – volume: 34 start-page: 145 year: 1892 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0010 article-title: On the instability of a cylinder of viscous liquid under capillary force publication-title: Phil. Mag. doi: 10.1080/14786449208620301 – volume: 13 start-page: 347 issue: 8 year: 1990 ident: 10.1016/j.ijheatmasstransfer.2018.03.023_b0015 article-title: Thin films flowing on vertical fibers publication-title: Europhys. Lett. doi: 10.1209/0295-5075/13/8/009 |
SSID | ssj0017046 |
Score | 2.307802 |
Snippet | •A long-wave model is derived to describe film flowing down a fibre with thermocapillary effect.•Nonlinear dynamics is investigated by numerical... The dynamics of a viscous film flowing down a vertical fibre under the action of gravity and the thermocapillarity induced by an axial temperature gradient is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 718 |
SubjectTerms | Coating effects Coating flow Dynamic stability Evolution Flow stability Gravitation Non-Newtonian fluids Nonlinear analysis Reynolds number Stability analysis Temperature gradients Thermocapillarity Thin films Traveling waves Travelling wave solutions Viscosity |
Title | The effect of thermocapillarity on the dynamics of an exterior coating film flow down a fibre subject to an axial temperature gradient |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.03.023 https://www.proquest.com/docview/2076200052 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaqrkBc0PISy5ZqDhy4hObt5LSqqq0KFT0gKnqzbCdGqdqkalPBaY_7u3fGSYoAcajEKYpjO5FnMo_k8zeMvXMDFQYy0w4qh0ek2sZJjes6oeJcKkI32XJAnxfxbBl-WkWrHpt0e2EIVtna_samW2vdtoza1RztioL2-JJykUoFaIoj4gQNQ05a_uHuBPPwuNts1iFrTL0fs_e_MF7FmizeFsPU2oaJOTGEeomlPfWDf7mqP4y29UTTS_a0DSFh3DzlM9bLy-fskYVy6sMLdo-ShwamAZUBCvC26LB2VF6IKtVBVVIjZE0t-gN1kiVYI11Ue9CVJCg0mGKzBbOpfkCGmTpIbMD0GQ5HRZ9uoK5olPyJ-gvEb9WSM8P3vQWR1S_Zcnr7dTJz2moLjg64WzvaM3mO-aJOUp3o1OfaS3QsZaCjWCrMDImtkLvc-FJi0pQpozn3tPIURjVpFAWvWL-syvw1g8jECtPMJDY-hmM6lRmKyJdZHOkwydL8it10Cyt0S0VOFTE2osOcrcXfohEkGuEGAkVzxdLTDLuGluOMsZNOluI3VRPoRc6YZdCpgWhf-wNeR99i_56--S83uWZP6KwBHA5Yv94f87cYBNVqaLV8yC7GH-ezBR3nX77NHwA4og83 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3RRS29VP1UKbSdQw-9ROTbyalCq6KlwJ5A4mbZTlwF7Sar3SD4BfzuzjgOqK16QOrViZPIM3kzkzy_AfgSJjpNVGUCco6IRbVtUNowDFIthNLMbnLtgM7m-ewi_XGZXW7BdNwLw7RKj_0Dpju09iMHfjUPVk3De3zZudilEoLiLH0C26xOlU1g-_D4ZDa__5kgwmG_DgMyT3gGXx9oXs0Vg96SMtXeZYo1i4RGhVM-jZN_Ras_cNsFo6OX8MJnkXg4POgr2Krb1_DUsTnN5g3ckfFxYGpgZ5FzvCXFrBV3GOJmddi1PIjV0I5-wyepFh1ON90aTaeYDY22WSzRLrobrKhYR0UDVEHj5lrz1xvsO56lbsmFkSWuvD4z_lw7Hln_Fi6Ovp9PZ4FvuBCYRIR9YCJb11QymqI0hSljYaLC5EolJsuVpuKQBQtFKGysFNVNlbZGiMjoSFNiU2ZZ8g4mbdfW7wEzm2uqNIvcxpSRmVJVZKVYVXlm0qIq6134Ni6sNF6NnJtiLORIO7uSf5tGsmlkmEgyzS6U91dYDcocj5g7HW0pf_M2SYHkEVfZH91A-jd_Q8cpvLgfqB_-y00-w87s_OxUnh7PT_bgOR8Z-If7MOnX1_VHyol6_cn7_C_mZhBF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+thermocapillarity+on+the+dynamics+of+an+exterior+coating+film+flow+down+a+fibre+subject+to+an+axial+temperature+gradient&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Rong&rft.au=Ding%2C+Zijing&rft.au=Chen%2C+Xue&rft.date=2018-08-01&rft.issn=0017-9310&rft.volume=123&rft.spage=718&rft.epage=727&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.03.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_03_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |