A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives
In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 5; no. 2; pp. 35 - 48 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.07.2020
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives. |
---|---|
AbstractList | In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives. |
Author | Mekkaoui, Toufik Touchent, Kamal Ait Hammouch, Zakia |
Author_xml | – sequence: 1 givenname: Kamal Ait surname: Touchent fullname: Touchent, Kamal Ait organization: Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. BP 09 Boutalamine52000Errachidia, Morocco – sequence: 2 givenname: Zakia surname: Hammouch fullname: Hammouch, Zakia email: hammouch.zakia@gmail.com organization: Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. BP 09 Boutalamine52000Errachidia, Morocco – sequence: 3 givenname: Toufik surname: Mekkaoui fullname: Mekkaoui, Toufik organization: Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. BP 09 Boutalamine52000Errachidia, Morocco |
BookMark | eNp9kE1rGzEQhkVJoWmaH9CboOd19bEr24ceQugXBHppz2JWGiVK15Iz0jrk1L9erV1oKbQnzcDziHfel-ws5YSMvZZipfr15i3sUlkpodq6EkJI9Yydq77vu40ZzNkf8wt2Wcp9Q5SW2hh1zn5c8V32MUT0PKYDUIRUeZnHsgeHfIf1LnseMvGSp0NMt3wPVCNMvEkBCdNxwYcZasyp8MdY73jL15UGzxMQ_46UcOKBwC3IoiLFQ-MPWF6x5wGmgpe_3gv27cP7r9efupsvHz9fX910Tq9F7cbtpjfB-bF3QWnjpcG1HxQYPyrt5BD8iDJs3DYYKbTyAyLCYAxIEEOvjL5gb07_7ik_zFiqvc8ztTDFarmVSm9Vv1DrE-Uol0IYrIv1eFgliJOVwi6F26VwuxRulT0W3kz5l7mnuAN6-q_z7uQ8wlSRPN7S_NSG39H-6Q5KD_on3XqeUw |
CitedBy_id | crossref_primary_10_3390_app12104959 crossref_primary_10_1155_2022_4284060 crossref_primary_10_32604_cmc_2022_032087 crossref_primary_10_2478_amns_2023_1_00303 crossref_primary_10_2478_amns_2023_1_00148 crossref_primary_10_3390_fractalfract5030060 crossref_primary_10_3390_math9111303 crossref_primary_10_1155_2022_5127510 crossref_primary_10_3390_axioms11090449 crossref_primary_10_1007_s00500_022_07065_0 crossref_primary_10_1016_j_micpro_2021_104391 crossref_primary_10_1142_S1793962323500083 crossref_primary_10_3390_axioms9040136 crossref_primary_10_1142_S0218348X22400539 crossref_primary_10_32604_cmc_2023_034699 crossref_primary_10_2478_amns_2023_1_00438 crossref_primary_10_3934_mbe_2022030 crossref_primary_10_1016_j_heliyon_2021_e07600 crossref_primary_10_1016_j_chaos_2023_114196 crossref_primary_10_3934_math_2022500 crossref_primary_10_3934_math_2022199 crossref_primary_10_3390_math10050732 crossref_primary_10_3390_sym13101816 crossref_primary_10_1007_s00500_022_07359_3 crossref_primary_10_3390_sym14091829 crossref_primary_10_1016_j_rinp_2021_104368 crossref_primary_10_3934_dcdss_2024181 crossref_primary_10_1007_s00366_020_01142_4 crossref_primary_10_3390_sym13122352 crossref_primary_10_2478_amns_2023_1_00009 crossref_primary_10_1115_1_4062910 crossref_primary_10_3390_fractalfract6020092 crossref_primary_10_2478_amns_2021_1_00083 crossref_primary_10_3390_math9091070 crossref_primary_10_1016_j_aej_2021_01_043 crossref_primary_10_2478_amns_2022_2_0123 crossref_primary_10_3934_math_20221101 crossref_primary_10_3934_math_2023126 crossref_primary_10_1140_epjp_s13360_022_02421_3 crossref_primary_10_3934_mbe_2022037 crossref_primary_10_1155_2021_8886056 crossref_primary_10_3390_sym14112322 crossref_primary_10_1155_2022_4070131 crossref_primary_10_1007_s11071_022_07688_w crossref_primary_10_1142_S0218348X22400515 crossref_primary_10_2478_amns_2022_2_0179 crossref_primary_10_1007_s00521_021_06318_7 crossref_primary_10_2478_amns_2021_1_00054 crossref_primary_10_1016_j_aej_2023_10_066 crossref_primary_10_1016_j_ijleo_2023_170816 crossref_primary_10_2478_amns_2022_2_0052 crossref_primary_10_32604_cmes_2023_024029 crossref_primary_10_1016_j_csite_2021_101193 crossref_primary_10_1142_S0218348X22400114 crossref_primary_10_2478_amns_2022_2_00029 crossref_primary_10_2478_amns_2022_2_0172 crossref_primary_10_1002_mma_8077 crossref_primary_10_2478_amns_2022_2_0056 crossref_primary_10_1016_j_bspc_2022_103888 crossref_primary_10_2478_amns_2022_2_0180 crossref_primary_10_2478_amns_2022_2_0181 crossref_primary_10_3390_math10152595 crossref_primary_10_2478_amns_2023_1_00056 crossref_primary_10_32604_cmc_2023_034362 crossref_primary_10_1142_S0218348X21400120 |
Cites_doi | 10.1016/j.amc.2017.08.048 10.1201/9781420011623 10.1016/j.chaos.2018.01.002 10.1016/j.amc.2018.04.025 10.1016/j.camwa.2013.05.006 10.1515/fca-2017-0024 10.1186/s13662-018-1680-1 10.14419/ijpr.v1i2.849 10.3390/fractalfract2030022 10.1515/fca-2015-0010 10.1142/9789814355216 10.1016/j.camwa.2009.06.020 |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/amns.2020.2.00012 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
EndPage | 48 |
ExternalDocumentID | 10_2478_amns_2020_2_00012 10_2478_amns_2020_2_000125235 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c370t-b9846fcdb4cf236d16e7d52a6db23c15fdbe1f8c9f61032d5eeea566a1a054263 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:41:27 EDT 2025 Tue Jul 01 03:14:26 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Thu Jul 10 10:36:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-b9846fcdb4cf236d16e7d52a6db23c15fdbe1f8c9f61032d5eeea566a1a054263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191239246?pq-origsite=%requestingapplication% |
PQID | 3191239246 |
PQPubID | 6761185 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3191239246 crossref_citationtrail_10_2478_amns_2020_2_00012 crossref_primary_10_2478_amns_2020_2_00012 walterdegruyter_journals_10_2478_amns_2020_2_000125235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2020 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024050212243046936_j_amns.2020.2.00012_ref_015_w2aab3b7d190b1b6b1ab2ac15Aa 2024050212243046936_j_amns.2020.2.00012_ref_001_w2aab3b7d190b1b6b1ab2ab1Aa 2024050212243046936_j_amns.2020.2.00012_ref_003_w2aab3b7d190b1b6b1ab2ab3Aa 2024050212243046936_j_amns.2020.2.00012_ref_017_w2aab3b7d190b1b6b1ab2ac17Aa 2024050212243046936_j_amns.2020.2.00012_ref_005_w2aab3b7d190b1b6b1ab2ab5Aa 2024050212243046936_j_amns.2020.2.00012_ref_010_w2aab3b7d190b1b6b1ab2ac10Aa 2024050212243046936_j_amns.2020.2.00012_ref_007_w2aab3b7d190b1b6b1ab2ab7Aa 2024050212243046936_j_amns.2020.2.00012_ref_022_w2aab3b7d190b1b6b1ab2ac22Aa 2024050212243046936_j_amns.2020.2.00012_ref_011_w2aab3b7d190b1b6b1ab2ac11Aa 2024050212243046936_j_amns.2020.2.00012_ref_009_w2aab3b7d190b1b6b1ab2ab9Aa 2024050212243046936_j_amns.2020.2.00012_ref_021_w2aab3b7d190b1b6b1ab2ac21Aa 2024050212243046936_j_amns.2020.2.00012_ref_013_w2aab3b7d190b1b6b1ab2ac13Aa 2024050212243046936_j_amns.2020.2.00012_ref_002_w2aab3b7d190b1b6b1ab2ab2Aa 2024050212243046936_j_amns.2020.2.00012_ref_016_w2aab3b7d190b1b6b1ab2ac16Aa 2024050212243046936_j_amns.2020.2.00012_ref_004_w2aab3b7d190b1b6b1ab2ab4Aa 2024050212243046936_j_amns.2020.2.00012_ref_006_w2aab3b7d190b1b6b1ab2ab6Aa 2024050212243046936_j_amns.2020.2.00012_ref_018_w2aab3b7d190b1b6b1ab2ac18Aa 2024050212243046936_j_amns.2020.2.00012_ref_008_w2aab3b7d190b1b6b1ab2ab8Aa 2024050212243046936_j_amns.2020.2.00012_ref_019_w2aab3b7d190b1b6b1ab2ac19Aa 2024050212243046936_j_amns.2020.2.00012_ref_012_w2aab3b7d190b1b6b1ab2ac12Aa 2024050212243046936_j_amns.2020.2.00012_ref_020_w2aab3b7d190b1b6b1ab2ac20Aa 2024050212243046936_j_amns.2020.2.00012_ref_014_w2aab3b7d190b1b6b1ab2ac14Aa |
References_xml | – ident: 2024050212243046936_j_amns.2020.2.00012_ref_001_w2aab3b7d190b1b6b1ab2ab1Aa doi: 10.1016/j.amc.2017.08.048 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_017_w2aab3b7d190b1b6b1ab2ac17Aa doi: 10.1201/9781420011623 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_019_w2aab3b7d190b1b6b1ab2ac19Aa doi: 10.1016/j.chaos.2018.01.002 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_002_w2aab3b7d190b1b6b1ab2ab2Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_016_w2aab3b7d190b1b6b1ab2ac16Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_003_w2aab3b7d190b1b6b1ab2ab3Aa doi: 10.1016/j.amc.2018.04.025 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_022_w2aab3b7d190b1b6b1ab2ac22Aa doi: 10.1016/j.camwa.2013.05.006 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_005_w2aab3b7d190b1b6b1ab2ab5Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_020_w2aab3b7d190b1b6b1ab2ac20Aa doi: 10.1515/fca-2017-0024 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_011_w2aab3b7d190b1b6b1ab2ac11Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_021_w2aab3b7d190b1b6b1ab2ac21Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_010_w2aab3b7d190b1b6b1ab2ac10Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_007_w2aab3b7d190b1b6b1ab2ab7Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_004_w2aab3b7d190b1b6b1ab2ab4Aa doi: 10.1186/s13662-018-1680-1 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_014_w2aab3b7d190b1b6b1ab2ac14Aa doi: 10.14419/ijpr.v1i2.849 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_006_w2aab3b7d190b1b6b1ab2ab6Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_015_w2aab3b7d190b1b6b1ab2ac15Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_013_w2aab3b7d190b1b6b1ab2ac13Aa doi: 10.3390/fractalfract2030022 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_018_w2aab3b7d190b1b6b1ab2ac18Aa doi: 10.1515/fca-2015-0010 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_008_w2aab3b7d190b1b6b1ab2ab8Aa – ident: 2024050212243046936_j_amns.2020.2.00012_ref_009_w2aab3b7d190b1b6b1ab2ab9Aa doi: 10.1142/9789814355216 – ident: 2024050212243046936_j_amns.2020.2.00012_ref_012_w2aab3b7d190b1b6b1ab2ac12Aa doi: 10.1016/j.camwa.2009.06.020 |
SSID | ssj0002313662 |
Score | 2.40233 |
Snippet | In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | 26A33 35R11 47A15 Atangana-Baleanu fractional derivative Caputo-Fabrizio fractional derivative Exact solution Modified invariant subspace method Partial differential equations |
Title | A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives |
URI | https://www.degruyter.com/doi/10.2478/amns.2020.2.00012 https://www.proquest.com/docview/3191239246 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66Xrz4FtcXOXgSqn0kaXsSFUUERUTRW2mTiYhrd93urnjyrzvTpi4KekxJQslMJt98k8wwtpcGBWVBUR4IP_dEYdAOJlB4qQ-BKESo_ToUc3WtLu7F5aN8dIRb5a5VtjaxNtSmr4kjP0RVQSOL3oI6Grx5VDWKoquuhMYsm0MTnCQdNndydn1z-82yIHqJlAqbcGYo4uQwfy0pS3eIzYOahvl5IE1R5sJ7Ha828DQcf4za-Gh97JwvsQWHF_lxI-BlNgPlClt02JG7nVmtss9j_to3z5a-PpcT9IBxyXiFZgGdYuBNoWiOCJWjshGJwAekNDh1WyKlbsBbk_q74kTQ8rJfekQm0F1V_gLDEnrcDpu3EDQU1XdSZw6v1tj9-dnd6YXniit4Oor9kVekiDysNoXQNoyUCRTERoY51ZeKdCCtKSCwiU6topx7RgJAjtgvD3JEeaGK1lkHfwI2GE9VYmVgBPYFYXWcJspamcSpjo2VILvMb1c40y7zOBXA6GXogZBQMhJKRkLJwiYa3mX730MGTdqN_zpvt2LL3A6ssqm-dJn6Jcpprz_nRP9cbv4_7xabpxHN3d1t1hkNx7CDCGVU7KKhfbjadcr4BRic6w8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBe6Fss0NaH9lIpJXFsJzlUFW1BS4FVVYHELU3scYUK2WWzgDj1H_U3diYPVq1Ubhwd2aPIMx5_8_AMwOssKrkKiglQhUWgSkd6MMUyyEKMVKmkDZtQzMHYjI7Ul2N9vAS_-7cwnFbZ68RGUbuJZR_5JokKKVmyFsyH6XnAXaM4utq30GjFYg-vr8hkq9_vfib-vpFyZ_vw0yjougoENk7CeVBmdOV660plvYyNiwwmTsuCGyvFNtLelRj51GbecLE5pxGxINBTRAXBG2lionsPllVsQjmA5Y_b46_fbrw6hJZiY2QbPpUqSTeLs4qrgksavmvcPn9fgAtUu3LVxMcd_phdXM_7eGxzze08gpUOn4qtVqAewxJWT-Bhh1VFpwnqp_BrS5xN3InnryfVJVncxCJRkxoiIxxF25haECIWJNzstBBTFlIi3bdkaQZ43pYarwU7hEU1qQJ2XnBurPiJswpPhZ-1by94KR2Xy6ZSef0Mju5k25_DgH4CV0FkJvU6cormovI2yVLjvU6TzCbOa9RDCPsdzm1X6ZwbbpzmZPEwU3JmSs5MyWUbfR_C25sl07bMx22TN3q25d2Jr_OFfA7B_MPKxaz_0tQy1mu3030F90eHB_v5_u54bx0e8Oo2b3gDBvPZBb4gdDQvX3YiKeD7XZ-CP_exKC8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcERBQr3QQlt1gRYf6KVSSuLYTnLoYQVdlkcpEiBxSxN7XCEgLJsFxKnf0j9l7CSgoraHShyd2JbleT88A7CaRaWrgqICFGERiNIQH0yxDLIQI1EKrkMfivm6p4ZHYvtYHk_Br-4tjOf7xkcr10bG-lRlkaRrxXnlimtzGn7y3pM2j3IHb2_ISqs_b20QSD9wPvhyuD4M2kYCgY6TcBKUGUlZq00ptOWxMpHCxEheuF5KsY6kNSVGNtWZVa6-nJGIWJCeU0QFaTRcxbTvM5hJZMaJiGb6w82Db_eOHFKQYqV4EzH981l_l3kPiuzcjQ-JG_wxvrqddCFYL9kGL2GuVUlZv8GheZjCagFetOopa4m_fgU_--z8wpxY9_WkuiYjm6DCauI8ZHcja3pRM1KCGeGz81OwkcNL2rrrwuIHeNlUF6-Z8wGz6qIKnL_CpcOyUxxXeMbsuHlu4ZYShVz74uT1azh6kmt_A9N0CHwLLFOplZERNBeF1UmWKmtlmmQ6MVai7EHY3XCu2-LmrsfGWU5GjgNK7oCSO6DkvAm49-Dj_ZJRU9njX5OXO7DlLZHXOXEvkvtkwKoeqEegfJj11z0lj-Xi_y5cgdn9jUG-u7W3swTP3d8mh3gZpifjK3xHmtKkfN_iKoPvT00edzicKIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+invariant+subspace+method+for+solving+partial+differential+equations+with+non-singular+kernel+fractional+derivatives&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Touchent%2C+Kamal+Ait&rft.au=Hammouch%2C+Zakia&rft.au=Mekkaoui%2C+Toufik&rft.date=2020-07-01&rft.issn=2444-8656&rft.eissn=2444-8656&rft.volume=5&rft.issue=2&rft.spage=35&rft.epage=48&rft_id=info:doi/10.2478%2Famns.2020.2.00012&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_2_00012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |