A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives

In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 5; no. 2; pp. 35 - 48
Main Authors Touchent, Kamal Ait, Hammouch, Zakia, Mekkaoui, Toufik
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.07.2020
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives.
AbstractList In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives.
Author Mekkaoui, Toufik
Touchent, Kamal Ait
Hammouch, Zakia
Author_xml – sequence: 1
  givenname: Kamal Ait
  surname: Touchent
  fullname: Touchent, Kamal Ait
  organization: Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. BP 09 Boutalamine52000Errachidia, Morocco
– sequence: 2
  givenname: Zakia
  surname: Hammouch
  fullname: Hammouch, Zakia
  email: hammouch.zakia@gmail.com
  organization: Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. BP 09 Boutalamine52000Errachidia, Morocco
– sequence: 3
  givenname: Toufik
  surname: Mekkaoui
  fullname: Mekkaoui, Toufik
  organization: Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. BP 09 Boutalamine52000Errachidia, Morocco
BookMark eNp9kE1rGzEQhkVJoWmaH9CboOd19bEr24ceQugXBHppz2JWGiVK15Iz0jrk1L9erV1oKbQnzcDziHfel-ws5YSMvZZipfr15i3sUlkpodq6EkJI9Yydq77vu40ZzNkf8wt2Wcp9Q5SW2hh1zn5c8V32MUT0PKYDUIRUeZnHsgeHfIf1LnseMvGSp0NMt3wPVCNMvEkBCdNxwYcZasyp8MdY73jL15UGzxMQ_46UcOKBwC3IoiLFQ-MPWF6x5wGmgpe_3gv27cP7r9efupsvHz9fX910Tq9F7cbtpjfB-bF3QWnjpcG1HxQYPyrt5BD8iDJs3DYYKbTyAyLCYAxIEEOvjL5gb07_7ik_zFiqvc8ztTDFarmVSm9Vv1DrE-Uol0IYrIv1eFgliJOVwi6F26VwuxRulT0W3kz5l7mnuAN6-q_z7uQ8wlSRPN7S_NSG39H-6Q5KD_on3XqeUw
CitedBy_id crossref_primary_10_3390_app12104959
crossref_primary_10_1155_2022_4284060
crossref_primary_10_32604_cmc_2022_032087
crossref_primary_10_2478_amns_2023_1_00303
crossref_primary_10_2478_amns_2023_1_00148
crossref_primary_10_3390_fractalfract5030060
crossref_primary_10_3390_math9111303
crossref_primary_10_1155_2022_5127510
crossref_primary_10_3390_axioms11090449
crossref_primary_10_1007_s00500_022_07065_0
crossref_primary_10_1016_j_micpro_2021_104391
crossref_primary_10_1142_S1793962323500083
crossref_primary_10_3390_axioms9040136
crossref_primary_10_1142_S0218348X22400539
crossref_primary_10_32604_cmc_2023_034699
crossref_primary_10_2478_amns_2023_1_00438
crossref_primary_10_3934_mbe_2022030
crossref_primary_10_1016_j_heliyon_2021_e07600
crossref_primary_10_1016_j_chaos_2023_114196
crossref_primary_10_3934_math_2022500
crossref_primary_10_3934_math_2022199
crossref_primary_10_3390_math10050732
crossref_primary_10_3390_sym13101816
crossref_primary_10_1007_s00500_022_07359_3
crossref_primary_10_3390_sym14091829
crossref_primary_10_1016_j_rinp_2021_104368
crossref_primary_10_3934_dcdss_2024181
crossref_primary_10_1007_s00366_020_01142_4
crossref_primary_10_3390_sym13122352
crossref_primary_10_2478_amns_2023_1_00009
crossref_primary_10_1115_1_4062910
crossref_primary_10_3390_fractalfract6020092
crossref_primary_10_2478_amns_2021_1_00083
crossref_primary_10_3390_math9091070
crossref_primary_10_1016_j_aej_2021_01_043
crossref_primary_10_2478_amns_2022_2_0123
crossref_primary_10_3934_math_20221101
crossref_primary_10_3934_math_2023126
crossref_primary_10_1140_epjp_s13360_022_02421_3
crossref_primary_10_3934_mbe_2022037
crossref_primary_10_1155_2021_8886056
crossref_primary_10_3390_sym14112322
crossref_primary_10_1155_2022_4070131
crossref_primary_10_1007_s11071_022_07688_w
crossref_primary_10_1142_S0218348X22400515
crossref_primary_10_2478_amns_2022_2_0179
crossref_primary_10_1007_s00521_021_06318_7
crossref_primary_10_2478_amns_2021_1_00054
crossref_primary_10_1016_j_aej_2023_10_066
crossref_primary_10_1016_j_ijleo_2023_170816
crossref_primary_10_2478_amns_2022_2_0052
crossref_primary_10_32604_cmes_2023_024029
crossref_primary_10_1016_j_csite_2021_101193
crossref_primary_10_1142_S0218348X22400114
crossref_primary_10_2478_amns_2022_2_00029
crossref_primary_10_2478_amns_2022_2_0172
crossref_primary_10_1002_mma_8077
crossref_primary_10_2478_amns_2022_2_0056
crossref_primary_10_1016_j_bspc_2022_103888
crossref_primary_10_2478_amns_2022_2_0180
crossref_primary_10_2478_amns_2022_2_0181
crossref_primary_10_3390_math10152595
crossref_primary_10_2478_amns_2023_1_00056
crossref_primary_10_32604_cmc_2023_034362
crossref_primary_10_1142_S0218348X21400120
Cites_doi 10.1016/j.amc.2017.08.048
10.1201/9781420011623
10.1016/j.chaos.2018.01.002
10.1016/j.amc.2018.04.025
10.1016/j.camwa.2013.05.006
10.1515/fca-2017-0024
10.1186/s13662-018-1680-1
10.14419/ijpr.v1i2.849
10.3390/fractalfract2030022
10.1515/fca-2015-0010
10.1142/9789814355216
10.1016/j.camwa.2009.06.020
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2020.2.00012
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 48
ExternalDocumentID 10_2478_amns_2020_2_00012
10_2478_amns_2020_2_000125235
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-b9846fcdb4cf236d16e7d52a6db23c15fdbe1f8c9f61032d5eeea566a1a054263
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:41:27 EDT 2025
Tue Jul 01 03:14:26 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Thu Jul 10 10:36:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-b9846fcdb4cf236d16e7d52a6db23c15fdbe1f8c9f61032d5eeea566a1a054263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191239246?pq-origsite=%requestingapplication%
PQID 3191239246
PQPubID 6761185
PageCount 14
ParticipantIDs proquest_journals_3191239246
crossref_citationtrail_10_2478_amns_2020_2_00012
crossref_primary_10_2478_amns_2020_2_00012
walterdegruyter_journals_10_2478_amns_2020_2_000125235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2020
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024050212243046936_j_amns.2020.2.00012_ref_015_w2aab3b7d190b1b6b1ab2ac15Aa
2024050212243046936_j_amns.2020.2.00012_ref_001_w2aab3b7d190b1b6b1ab2ab1Aa
2024050212243046936_j_amns.2020.2.00012_ref_003_w2aab3b7d190b1b6b1ab2ab3Aa
2024050212243046936_j_amns.2020.2.00012_ref_017_w2aab3b7d190b1b6b1ab2ac17Aa
2024050212243046936_j_amns.2020.2.00012_ref_005_w2aab3b7d190b1b6b1ab2ab5Aa
2024050212243046936_j_amns.2020.2.00012_ref_010_w2aab3b7d190b1b6b1ab2ac10Aa
2024050212243046936_j_amns.2020.2.00012_ref_007_w2aab3b7d190b1b6b1ab2ab7Aa
2024050212243046936_j_amns.2020.2.00012_ref_022_w2aab3b7d190b1b6b1ab2ac22Aa
2024050212243046936_j_amns.2020.2.00012_ref_011_w2aab3b7d190b1b6b1ab2ac11Aa
2024050212243046936_j_amns.2020.2.00012_ref_009_w2aab3b7d190b1b6b1ab2ab9Aa
2024050212243046936_j_amns.2020.2.00012_ref_021_w2aab3b7d190b1b6b1ab2ac21Aa
2024050212243046936_j_amns.2020.2.00012_ref_013_w2aab3b7d190b1b6b1ab2ac13Aa
2024050212243046936_j_amns.2020.2.00012_ref_002_w2aab3b7d190b1b6b1ab2ab2Aa
2024050212243046936_j_amns.2020.2.00012_ref_016_w2aab3b7d190b1b6b1ab2ac16Aa
2024050212243046936_j_amns.2020.2.00012_ref_004_w2aab3b7d190b1b6b1ab2ab4Aa
2024050212243046936_j_amns.2020.2.00012_ref_006_w2aab3b7d190b1b6b1ab2ab6Aa
2024050212243046936_j_amns.2020.2.00012_ref_018_w2aab3b7d190b1b6b1ab2ac18Aa
2024050212243046936_j_amns.2020.2.00012_ref_008_w2aab3b7d190b1b6b1ab2ab8Aa
2024050212243046936_j_amns.2020.2.00012_ref_019_w2aab3b7d190b1b6b1ab2ac19Aa
2024050212243046936_j_amns.2020.2.00012_ref_012_w2aab3b7d190b1b6b1ab2ac12Aa
2024050212243046936_j_amns.2020.2.00012_ref_020_w2aab3b7d190b1b6b1ab2ac20Aa
2024050212243046936_j_amns.2020.2.00012_ref_014_w2aab3b7d190b1b6b1ab2ac14Aa
References_xml – ident: 2024050212243046936_j_amns.2020.2.00012_ref_001_w2aab3b7d190b1b6b1ab2ab1Aa
  doi: 10.1016/j.amc.2017.08.048
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_017_w2aab3b7d190b1b6b1ab2ac17Aa
  doi: 10.1201/9781420011623
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_019_w2aab3b7d190b1b6b1ab2ac19Aa
  doi: 10.1016/j.chaos.2018.01.002
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_002_w2aab3b7d190b1b6b1ab2ab2Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_016_w2aab3b7d190b1b6b1ab2ac16Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_003_w2aab3b7d190b1b6b1ab2ab3Aa
  doi: 10.1016/j.amc.2018.04.025
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_022_w2aab3b7d190b1b6b1ab2ac22Aa
  doi: 10.1016/j.camwa.2013.05.006
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_005_w2aab3b7d190b1b6b1ab2ab5Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_020_w2aab3b7d190b1b6b1ab2ac20Aa
  doi: 10.1515/fca-2017-0024
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_011_w2aab3b7d190b1b6b1ab2ac11Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_021_w2aab3b7d190b1b6b1ab2ac21Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_010_w2aab3b7d190b1b6b1ab2ac10Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_007_w2aab3b7d190b1b6b1ab2ab7Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_004_w2aab3b7d190b1b6b1ab2ab4Aa
  doi: 10.1186/s13662-018-1680-1
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_014_w2aab3b7d190b1b6b1ab2ac14Aa
  doi: 10.14419/ijpr.v1i2.849
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_006_w2aab3b7d190b1b6b1ab2ab6Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_015_w2aab3b7d190b1b6b1ab2ac15Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_013_w2aab3b7d190b1b6b1ab2ac13Aa
  doi: 10.3390/fractalfract2030022
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_018_w2aab3b7d190b1b6b1ab2ac18Aa
  doi: 10.1515/fca-2015-0010
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_008_w2aab3b7d190b1b6b1ab2ab8Aa
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_009_w2aab3b7d190b1b6b1ab2ab9Aa
  doi: 10.1142/9789814355216
– ident: 2024050212243046936_j_amns.2020.2.00012_ref_012_w2aab3b7d190b1b6b1ab2ac12Aa
  doi: 10.1016/j.camwa.2009.06.020
SSID ssj0002313662
Score 2.40233
Snippet In this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms 26A33
35R11
47A15
Atangana-Baleanu fractional derivative
Caputo-Fabrizio fractional derivative
Exact solution
Modified invariant subspace method
Partial differential equations
Title A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives
URI https://www.degruyter.com/doi/10.2478/amns.2020.2.00012
https://www.proquest.com/docview/3191239246
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66Xrz4FtcXOXgSqn0kaXsSFUUERUTRW2mTiYhrd93urnjyrzvTpi4KekxJQslMJt98k8wwtpcGBWVBUR4IP_dEYdAOJlB4qQ-BKESo_ToUc3WtLu7F5aN8dIRb5a5VtjaxNtSmr4kjP0RVQSOL3oI6Grx5VDWKoquuhMYsm0MTnCQdNndydn1z-82yIHqJlAqbcGYo4uQwfy0pS3eIzYOahvl5IE1R5sJ7Ha828DQcf4za-Gh97JwvsQWHF_lxI-BlNgPlClt02JG7nVmtss9j_to3z5a-PpcT9IBxyXiFZgGdYuBNoWiOCJWjshGJwAekNDh1WyKlbsBbk_q74kTQ8rJfekQm0F1V_gLDEnrcDpu3EDQU1XdSZw6v1tj9-dnd6YXniit4Oor9kVekiDysNoXQNoyUCRTERoY51ZeKdCCtKSCwiU6topx7RgJAjtgvD3JEeaGK1lkHfwI2GE9VYmVgBPYFYXWcJspamcSpjo2VILvMb1c40y7zOBXA6GXogZBQMhJKRkLJwiYa3mX730MGTdqN_zpvt2LL3A6ssqm-dJn6Jcpprz_nRP9cbv4_7xabpxHN3d1t1hkNx7CDCGVU7KKhfbjadcr4BRic6w8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBe6Fss0NaH9lIpJXFsJzlUFW1BS4FVVYHELU3scYUK2WWzgDj1H_U3diYPVq1Ubhwd2aPIMx5_8_AMwOssKrkKiglQhUWgSkd6MMUyyEKMVKmkDZtQzMHYjI7Ul2N9vAS_-7cwnFbZ68RGUbuJZR_5JokKKVmyFsyH6XnAXaM4utq30GjFYg-vr8hkq9_vfib-vpFyZ_vw0yjougoENk7CeVBmdOV660plvYyNiwwmTsuCGyvFNtLelRj51GbecLE5pxGxINBTRAXBG2lionsPllVsQjmA5Y_b46_fbrw6hJZiY2QbPpUqSTeLs4qrgksavmvcPn9fgAtUu3LVxMcd_phdXM_7eGxzze08gpUOn4qtVqAewxJWT-Bhh1VFpwnqp_BrS5xN3InnryfVJVncxCJRkxoiIxxF25haECIWJNzstBBTFlIi3bdkaQZ43pYarwU7hEU1qQJ2XnBurPiJswpPhZ-1by94KR2Xy6ZSef0Mju5k25_DgH4CV0FkJvU6cormovI2yVLjvU6TzCbOa9RDCPsdzm1X6ZwbbpzmZPEwU3JmSs5MyWUbfR_C25sl07bMx22TN3q25d2Jr_OFfA7B_MPKxaz_0tQy1mu3030F90eHB_v5_u54bx0e8Oo2b3gDBvPZBb4gdDQvX3YiKeD7XZ-CP_exKC8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcERBQr3QQlt1gRYf6KVSSuLYTnLoYQVdlkcpEiBxSxN7XCEgLJsFxKnf0j9l7CSgoraHShyd2JbleT88A7CaRaWrgqICFGERiNIQH0yxDLIQI1EKrkMfivm6p4ZHYvtYHk_Br-4tjOf7xkcr10bG-lRlkaRrxXnlimtzGn7y3pM2j3IHb2_ISqs_b20QSD9wPvhyuD4M2kYCgY6TcBKUGUlZq00ptOWxMpHCxEheuF5KsY6kNSVGNtWZVa6-nJGIWJCeU0QFaTRcxbTvM5hJZMaJiGb6w82Db_eOHFKQYqV4EzH981l_l3kPiuzcjQ-JG_wxvrqddCFYL9kGL2GuVUlZv8GheZjCagFetOopa4m_fgU_--z8wpxY9_WkuiYjm6DCauI8ZHcja3pRM1KCGeGz81OwkcNL2rrrwuIHeNlUF6-Z8wGz6qIKnL_CpcOyUxxXeMbsuHlu4ZYShVz74uT1azh6kmt_A9N0CHwLLFOplZERNBeF1UmWKmtlmmQ6MVai7EHY3XCu2-LmrsfGWU5GjgNK7oCSO6DkvAm49-Dj_ZJRU9njX5OXO7DlLZHXOXEvkvtkwKoeqEegfJj11z0lj-Xi_y5cgdn9jUG-u7W3swTP3d8mh3gZpifjK3xHmtKkfN_iKoPvT00edzicKIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+invariant+subspace+method+for+solving+partial+differential+equations+with+non-singular+kernel+fractional+derivatives&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Touchent%2C+Kamal+Ait&rft.au=Hammouch%2C+Zakia&rft.au=Mekkaoui%2C+Toufik&rft.date=2020-07-01&rft.issn=2444-8656&rft.eissn=2444-8656&rft.volume=5&rft.issue=2&rft.spage=35&rft.epage=48&rft_id=info:doi/10.2478%2Famns.2020.2.00012&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_2_00012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon